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Abstract 
Varicose veins afflict a significant portion of adults, with approximately 30% experiencing this condition, 

which often necessitates medical treatment like endovenous laser ablation (EVLA).  EVLA has emerged as a 

highly effective and minimally invasive treatment.  However, despite its efficacy, there is a lack of literature 

on predictive modeling of EVLA treatment outcomes considering both surgical settings and patient 

characteristics.  In this study, we present a comprehensive analysis employing logistic regression under both 

maximum likelihood (ML) and Bayesian frameworks, as well as support vector machine (SVM) regression.  

Our results indicate that Bayesian logistic regression with uniform prior demonstrates superior performance. 

Furthermore, through repeated random sub-sampling validation, we confirm the robustness of our models in 

predicting successful EVLA outcomes.  These findings provide the potential of machine learning techniques 

in augmenting predictive capabilities in medical decision-making.  Our study contributes to the burgeoning 

literature on predictive modeling in medical contexts, offering insights into the optimization of EVLA 

treatment outcomes.  

 

 

Keywords: Bayesian logistic regression; Endovenous laser ablation; Logistic regression; Support 

vector machine; Varicose veins.  
 

1. Introduction 

Varicose veins, although often considered a cosmetic concern, can lead to serious complications such as blood 

clots and leg ulcers if left untreated, emphasizing the importance of research and intervention.  Varicose veins 

occur with the breakdown of the veins one-way valves causing the vein to dilate. The most common treatment for 

varicose veins is endovenous laser ablation (EVLA). EVLA has been proven to be the most effective and least 

invasive treatment for varicose veins. This procedure is done by inserting a laser fiber into the vein, typically near 

the knee or ankle. The laser is then retracted through vein, causing the vein to occlude.  According to Mundy [6], 

EVLA treatment success rates have been over 89%.  EVLA was approved by the National Institute for Health and 

Clinical Excellence (NICE) in March 2004. This procedure has become very common since it avoids the 

complications of open surgeries while still having spectacular results which is one factor that is often considered 

when judging the overall excellence of the surgery.  Figure 1 provides an illustration of EVLA treatment.   

 

Although the success rate of EVLA treatment is fairly high, there hasn't been any literature on modeling the 

EVLA based on both the settings of the surgery and patients' conditions.  Some have examined the surgery settings 

has predictors of the success rate of EVLA treatment.  Mordon [7] considered a mathematical model that was 

produced to determine significant variables in EVLA treatment and optimal levels of endovenous laser Treatment 

variables that result in minimal vein damage and side effects. They considered both the pulsed and continuous 

mode of the laser treatment. For each mode, the model determined the optimal linear endovenous energy density 
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(LEED) (J/cm) for both 3mm and 5mm vein diameter. They also concluded that pullback distance and laser 

wavelength do not significantly affect treatment outcome.   

 

Figure 1. An illustration of EVLA. 

 
While the success rate of EVLA treatment is notably high, there remains a gap in the literature regarding the 

modeling of EVLA outcomes based on both surgical settings and patients' conditions. Some researchers have 

delved into the predictive value of surgical settings as indicators of EVLA treatment success. For instance, in [7], 

a mathematical model was developed to identify significant variables in EVLA treatment and determine optimal 

levels of endovenous laser treatment variables to minimize vein damage and associated side effects. The study 

explored both pulsed and continuous modes of laser treatment, aiming to establish the optimal linear endovenous 

energy density (LEED) (J/cm) for vein diameters of 3mm and 5mm. Notably, the researchers concluded that 

variables such as pullback distance and laser wavelength did not exert a significant impact on treatment outcomes. 

Cowpland [3] have examined the factors affecting optimal linear endovenous energy density for endovenous laser 

ablation in incompetent lower limb veins.  The findings indicate that the ideal LEED for endovenous laser ablation 

of the great saphenous vein lies between 80 J/cm and 100 J/cm to achieve optimal closure rates while minimizing 

side effects and complications. Longer wavelengths, which target water, may have a lower optimal LEED. 

Conversely, a LEED below 60 J/cm shows reduced efficacy regardless of the wavelength used.   

In this study, our initial focus is on modeling the relationship between EVLA treatment outcomes and both 

surgical settings and patient characteristics using logistic regression under the frequentist approach. We aim to 

elucidate the factors influencing the success or failure of EVLA procedures. Following this and more importantly, 

we compare the predictive capabilities of this logistic regression model with Bayesian logistic regression and 

support vector machine (SVM) regression. These modeling techniques have been extensively utilized in the 

medical field to predict the success rates of various treatments.  For instance, Yussuff [11] employed logistic 

regression to predict breast cancer based on mammogram results, identifying mass, architectural distortion, skin 

thickening, and calcification detection as significant predictors. Similarly, Chadwick [1] utilized univariate and 

multivariate logistic regression analyses to differentiate between dengue fever and other febrile illnesses, 

achieving a sensitivity of 74% and a specificity of 79%. More recently, Srivatsa [9] investigated the relative 

contributions of power output, linear endovenous energy density, and pullback rate using logistic regression, 

highlighting the significance of power output and LEED. 

Moreover, researchers have explored Bayesian and SVM approaches in medical prediction tasks. Zhou [12] 

introduced a Bayesian approach to identifying important genes in cancer classification, while Riaz [8] developed 

an adaptive SVM regression model to predict the motion of lung tumors, demonstrating its superiority in accuracy 

compared to traditional methods. Verplankcke [10] investigated the use of SVM models in predicting mortality 

of critically ill patients with hematological malignancies, finding comparable predictive power to multiple linear 

regression.  Furthermore, Cheng [2] utilized SVM incorporating protein structure and sequence information to 

predict changes in protein stability following single amino acid mutations. Additionally, Gelman [4] compared 

four regression methods, including SVM, in tracking lung tumors, with the artificial neural network regression 

performing slightly better in terms of mean tracking error.   

These studies collectively demonstrate the utility of logistic regression, Bayesian logistic regression, and SVM 

regression in medical prediction tasks, providing valuable insights into treatment outcomes and disease prognosis. 

By leveraging these diverse modeling techniques, our study aims to enhance the predictive accuracy of EVLA 

treatment outcomes, contributing to improved patient care and clinical decision-making. 

The paper is organized as follows.  Section 2 provides a discussion on the data and methodology.  It gives the 

background of the dataset and it provides methodology describing logistic regression, Bayesian logistic 
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regression, and support vector machine.  In Section 3, we provide the results from the models.  Section 4 

concludes.   

2. Data and Methodology 

2.1 Dataset  

The dataset was obtained from the Heart, Artery, and Vein Center of Fresno, a local clinic in Fresno, CA. It 

contains information on 359 veins treated using EVLA.  Institutional review board (IRB) approval was not needed 

since the data had already been collected prior to the study. The clinic obtained all patients' consents, and all 

patient identifications were masked and not revealed to the researchers. Due to missing observations, the complete 

case data consists of 272 observations from 2015 to 2017.  Table 1 presents the descriptions of the variables and 

Table 2 provides the summary statistics for all the variables.   

 
Table 1. Variable definitions and summary statistics. 

Variables Definitions Min Q1 Median Mean Q1 Max Std. Dev 

Age       age in years  26 56.75 65 63.51 72 91 12.41 

Height    height in inches               53 63 65.5 65.58 68 74 3.94 

Weight   weight in lbs             100 163.8 186 201.9 234 460 60.25 

BMI         body mass index              16.8 27.4 30.85 32.75 36.7 62.4 8.33 

Power  power setting in watts 6 9 10 9.871 12 12 1.76 

Time        time of ablation in seconds              9 58 94 97.95 130 258 49.6 

 Length   length of treated vein in cm  2.5 28 45 42.68 56 92 17.8 

 Energy    energy used in joules   11 527 839 968.1 1318 2581 588.4 

 LEED      linear endovenous energy density in J/cm    1 17.75 21.5 21.91 27 41 7.15 

Pullback   pullback rate in mm/s        2.756 3.781 4.485 4.695 5.252 14.655 1.38 

 

 

Table 2. Variable definitions and frequencies. 

Variables Definitions Yes No Total 

DM         dementia              107 165 272 

HTN          hypertension                  195 77 272 

Hyperlip   hyperlipidemia                  184 88 272 

Renal  renal disease 20 252 272 

CHD congenital heart defects 33 239 272 

 

2.2 Methodology 

In this section, we present the methods and models that we have used in our study.  In the frequentist 

approach, we assume a specific probability distribution such as a normal distribution and then, estimate 

the parameters in the model.  Maximum likelihood estimation has been one of the most popular 

estimation methods in a frequentist setting due to its efficiency, consistency, and asymptotic normality.  

In the Bayesian approach, estimation of parameters involves treating them as random variables rather 

than fixed quantities, allowing for the incorporation of prior knowledge and uncertainty into the 

modeling process. Unlike the frequentist approach, which relies solely on observed data to estimate 

parameters, Bayesian inference combines prior beliefs about the parameters with likelihood functions 

derived from the data to obtain posterior distributions. These posterior distributions represent updated 

beliefs about the parameters after observing the data, reflecting both the information contained in the 

data and the prior knowledge.  Bayesian data analysis has become a well-established component of 

modern applied statistics and machine learning terminology.  However, there is no universal consensus 

on which approach provides better results.  This study aims to compare these approaches, along with a 

machine learning technique, support vector machine, to find an optimal predictive model for EVLA 

outcome.   
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2.2.1 Logistic Regression 

Logistic regression is a most commonly used model for predicting a binary response variable.  Let 𝑌𝑖 be the 

binary response variable with the conditional probability 𝑝𝑖 = 𝑃(𝑌𝑖 = 1|𝑋 = 𝑥) where the event {𝑌𝑖 = 1} denotes 

the success of an outcome for the i-th observation.  The logistic regression model has the form  

log (
𝑝𝑖

1−𝑝𝑖
)  =  β0  + β1xi1  + ⋯ +  β1xik.                                                    (1) 

 

Solving for 𝑝𝑖 from above gives  

𝑝𝑖 =  
1

1+exp(β0 + β1xi1 +⋯+ β1xik)
,                                                           (2) 

 

which is the probability of the success after observing 𝑥1, 𝑥2, … , 𝑥𝑘 .  The parameters 𝛽0, 𝛽1, … , 𝛽𝑘  can be 

estimated from the maximum likelihood estimation.  That is, since 𝑌 is an independent binary random variable 

the likelihood function is defined as  

𝐿(𝛽|𝑦) = ∏
exp (𝑦𝑖(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘))

1+ exp (𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘)𝑛𝑖

𝑛
𝑖 ,                                                    (3) 

 

where 𝑛𝑖 is the total number of i-th trial.  Differentiating above equation with respect to 𝛽 gives k+1 equations 

and solving for 𝛽 gives the estimated parameters.  However, solving this system of nonlinear equations is not easy 

since the solution cannot be derived algebraically.  A numerical method such as Newton's method is often used 

to obtain the solution. 

 

2.2.2 Bayesian Logistic Regression 

In Bayesian analysis, the posterior distribution 𝑝(𝛽|𝑦) is obtained from the likelihood function 𝐿(𝛽|𝑦) and a 

prior distribution 𝑝(𝛽).  That is,  

𝑝(𝛽|𝑦) =  
𝐿(𝛽|𝑦)𝑝(𝛽)

∫ 𝐿(𝛽|𝑦)𝑝(𝛽)𝑑𝛽
.                                                                 (4) 

 

Choosing an appropriate prior distribution is critical in Bayesian setting because the posterior heavily depends on 

it.  For instance, if the prior distribution is chosen to be a beta distribution, then it can be easily be shown that the 

posterior distribution belongs to a class of beta distributions.  Of course, a beta prior distribution may be subjective 

since the parameter space for 𝛽 lie in the whole real, whereas a beta distribution only takes the values in (0,1).  

On the other hand, if the prior distribution is chosen as a normal then there is no closed form for the posterior 

distribution (unless the likelihood function is normal) and hence, sampling from this posterior is not easy.    

For simplicity, we assume that the parameters 𝛽0, 𝛽1, … , 𝛽𝑘 are independent.  We used two prior distributions 

in our work.  They are 

 

𝛽𝑗~𝑁(𝜇, 𝜎2) ∶ 𝑝(𝛽𝑗) =  
1

𝜎√2𝜋
𝑒𝑥𝑝 (

−(𝛽𝑗−𝜇)^2

2𝜎2 ) and 𝛽𝑗~𝑈𝑛𝑖𝑓(𝑎, 𝑏): 𝑝(𝛽𝑗) =  1.               (5) 

 

A normal prior puts a heavy weight near 𝜇 while the uniform prior assigns equal weight and hence, it is called a 

non-informative prior.  As mentioned previously, sampling from a posterior is difficult in many cases.  For 

instance, under a normal prior distribution, the posterior is  

𝑝(𝛽|𝑦) ∝  ∏
exp(𝑦𝑖(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘))

1+exp(𝛽0+𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘)𝑛𝑖

𝑛
𝑖  𝑒𝑥𝑝 (

− ∑(𝛽𝑗−𝜇)
2

2𝜎2 ).                                      (6) 

 
However, there is no closed form for this posterior distribution and sampling and making inference from this 

posterior is not straightforward.  Therefore, we resort to the random walk metropolis algorithm which is ubiquitous 

tool for producing dependent simulations from an arbitrary distribution.  The reader is referred to [4] for details 

on this algorithm.  In the Appendix, trace plots and density plots are shown to verify the convergence of the 

algorithm for each parameter 𝛽𝑗.  
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2.2.3 Support Vector Machine Regression 

Support Vector Machine (SVM) regression is a supervised learning algorithm used for regression tasks, where 

the goal is to predict outcomes. Unlike traditional regression methods that minimize error directly, SVM 

regression aims to fit a "tube" around the data points, with the goal of including as many points as possible within 

the tube while minimizing the margin violations (points outside the tube).  SVM regression aims to find a 

hyperplane that best fits the data points while maximizing the margin, subject to a tolerance 𝜖. This hyperplane is 

used to predict the target values for new data points.  The objective of SVM regression is to minimize the following 

function: 

1

2
||𝑤||

2
+ 𝐶 ∑ (|𝑦𝑖 − 𝑤 𝜙(𝑥𝑖) − 𝑏|− 𝜖)+

𝑛
𝑖=1 ,                                                    (7) 

 

where w is the weight, b is the bias term, 𝜖 is the tube radius (tolerance), C is the regularization parameter (trade-

off between maximizing the margin and minimizing the errors.  The optimization problem involves finding the 

optimal values for 𝑤 and 𝑏 that minimize the objective function while satisfying the margin constraints. This is 

be formulated as a quadratic programming problem and solved using optimization technique.  

 

3. Results 

The primary objective of this paper is to identify the optimal model for predicting successful outcomes of EVLA 

treatment. To achieve this goal, we explore frequentist, Bayesian, and machine learning approaches. Our aim is 

to determine the most effective approach, laying the groundwork for the development of superior models in the 

future. Model assessment relies on repeated random sub-sampling validation, commonly referred to as Monte 

Carlo cross-validation. We randomly partition the dataset into four subsamples, with three utilized as training data 

and the remaining subsample serving as validation data for testing the model. This process is repeated 50 times 

to ensure robust evaluation. 

Given that this is a binary classification problem, each case in the validation set is classified as either a correct 

or incorrect prediction.  We define success as 𝑌𝑖 = 1 if the estimated probability is greater than or equal to 0.90. 

This criterion is referred to as accuracy (ACC) in our results. Sensitivity (TPR), specificity (TNR), and precision 
were calculated based on the following formulas. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                  (8) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                             (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                          (10)  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                   (11) 

 
where TP, FP, TN, and FN represent the number of true positives, false positives, true negatives, and false 

negatives.    

First, we fitted a logistic regression to the whole dataset using the maximum likelihood estimation method as 

presented earlier. This approach provides parameter estimates that can be easily interpreted, along with the 

significance of each input variable in our model. Table 3 provides the results of this frequentist approach. Power 

emerges as the most significant variable, along with Energy and LEED. This result is consistent with the findings 

of [9].   
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Table 3. Logistic regression analysis output.  

Variable Estimate Std. Error Z value P-value Significance 

Intercept 24.309 14.407 1.687 0.092 . 

Age -0.001 0.020 -0.049 0.961  

Height -0.305 0.217 -1.407 0.159  

Weight 0.056 0.034 1.639 0.101  

BMI -0.385 0.209 -1.836 0.066 . 

Power 0.576 0.158 3.641 0.000 *** 

Time -0.019 0.017 -1.083 0.279  

Length -0.083 0.043 -1.943 0.052 . 

Energy 0.006 0.002 2.558 0.011 * 

LEED -0.222 0.107 -2.081 0.037 * 

Pullback -0.385 0.244 -1.576 0.115  

DM 0.132 0.478 0.275 0.783  

HTN -0.322 0.550 -0.584 0.559  

Hyperlip 0.729 0.556 1.311 0.190  

Renal Disease -0.685 0.753 -0.910 0.363  

CHD 1.041 0.726 1.435 0.151  

      

 
Table 4. Logistic regression analysis from the backward selection process.  

Variable Estimate Std. Error Z value P-value Significance 

Intercept 21.434 13.240 1.619 0.105  

Height -0.311 0.200 -1.551 0.121  

Weight 0.055 0.031 1.801 0.072 . 

BMI -0.379 0.190 -1.997 0.046 * 

Power 0.497 0.147 3.383 0.001 *** 

Length -0.080 0.037 -2.192 0.028 * 

Energy 0.004 0.002 2.088 0.037 * 

LEED -0.120 0.083 -1.45 0.147  

CHD 1.045 0.702 1.489 0.136  

           
Subsequently, we applied backward stepwise logistic regression to fit a subset model, selecting the 

variables Height, Weight, BMI, Power, Length, Energy, LEED, and CHD for classification purposes. The results, 

displayed in Table 4, indicate that Power is the most significant variable, alongside BMI, Length, and Energy. In 

contrast, LEED is non-significant in this model, possibly due to its correlation with other variables such as Power 

and Length. 

In Figure 2, a ROC curve displays the Area Under the Curve (AUC) derived from one of the 50 Monte 

Carlo cross-validations conducted. Table 5 presents the average accuracy, sensitivity, specificity, precision, and 

AUC across all 50 cross-validations, with the values in parentheses indicating the corresponding standard 

deviations. Concerning accuracy, sensitivity, specificity, and precision, the Bayesian model with a uniform prior 

exhibits slightly superior performance compared to (frequentist) logistic regression. Moreover, the Bayesian 

model with a normal prior outperforms both logistic regression and the Bayesian model with a uniform prior, 

albeit marginally. 
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Figure 2. A sample ROC curve showing the area under the curve (AUC).  

 

 
Table 5. A comparison of different models using accuracy, sensitivity, specificity, precision, and AUC.  

  Logistic Bayesian (Normal) Bayesian (Uniform) SVM 

Accuracy 0.861 0.856 0.862 0.816 

 (0.040) (0.038) (0.039) (0.036) 

Sensitivity 0.102 0.079 0.113 0.074 

 (0.092) (0.100) (0.102) (0.088) 

Specificity 0.984 0.983 0.985 0.937 

 (0.018) (0.019) (0.019) (0.028) 

Precision 0.579 0.446 0.585 0.150 

 (0.401) (0.424) (0.396) (0.159) 

AUC 0.687 0.688 0.687 0.583 

  (0.066) (0.070) (0.068) (0.070) 

 

 

4.  Conclusions 

Based on the analysis conducted, several key findings emerge regarding the predictive modeling of endovenous 

laser ablation (EVLA) treatment outcomes: 

(a) Logistic Regression Analysis: Initial logistic regression analysis identified significant predictors for 

EVLA outcomes, notably power, energy, and linear endovenous energy density (LEED). This finding 

aligns with previous research that highlights the importance of these variables in treatment success. 

(b) Comparison of Modeling Approaches: The study compared three modeling approaches: logistic 

regression, Bayesian logistic regression, and support vector machine (SVM) regression. Across these 

methods, Bayesian logistic regression with a uniform prior demonstrated slightly superior performance 

in terms of accuracy, sensitivity, specificity, precision, and AUC compared to logistic regression and 

Bayesian with a normal prior. SVM regression, while providing acceptable accuracy, showed 

comparatively lower performance in terms of sensitivity and precision. 
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(c) Clinical Implications: The findings suggest that Bayesian logistic regression, particularly with a uniform 

prior, may offer improved predictive capabilities for EVLA treatment outcomes compared to traditional 

logistic regression. This insight can inform clinical decision-making by providing clinicians with a more 

accurate assessment of the likelihood of treatment success. 

(d) Limitations and Future Directions: While Bayesian logistic regression shows promise, further research is 

warranted to validate and refine the model. Additionally, exploring additional variables or incorporating 

advanced machine learning techniques may enhance predictive accuracy further. Furthermore, external 

validation using data from diverse clinical settings would strengthen the generalizability of the findings. 

In conclusion, leveraging Bayesian logistic regression models, particularly with a uniform prior, holds potential 

for enhancing the prediction of EVLA treatment outcomes. By refining predictive models, clinicians can better 

tailor treatment strategies, ultimately improving patient care and outcomes in the management of varicose veins. 
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Figure 3. Trace and density plots of the chains under Bayesian with normal prior.  
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Figure 4. Trace and density plots of the chains under Bayesian with uniform prior.  

 

 

 

 

 

 

 

 


