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Abstract
In this manuscript, we present and test a numerical scheme with an algorithm to solve Volterra
and Abel’s integral equations utilizing generalized sampling operators. Illustrative computational
examples are included to indicate the validity and practicability of the proposed technique. All of the
computational examples in this research have been computed on a personal computer implementing
some programs coded in MATLAB.
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1 Introduction

Integral equations have an important place in the application of mathematical analysis to today’s
problems. Since integral equations are a vast field of research, a theory that will include all
integral equations cannot be established. Therefore, they are examined separately according to
their characteristics. Considering these separate examinations, integral equations are divided into
Volterra and Fredholm integral equations. In the conducted studies, Volterra integral equations
are in the foreground and the relationship between differential equations is established in detail.
A variable or constant coefficient differential equation with initial conditions can be converted to
a Volterra integral equation or an integral equation can be converted to a differential equation.
Therefore, an integral equation can also be considered as a boundary value problem of the
differential equation provided for the initial conditions.
It is known that differential equations are not enough to define a problem by itself. Therefore,
initial or boundary conditions must be added to the problem in a differential equation. Similarly,
initial or boundary conditions are necessary for the problems defined by integral equations. In
other words, integral equations include the initial conditions through the Green functions. Thus, it
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shows similar aspects of integral and differential equations. In addition, integral equations require
integral over the domain space which is defined according to the nature of integral equations.
It means that the value of the unknown function at a point is found in terms of expressions
containing the integral of that function over the domain space.
The first studies known with integral equations were performed in the first half of the 19th century.
Previously, systematic research has not been conducted [1]. However, more methodical researches
were carried out towards the end of this century and some results started to be obtained. It
is known for the first time that Abel came across an integral equation when he dealt with a
mechanical problem of the tautochrone in 1823 [2, 3]. Abel presented the general formula for the
mechanical problems he worked on as follows:

φ(η) =

∫ α

0

ϕ(ξ)

(η − ξ)2 dξ, φ(0) = 0, α ∈ (0, 1),

and gave the solution to this problem in 1826 [2]. In this equation, if α = 0 and α = 1/2, the
original equation that Abel encountered was obtained, and the famous tautochrone problem related
to this equation was first solved by Huygens [4].
In some cases, it may not be possible to find the analytical solution of the integral equation due to
their nature. In situations like this, it becomes necessary to investigate the existence of a numerical
solution of the integral equation. In order to solve Volterra integral equations numerically, there are
a number of proposed techniques in literature such as Taylor-series expansion method, Legendre
wavelet method, Adomian decomposition method, Sinc-collection method and power series
method [5–13]. In addition to this, in [14], the authors introduced a numerical technique for
solving Volterra integral equation of second kind, first kind and even singular types of these
equations by using the Bernstein Approximation method. Afterward, Usta et.al. [15] introduced
the numerical solution of both second and first-kind Volterra integral equations with the aid of
Szasz-Mirakyan operators. Other numerical approaches can be found in [16, 17].
On the other hand, approximation theory is one of the fundamental topics of mathematical
analysis. One of the main problems of the approximation theorem is to show the given function f
in the form of a series representation of functions that have better properties than itself. In 1885,
Weierstrass was the researcher who made the first studies on the approximation theorem. After the
famous theorem of Weierstrass, a number of studies have been conducted on the approximation
theorem, [18], such as those involving Bernstein approximations. Furthermore, one of the most
significant of those studies is the sampling theorem. The main theorem of generalized sampling
theorem was introduced to the literature by Butzer and his colleagues at RWTH Aachen in the
late 1970s and has been studied by a number of mathematicians as of this date [19–22]. One of the
most important superior features of the generalized sampling theorem is that it converges in an
infinite interval rather than converging in a closed interval [0, 1] like Bernstein operators. In more
recent times, generalized sampling theory is a popular subject in approximation theory owing to
its great variety of applications, especially in image and signal processing.
In this study, computational solutions of integral equations, which are crucial application areas in
several disciplines, are given by making use of the superior features of the generalized sampling
theorem. Additionally, we show the applicability and efficiency of the proposed technique both
theoretically and numerically. Of course, this work is not a completely new methodology or a
new method for the numerical solution of integral equations. However, in the light of existing
collocation methods such as projection methods [23, pp. 49-50] which uses the basis functions
and unknown constants, it is presented to the attention of the readers as a different alternative.
Besides, using the nonideal instantaneous sampling theory and Fourier analysis, another work in
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[24] presents a new methodology to solve Fredholm integral equations. In this context, one can
argue that the presented technique is the first time that the generalized sampling theory is used to
solve Volterra integral equations and can be readily generalized in that direction.
The contents of the article consist of five sections with this section. Section 2 discusses the prelimi-
naries of both integral equations and the generalized sampling theorems. Section 3 explains the
construction of the proposed method for the numerical solution of various integral equations via
the proposed method. Section 4 provides several computational experiment results to validate the
presented technique. Finally, Section 5 summarizes the paper by adding some conclusions and
further research.

2 Fundamental facts

In this section, we review some fundamental definitions and theorems that we will benefit from
the construction of the proposed method. Therefore, it would be more favorable to give them in
two parts systematically.

Integral equations

As mentioned in the previous sections, it will be useful for us to categorize the integral equations.
Since we focus on Volterra and Abel integral equations in this study, it will be sufficient to provide
general information about them. For detailed information on other types of integral equations
such as Fredholm integral equations, we refer the reader to [25–29].
The standard form of the integral equation is

ψ(η)ϕ(η) = φ(η) + λ

∫µ(η)

ϑ(η)
K(η, ξ)ϕ(ξ)dξ, (1)

where K(η, ξ) is a bivariate known kernel, ψ(η) and φ(η) are known functions, ϑ(η), µ(η) are
integration limits, λ is a non-zero real or complex parameter and ϕ(η) is unknown function needs
to be determined. The classical form of Volterra integral equations is [30],

ψ(η)ϕ(η) = φ(η) + λ

∫ η

a
K(η, ξ)ϕ(ξ)dξ, a ≤ ξ ≤ η ≤ b, [a, b] ⊂ (−∞,∞). (2)

On the other hand, when at least one of the limits of integration in an integral equation becomes
infinite or when the bivariate kernel of an integral equation becomes infinite at one or more points
within the range of integration, in this case, the integral equation is called as a singular integral
equation. One of them is Abel integral equation and it is given as follows for η > 0:

1
Γ(α)

∫ η

a

1
(η − ξ)1−α

ϕ(ξ)dξ = φ(η), a ≤ ξ ≤ η ≤ b, [a, b] ⊂ (−∞,∞), (3)

where Γ(·) is Gamma function defined by Γ(α) =
∫∞

0 ηα−1e−ηdη, and α ∈ (0, 1) [31].

Generalized sampling operators

Butzer and his students introduced the theory of generalized sampling operators at RWTH Aachen
in the late 1970s. Then it turned out that this study was very interesting both in terms of theory and
practice. Before summarizing generalized sampling operators, readers who want to get detailed
information on this topic can refer to the following studies [19–22, 32].
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A generalized sampling operators generated by a suitable kernel function χ ∈ L1(R) ∩ C(R) is
defined for a uniformly continuous and bounded functions ϕ ∈ C(R) as follows:

(
S

χ
w ϕ

)
(η) =

∞∑
k=−∞ ϕ

(
k
w

)
χ(wη − k), (4)

for η ∈ R and w > 0. It is worth noting that the values ϕ (k/w)∞k=−∞ are called sampled values
taken at the nodes k/w for k ∈ Z, which are a uniform grid on R. Additionally, the generalized
sampling operators are well-defined when the following conditions are held for any s ∈ R:

∞∑
k=−∞ |χ(s − k)| <∞,

the absolute convergence being uniform on compact subsets of R, and

∞∑
k=−∞

χ(s − k) = 1.

In addition to these facts, one can say that S
χ
w are linear and bounded operators mapping C(R)

into itself, having the operator norm

∥Sχ
w∥[C(R),C(R)] = sup

s∈R

∑
k∈Z

|χ(s − k)| ,

and

lim
w→∞ ∥Sχ

w ϕ − ϕ∥C(R) = 0.

Recently, a number of progressions were observed for the development of the generalized sampling
operators, focusing on certain aspects of both theory and applications. In more detail, in [33], the
authors considered a new definition of generalized sampling type series utilizing an approach
defined by Durrmeyer for the Bernstein polynomials. On the other hand, in [34], the authors
introduced appropriate linear combinations for a multivariate version of the generalized sampling
series. Both studies provide a better order of approximation theoretically proved. Along with
these, in [35], the authors proposed some solutions to solve the problems encountered in real-life
signal processing.

One of the most significant generalizations of the generalized sampling theorem is sampling
Kantorovich operators which use the integral mean of ϕ on small intervals around the sample
nodes in place of the exact value of the function at these nodes, [36–39]. In other words, the
sampling Kantorovich operators can be obtained by replacing the sampled values with the Steklov
mean of f on the interval [k/w, (k + 1)/w], which is,

ϕ

(
k
w

)
= w

∫ (k+1)/w

k/w
ϕ(s)ds.

This is a point where the sampling Kantorovich operators are bounded in Lp(R), and also, as a
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general idea, in Orlicz spaces, under classical singularity presumptions on the kernel χ.

In recent times, the asymptotic behaviour of the generalized sampling operators has been studied,
which yields precise estimates of the pointwise and uniform convergence of these operators to
ϕ [33, 40, 41]. Particularly, in [41], the Voronovskya type formula for the generalized sampling
operators, under appropriate singularity presumptions on the kernel function χ, has been given
as follows for at least twice differentiable function ϕ at the point η,

lim
w→∞ w2

[(
S

χ
w ϕ

)
(η)− ϕ(η)

]
= Aχϕ ′′(η), (5)

where Aχ is an absolute constant depending only on χ.

3 Construction of the numerical method

In this part, we construct a numerical scheme to find a numerical solution to the second and the
first kind Volterra integral equations and Abel integral equations with the presented method.
In line with this objective, we use the truncated type operators. In other words, whenever the
operators (4) converge, for the positive integer N, f can be approximated by,

(
S

χ,N
w ϕ

)
(η) =

N∑
k=−N

ϕ

(
k
w

)
χ(wη − k). (6)

Thus one can find the approximate solution of given integral equations for the arbitrary interval.
Throughout this and the next sections, we take the integral equations defined in Ĩ := [a, b] such
that −∞ < a ≤ η ≤ b <∞.

Numerical scheme for the second kind Volterra integral equations

So as to solve the second kind Volterra integral equations, firstly, we approximate the unknown
function in (2) via (6) as follows:

ϕ(η) ≃ S
χ,N
w (ϕ(η)) =

N∑
k=−N

ϕ

(
k
w

)
χ(wη − k), (7)

for properly selected kernel χ. Then substituting (7) into (2) in case of ψ(η) = 1, one readily
deduces the following equation, that is to say

S
χ,N
w (ϕ(η)) = φ(η) + λ

∫ η

a
K(η, ξ)S

χ,N
w (ϕ(ξ))dξ, η ∈ Ĩ, (8)

which yields

N∑
k=−N

ϕ

(
k
w

)
χ(wη − k) = φ(η) + λ

∫ η

a
K(η, ξ)

N∑
k=−N

ϕ

(
k
w

)
χ(wξ − k)dξ.

The point to note here is that it is possible to benefit the interchangeability properties of the integral
and the sum by using the result that the generalized sampling operators are uniformly convergent,
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proved in [42]. Thereupon by re-composition the above equation, we deduce that

φ(η) =
N∑

k=−N

ϕ

(
k
w

) [
χ(wη − k)− λ

∫ η

a
K(η, ξ)χ(wξ − k)dξ

]
.

The point to be noted here is that we ignore the endpoints of the approximation interval which
compute the solution in order to avoid the singularity issue by manipulating the endpoints
with any arbitrary small number ε. In addition, we need to replace η with ηl = l/w + ε, for
l = −N, · · · , N before calculating the unknown coefficients f (k/w). That is,

φ(ηl) =
N∑

k=−N

ϕ

(
k
w

) [
χ(wηl − k)− λ

∫ ηl

a
K(ηl , ξ)χ(wξ − k)dξ

]
.

This equation can be expressed in the matrix form as follows:

[P][X] = [S],

where

[P] =
[

χ(wηl − k)− λ

∫ ηl

a
K(ηl , ξ)χ(wξ − k)dξ

]
(2N+1)×(2N+1)

, l, k = −N, · · · , N, (9)

[S] =
[

φ(η−N), φ(η−N+1), · · · , φ(ηN−1), φ(ηN)
]T
(2N+1)×1 , (10)

[X] =
[

ϕ (−N/w) , ϕ ((−N + 1)/w) , · · · , ϕ ((N − 1)/w) , ϕ (N/w)
]T
(2N+1)×1 . (11)

Algorithm 1: Generalized sampling operators method for solving second kind Volterra integral
equations
Input: ηl , l = −N · · · , N

1 for i← −N to N do
2 for k← −N to N do
3 Compute [P](2N+1)×(2N+1)

4 end
5 end
6 Calculate [P−1]

7 for k← −N to N do
8 Compute [S](2N+1)×(2N+1)

9 end
10 Calculate [X] = [P−1][S].

Output: Compute
N∑

k=−N
ϕ

(
k
w

)
χ(wη − k), using [X].

The matrix equation [P][X] = [S] can be computed as long as the matrix [P] must be an invertible
matrix. Then, to do this it is necessary to compute the matrix [P] and the vector [S] as an initial
act. Then, one can easily deduce the matrix [X] utilizing [X] = [P−1][H]. Finally, the approximate
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solution of the second kind Volterra integral equation can be obtained by substituting the matrix
[X] in Eq. (7). Now we summarize the algorithm of the presented method above.

Numerical scheme for the first kind Volterra integral equations

Now we use (2) to obtain the first kind Volterra integral equations in case of ψ(η) = 0. Then if we
approximate the unknown function ϕw(η) with (7), we obtain the following equality,

φ(η) =

∫ η

a
K(η, ξ)S

χ,N
w (ϕ(ξ))dξ, η ∈ Ĩ. (12)

By following the similar steps in the previous subsection, a method for numerical solution of the
first kind Volterra integral equations via generalized sampling operators can be developed. The
matrix equation obtained here in this circumstance is,

[R][X] = [S],

where

[R] =

[∫ ηl

a
K(ηl , ξ)χ(wξ − k)dξ

]
(2N+1)×(2N+1)

, l, k = −N, · · · , N, (13)

and the vectors [S] and [X] given in Eq. (10) and Eq. (11), respectively. Similarly, we need to
compute the matrix [R] and the vector [S] as a beginning. Then, one can smoothly deduce the
matrix [X] with the help of [X] = [R−1][H]. In the end, the approximate solution of the first kind
of Volterra integral equation can be deduced by substituting the matrix [X] in Eq. (7).

Numerical scheme for the Abel’s integral equations

In this subsection, we provide a numerical scheme for the numerical solution of Abel’s integral
equation with the proposed method. For this purpose, we approximate the unknown function in
(3) via (6), which yields

1
Γ(α)

∫ η

a

1
(η − ξ)1−α

S
χ,N
w (ϕ(ξ))dξ = φ(η), η ∈ Ĩ.

Then this equality gives us the following equation,

φ(ηl) =
N∑

k=−N

ϕ

(
k
w

) [
1

Γ(α)

∫ ηl

a

1
(ηl − ξ)1−α

χ(wξ − k)dξ

]
,

where l = −N, . . . , N. Ultimately, this equation can be converted to a matrix equation, that is

[K][X] = [S],

where

[K] =

[
1

Γ(α)

∫ ηl

a

1
(ηl − ξ)1−α

χ(wξ − k)dξ

]
(2N+1)×(2N+1)

, l, k = −N, . . . , N, (14)
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and the vectors [S] and [X] given in Eq. (10) and Eq. (11), respectively.

Remark 1 It is possible to write an algorithm similar to Algorithm 1, where only the content of the matrix
[P] will change and the matrices [S] and [K] will be replaced by it for the first kind Volterra and Abel’s
integral equations, respectively.

It is noted that we can show ϕ(k/w), k = −N, . . . , N by ϕw(k/w), k = −N, . . . , N that are
our solution in nodes k/w, k = −N, . . . , N and by substituting them in Eq. (6), we can find
S

χ,N
w (ϕw(ηk)), k = −N, . . . , N that is the proposed method solution for the integral equation.

4 Numerical examples

In this section of this paper, three numerical examples are provided and tested to demonstrate the
practicability and accuracy of the proposed method. The first example is related to the second
kind Volterra integral equations, the second example is related to the first kind Volterra integral
equations, and the last one related to Abel’s integral equation. In all examples the package of
MATLAB 2020a has been used to implement the algorithm to calculate numerical solution of the
test equations considered in this study. The error is reported on the following grid points

ρ = {η−N , . . . , ηN}, ηl = l/w l = −N, . . . , N.

In addition to these, we set the following notations to analyze the error of the proposed method:

Ew(η) = |ϕ(η)−S
χ,N
w (ϕw(η))|,

and

∥Ew∥∞ = max{Ew(ηl), l = −N, . . . , N},

where ϕ(η) and S
χ,N
w (ϕw(η)) are exact solution and approximate solution of the test integral

equations respectively and ηl are the uniform grids on Ĩ. Moreover, we summarize the root mean
square error as follows i.e.

RMSE =

√√√√√ N∑
l=−N

[ϕ(ηl)−S
χ,N
w (ϕw(ηl))]

2

2N + 1
.

Time represents the CPU time consumed in each numerical examples. Moreover, we summarize
the root mean square error with RMSE.

Example 1

For the following second kind Volterra integral equation, we take the following equation,

ϕ(η) = e−η2
−

1
2

(
1
e
− e−η2

)
η +

∫ η

−1
ηξϕ(ξ)dξ, on Ĩ,

with the exact solution ϕ(η) = e−η2
on Ĩ = [−1, 1]. In this example, φ(η) = e−η2

−
1
2

(
1
e
− e−η2

)
η,

K(η, ξ) = ηξ and λ = 1.
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Additionally, for this experiment we use the univariate Fejer kernel defined by

χ(η) =
1
2

sinc2
(η

2

)
,

for η ∈ R, where the sinc function is given by

sinc(η) :=


sin(πη)

πη
, if η ∈ R − {0},

1, if η = 0.

In Figure 1, the Fejer kernel can be shown.
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Figure 1. The univariate Fejer kernel χ(η)

Thus, we have the following generalized sampling operator by substituting univariate Fejer kernel
to (6), that is to say

(
S

χ,N
w ϕ

)
(η) =

1
2

N∑
k=−N

ϕ

(
k
w

)
sinc2

(
wη − k

2

)
.

In Table 1, numerical results of solution of the second kind Volterra integral equation which
obtained by the proposed technique are presented. These results confirm that the proposed
method is an approximation process for the second kind Volterra integral equation. In addition to
this, in Figure 2, computational solution and exact solution of test problem have been provided.
This graph shows the convergence properties of the presented method as well.
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Table 1. ∥Ew∥∞, RMSE and Time for the numerical solution of the second kind integral equation, with ε = 0.01,
on equally spaced grid on Ĩ

N
Proposed method

∥En∥∞ RMSE Time
5 1.295605e-03 6.074132e-04 < 1

10 1.189609e-03 4.919707e-04 < 1
25 6.622351e-04 2.514840e-04 < 1
50 3.686320e-04 1.357361e-04 < 1

100 1.944992e-04 7.046801e-05 3.483948
150 1.320756e-04 4.759612e-05 6.669202
200 9.986052e-05 3.592332e-05 11.948382

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.4

0.5

0.6

0.7

0.8

0.9

1

(x
)

Exact Solution

Approximate Solution

Figure 2. While the blue line represents the exact solution, the red squares represent the proposed method. The
figure illustrates the accuracy of the proposed method

Example 2

In this example, we solve the first kind Volterra integral equation numerically. For that, we take
the following equation,

− sin(η)− cos(η) + eη+2(cos(2)− sin(2)) =
∫ η

−2
2eη−ξϕ(ξ)dξ, on Ĩ,

with the exact solution ϕ(η) = sin(η) on Ĩ = [−2, 2]. In this example, φ(η) = − sin(η)− cos(η) +
eη+2(cos(2)− sin(2)) and K(η, ξ) = 2eη−ξ . Moreover, for this experiment we use the univariate
Blackman-Harris kernel defined by

χ(η) =
1
2

sinc (η) +
9

32
(sinc(η + 1) + sinc(η − 1))−

1
32

(sinc(η + 3) + sinc(η − 3)) ,
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for η ∈ R, where the sinc function defined above. In Figure 3, the Blackman-Harris kernel can be
seen.
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Figure 3. The univariate Blackman-Harris kernel χ(η)

Thus, we have the following generalized sampling operator by substituting univariate Blackman-
Harris kernel to (6), that is to say

(
S

χ,N
w ϕ

)
(η) =

N∑
k=−N

ϕ

(
k
w

) [
1
2

sinc (wη − k) +
9

32
(sinc(wη − k + 1) + sinc(wη − k − 1))

−
1

32
(sinc(wη − k + 3) + sinc(wη − k − 3))

]
.

In Table 2, numerical results of the solution of the first kind Volterra integral equation which
computed by the proposed method are presented. These results confirm the approximation
properties of the presented method. In addition to this, in Figure 4, computational solution
and exact solution of test problem have been provided. This graph also shows the convergence
properties of the presented method.

Table 2. ∥Ew∥∞, RMSE and Time for the numerical solution of the second kind integral equation, on equally
spaced grid on Ĩ

N
Proposed method

∥En∥∞ RMSE Time
5 5.619397e-02 1.270206e-02 < 1

10 3.012573e-02 5.103643e-03 < 1
15 1.384453e-02 2.111580e-03 < 1
20 4.580176e-03 8.216078e-04 < 1
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Figure 4. Numerical solution of the first kind Volterra integral equation via generalized sampling operators
method. While the blue line represents the exact solution, the red squares represent the proposed method. The
figure illustrates the accuracy of the proposed method

Example 3

Finally, we present a numerical example for the Abel’s integral equation which is

4
15

√
η + 1

(
4η2 − 2η + 9

)
=

∫ η

−1

1√
η − ξ

ϕ(ξ)dξ, on Ĩ,

with the exact solution ϕ(η) = η2 + 1 on Ĩ = [−1, 1]. In this example, φ(η) =
4

15
√

η + 1
(
4η2 − 2η + 9

)
.

Moreover, we use the univariate Blackman-Harris kernel for this example.
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Figure 5. While the blue line represents the exact solution, the red squares represent the proposed method. The
figure illustrates the accuracy of the proposed method
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In Figure 5, we can observe how the proposed method converges the exact solution of Abel’s
integral equations.
The three numerical examples given above show that the generalized sampling operators method
can be an alternative to other computational methods for numerical solutions of integral equations.

5 Concluding remarks

In this paper, we have proposed and tested a numerical scheme to solve integral equations
utilizing generalized sampling operators. For this, firstly, we construct the numerical scheme for
the solution. Then we provide the convergence analysis of the proposed method with the aid of
Voronovskaya type formula for the generalized sampling operators. Finally, in order to validate
our theoretical result, we present some numerical experiments with different kernels.
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