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Abstract: Biodiesel, a sustainable and environmentally friendly substitute for diesel, has attracted growing 
attention in recent years. The reuse of non-edible neem oil as a feedstock for biodiesel production is affordable 
and naturally safe. This study aimed to understand the understudied benefits of using heterocyclic organic 
hydrazone derivatives as catalysts for high yield biodiesel production. The catalysts were characterized using 
techniques such as EIMS, NMR, CHN and FTIR analysis, which revealed the morphological and functional 
characteristics of the catalyst. The optimum process conditions were found to be catalyst concentration of 50 
mg/10 mL, methanol-to-oil molar ratio of 3:1, reaction temperature of 60 °C, and reaction duration of 60 

min; these conditions yielded 95% biodiesel. The produced biodiesel was analyzed using FTIR, and different 
parameters like moisture content, saponification value, density, acid value, iodine value, and FFA value. The 
use of neem oil and organic based catalysts for biodiesel production is an economical and environmentally 
sustainable process. 
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1. INTRODUCTION 
 
In terms of energy security, modern society faces a 
number of challenges. As a result of overpopulation, 

energy demand has increased significantly on earth 

(1,2). Energy needs around the world are largely met 
by fossil fuels. Increasing population is causing these 
natural resources to rapidly deplete because of 
overconsumption of energy (3). In addition, fossil 
fuels are non-renewable and their combustion causes 
a number of environmental problems (4). Globally, 
89 million barrels of fossil fuel diesel are consumed 

each year. In 2007, there were 806 million cars and 
trucks on the road, which will rise to 1.3 billion by 
2030 and 2 billion by 2050 (5). 
 
Currently, researchers are exploring alternative 
energy sources, and biodiesel (fatty acid methyl 
ester (FAME)) known as neat-fuel (6) or bio-oil (7) is 

one of the best options due to its cheapness, non-

polluting, environmentally friendly, non-toxic nature, 
and recyclable properties (8-10). Almost 95% of 
biodiesel is produced from plant oils extracted from 

seeds (11). Here is a high demand for edible oils 
(sunflower, palm, coconut, soya bean, etc.), but non-
edible oils (neem, castor, karanja, tobacco, jojoba, 
rubber seed, etc.) can also be used for biodiesel 

production (12). Since, neem (Azadirachta indica) is 

natural antiseptic and widely harvested around the 
globe (13), however, a large amount of neem seeds 
wasted. It is estimated that neem seeds contain 30-
40% oil, with a very high value of free fatty acids (1). 
Biodiesel production for oils with high FFA (free fatty 
acid) value have two major steps, 1st step 
(esterification), to reduce FFA by using an acid 

catalyst and 2nd step (transesterification), to convert 
esterified oil into monoester by using alkaline 
catalyst (14,15). 
 
The production of biodiesel is accelerated by the use 
of catalysts. In order to accomplish this goal, various 
catalysts can be used, including homogeneous, 

heterogeneous, enzyme, and biocatalyst catalysts 

(16). In homogeneous catalysts, triglycerides are 
converted into esters when sodium hydroxide or 
potassium hydroxide react with methanol or ethanol 
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to form alkoxide ions (17). The product is difficult to 
separate because of its extremely basic nature (16). 

Apart from these, sodium carbonate and sodium 
bicarbonate also show effective results (18). Since 
heterogeneous catalysts can be used both for 
esterification and transesterification, researchers 
prefer heterogeneous catalysts (19,20) due to their 

hydrothermal stability and acid-base nature (21), 
which include metal salts, metal oxides (14) like MgO 
(22,23), CdO2 (24), CaO (10,25,26), Al2O3 (27), 
ZnO, Mn-doped ZnO (28,29), BaO (30), TiO2 (31), 
heteropoly acids (32), zeolites (33), ZrO2-SBA-15 
(34), lipases (35), laccases (36), LOBE (37). 

 
Besides these inorganic catalysts, a limited number 
of organic compounds can also be used to catalyze 
biodiesel production, including imidazole (38), 
sulphonic acid derivatives (39), organic amine 

derivative (40), cellulose derivatives (41,42), 
graphene-based heterogeneous catalyst (43,44) and 

MOFs (45-49). Organic-based catalysts can be easily 
separated or recycled due to their organic nature and 
exhibit promising results (50). 
 
In recent years, organic compounds have attracted a 
great deal of attention for the production of biodiesel 
due to their ease of use, high thermal stability, easy 

racialization, less CO & CO2 emissions and high yield 
(51). The current work aims to synthesize some 
heterocyclic-organic compounds (hydrazones) and 
investigate the efficiency of these synthesized 
catalysts for biodiesel production from neem oil. 
Hydrazone contain azomethine linkage and gained 

much importance during the past few decades due to 
its unique nature, structure and properties (52). The 
synthesized catalysts were characterized a variety of 
spectroscopic techniques including EIMS, NMR, FTIR, 
and CHN, while FTIR was used to confirm and 
characterize produced biodiesel. Based on the results 
of this study, more than 75% of the production can 

be achieved with these synthesized heterocyclic 
catalysts in a shorter time frame. 
 
2. MATERIAL METHOD 
 
2.1. Feedstock 
Neem oil is readily available on the local market, 

obtained from the neem tree and stored at room 

temperature for a long time. 
 
2.2. Catalyst Preparation 
For the production of neem biodiesel, eight 
heterocyclic hydrazone derivatives were synthesized. 

previously, three hydrazone (L2, L21 & L24) were 
reported (53,54) while five (L12, L19, L20, L22 & 
L23) were newly synthesized. All furan-2-
carbaldehyde derivatives were synthesized by the 
reaction of substituted anilines and furan-2-
carboxyaldehyde via Meerwien Arylation (55). These 
substituted aldehydes were refluxed with different 

hydrazides (benzohydrazide, isoniazide, nicotinic 
acid hydrazide, salicylic acid hydrazide) in ethanol for 
3 hours with 2-3 drops of catalyst (HCl). 
Recrystallization of synthesized yellow colored 

products was carried out with ethanol and ethyl 
acetate (3:1). For further use, the desired products 
were characterized and stored. 

2.3. Characterization 
Vactor 22 FTIR, Bruker AV 300 & 400 NMR, Thermo 

Scientific FLASH 2000 CHN analyzer, and MAT 312 
mass spectrometer were used to characterize all 
synthesized hydrazone derivatives. A pre-coated TLC 
was used to minister the reaction, and spots were 
visualized in a UVC-11 compact UV lamp at 254 nm 

and 365 nm. 
 
2.4. Acid Value & Free Fatty Acid Value 
Acid value and free fatty acid values of neem oil, 
esterified oil and biodiesel were calculated via 
titration method as reported (56,57), the sample was 

titrated with 0.1 N KOH solution while 
phenolphthalein was used as indicator until solution 
become light pink. The acid value and free fatty acid 
value was calculated by the mentioned formula 
equation 1&2. 

 

FFA (%) =
𝐴×𝑁×28.2

𝑊
     (1) 

 

Acid value (mg/g) =
𝐴×𝑁×56.1

𝑊
    (2) 

 
2.5. Reaction Procedure 
Free Fatty acid value of neem oil is very high, so, to 
reduce this FFA value and increase efficiency of 

biodiesel, two-step process esterification before 
transesterification was performed (15). This was 
accomplished by using organic heterocyclic 
hydrazone derivatives instead of normal acid as 
catalysts in 1st step and alkali catalyst in 2nd step. 
 

2.6. Esterification of Neem Oil 

50 mg of catalyst (hydrazone) and 15 mL methanol 
were added to 10 mL of neem oil. In a Pyrex 
container, the mixture was heated for 60 minutes at 
40 °C. The resulting mixture was then poured into a 
funnel and kept undisturbed for 24 hours until two 
clear layers were formed. Oil layer was separated, 
washed and stored for further use. 

 
2.7. Transesterification of Esterified Oil 
10 mg of KOH in 8 mL of methanol was mixed with 
10 mL of pretreated oil for 60 min at 60 °C. The 
mixture was poured in separating funnel until two 
layers formed. During this synthesis, the top layer 

contains biodiesel, the middle layer contains glycerin, 

and the bottom layer mostly contains unreacted 
catalysts. 
 
2.8. Washing & Drying of Biodiesel 
Hot distil water was added in biodiesel layer and 
separated. Process was continued for several times 

until a clear biodiesel layer separated. After washing 
biodiesel, it may contain traces of water, that are 
removed by heating it at 100°C. In order to 
characterize, it was cooled and stored at room 
temperature. 
 
Percentage yield was calculated by Equation below; 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑦𝑖𝑒𝑙𝑑 =
Weight of biodiesel produced

Weight of neem oil used
× 100 (3) 
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3. RESULTS AND DISCUSSION 

 
3.1. Synthesis of Heterocyclic Hydrazone 
Catalysts 
Substituted aldehydes were prepared according to 
the reported procedure (Meerwein Arylation). These 

aldehydes were treated with four different 
hydrazides to produce hydrazone moieties. 
 
Prior to their use as catalysts for biodiesel 
production, all yellow-colored synthesized hetero-
cyclic compounds were purified, recrystallized and 

characterized. 
 

3.2. Characterization of Heterocyclic Catalysts 
Structure, ketonic nature, purity and bonding of 

these moieties was confirmed by spectral analysis 
and elemental analysis. EIMS confirms the structure 
by molecular ion peak and fragmentation peaks. 
Important functional groups like N-H, O-H, C=O, N-
N, C=N, and C-N show absorption bands at 3200 cm-

1, above 3000 cm-1, above 1600 cm-1, ~1030 cm-1, 
~1600 and ~1100 cm-1 in FTIR. Two singlet peaks 
appeared in the 11-12 ppm region, confirming the 
presence of N-H and O-H. A singlet at 8.4 ppm was 
also a sign of hydrogen directly attached to C=N. 
 

 

 
 

Figure 1: General scheme for synthesis of catalysts. 
 

 
 

Figure 2: Ketonic structure of synthesized catalysts. 
 
3.3. Production of Biodiesel 

These synthesized compounds were used as an 
efficient acid catalyst for biodiesel formation from 
neem oil. The N-H group in these compounds 
enhances their acidic activity. In the same way, the 
electronic effects of azomethine groups influence the 
acidic character indirectly. With these hydrazone 
derivatives, we achieved yields of over 75% within a 

short period of time. 
 
3.4. Optimization of Reaction Parameters 
Several parameters can effect on the yield of 
biodiesel, including reaction time, reaction 
temperature, choice of solvent and amount of 
catalyst. 

 

3.4.1. Reaction Time 

Reaction time, an important parameter that effect 
biodiesel’s yield and quality. Daramola reported that 
an increase in reaction time can lead to an increase 
in impurities or soap formation (58). The goal is to 
test the efficiency of the synthesized catalysts during 
esterification, which produces biodiesel. The yields of 
all catalysts increase from 20 min to 60 min but 

decrease when time increases to 80 min, which may 
be caused by side reactions. As the time increased to 
80 min, a thick waxy layer formed that was difficult 
to separate. 
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Table 1: Characterization of synthesized hydrazone catalysts. 

Heterocyclic 

catalyst 
EIMS FTIR 1H-NMR 

CHN 

(found) 

L2 
[M+] 336, [M+-NO] 306, [M+-
C6H4NO2] 214, [M+-C11H8N3O3] 106, 
[M+-C12H8N3O4] 78 

N-H (3219.0), 
C=O (1664.9 

Sh), 
C=N (1602.7), 
C-N (1147.9) 

N-H (12.2, S), 

C-H=N (8.44, S) 

60.63 (C)  
3.38 (H) 
16.37 (N) 

L12 

[M+] 351, [M+-NO] 321, [M+-
C7H5O2] 231, [M+-C8H7N2O2] 188, 
[M+-C10H6NO3] 163, [M+- 

C11H7N2O3] 137, [M+-C11H8N3O3] 
121 

N-H (3237.7), 
O-H (3060.3 b), 
C=O (1623.9 

Sh), 
C-N (1148.4), 
N-N (1034.5) 

N-H (11.9, S), 
O-H (11.8, S), 

CH=N (8.412, S) 

61.55 (C) 
3.76 (H) 

11.81 (N) 

L19 

[M++2] 361, [M+] 359, [M+-CO] 
329, [M+2- C2H2Cl] 302, 

[M+2-C6H5N2O] 239, [M+-C6H5N2O] 
237, [M+-C11H8N3O2] 145, 
[M+-C11H7Cl2N2O] 106, [C5H4N]+ 78 

N-H (3177.0), 
C=O (1654.4 

Sh), 

C=N (1564.8), 
C-N (1153.5), 
N-N (1026.8), 

C-Cl (794.3) 

N-H (12.1, S), 
CH=N (8.39, S) 

56.73 (C) 

3.03 (H) 
19.56 (Cl) 
11.49 (N) 

L20 

[M++2] 376, [M+] 374, [M+2-
C4H2Cl2] 256, [M+- C4H2Cl2] 254, 
[M+-C7H6NO2] 237, [M+-C7H5Cl2] 
219, [M+C9H7N2O3] 182, [M+-
C11H7Cl2N2O] 121, [C6H5O]+ 93 

N-H (3218.3), 
O-H (3072.2 b), 
C=O (1640.8 

Sh), 
C=N (1559.9), 

C-N (1169.9), 
N-N (1028.2), 
C-Cl (801.2 Sh) 

N-H (11.9, S), 
O-H (11.8, S), 
CH=N (8.417, S) 

57.48 (C) 
3.18 (H) 
18.84 (Cl) 

7.36 (N) 

L21 

[M++2] 360, [M+] 358, [M+-2] 356, 
[M+-C5H7] 295, [M+2-C7H5O] 255, 

[M+2-C7H6NO] 240, [M+2-C10H5Cl2O 
]149, [C5H7]+ 69 

N-H (3217.7), 
C=O (1649.5 

Sh), 

C=N (1150.4), 
C-N (1142.8), 
N-N (1026.7), 
C-Cl (796.6) 

N-H (12.0, S),  

CH=N (8.44, S) 

59.91 (C) 
3.29 (H) 

19.79 (Cl) 
7.82 (N) 

L22 

[M++2] 361, [M+] 359, [M+2-

C2H2Cl] 302, [M+-C6H5N2O] 237, 
[M+2-C6H5N3O] 225, [M+-C8H5Cl2O] 
174, [M+2-C11H8N3O2] 147, [M+-
C11H7] 220, [Cl2N2O3]+ 106, 
[C5H4N]+ 78 

N-H (3146.2), 

C=O (1667.2 

Sh), 
C=N (1550.0), 
N-N (1030.6), 
C-Cl (790.6) 

N-H (12.19, S), 
C-H=N (8.44, S) 

56.39 (C) 
3.02 (H) 
19.62 (Cl) 
11.55 (N) 

L23 

[M++2] 361, [M+] 359, [M+-Cl] 324, 
[M+2-C2H2Cl] 302, [M+-C2H2Cl2] 
266, [M+2-C6H5N2O] 239, [M+-

C6H5N2O] 237, [M+-C8H5Cl2O] 174, 
[M+2-C11H8N3O2] 147, [M+-

C11H7Cl2N2O] 106, [C5H4N]+ 78 

 N-H (3192.3), 
C=O (1611.1 

Sh), 
C=N (1552.3), 
C-N (1150.0), 
N-N (1026.6), 

C-Cl (797.8) 

H-N) (12.12, S), 

C-H=N (8.43, S) 

56.57 (C) 
3.02 (H) 

19.69 (Cl) 
11.56 (N) 

L24 

[M++2] 376, [M+] 374 [M+2-C2H3O] 
335, [M+-2Cl] 305, [M+-C4H2Cl2] 

254, [M+- C12H9N2O3] 145, [M+- 
C11H6Cl2NO] 135, [M+-C11H7Cl2N2O] 
121, [C6H5O] 93, [M+2- 
C13H9Cl2N2O2] 85, [M+-
C14H9Cl2N2O2] 69 

N-H (3234.4), 
O-H (3083.4 b), 
C=O (1619.4 

Sh), 
C=N (1538.0), 

C-N (1140.6), 
N-N (1024.2), 
(C-Cl (790.4) 

N-H (11.96, S), 
O-H (11.74, S), 
CH=N (8.44, S) 

57.81 (C) 
3.18 (H) 
18.97 (Cl) 

7.37 (N) 
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Figure 3: Optimization of reaction time. 

 
3.4.2. Reaction Temperature 
No doubt, the reaction temperature is one of the 

most critical parameters that affects the production 
and quality of biodiesel. Leung reported, the yield is 
generally increased as the temperature is increased 
during the esterification and transesterification 
process (59), but the quality is usually decreased 
because of the presence of byproducts during these 
processes (60). Using the silica-based catalysts, Zuo 

and coworkers proposed that 60°C is the optimal 

temperature for esterification (61). During the 
esterification process, the highest yield (up to 95%) 

was obtained at 60°C, but this decreased (up to 
80%) as the temperature increased to 80°C. 
Similarly, the same effect was observed in 
transesterification. The maximum yield was obtained 
at 60°C and as the temperature increased, the yield 
decreased due to the formation of soap and by-
products as the temperature increased. 

 

 

Figure 4: Optimization of reaction temperature during esterification. 
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Figure 5: Optimization of reaction temperature for transesterification. 

 
3.4.3. Solvent Type 
Additionally, solvent is directly related to biodiesel 
production. A polar solvent, such as methanol, or an 
alcohol, can facilitate and solubilize the reactants in 
order to improve biodiesel yields. It was preferable 

to use methanol as a solvent instead of ethanol or 
any other alcohol since it was easy to separate with 
less soap precipitation (34). There is a larger amount 
of solvent required for non-edible oils as compared 
to edible oils, less alcohol amount causes thick 
material to form, which is more difficult to separate. 

Ali et.al., reported the molar ratio of oil and methanol 
should be 1:3 for high production (1). Furthermore, 
the use of ethanol in non-edible oils can lead to the 
formation of soap. It has also been reported that 
heptane, hexane, and toluene have been used as co-
solvents to increase the yield of biodiesel. However, 
this can lead to toxic environmental effects or 

increase biodiesel toxicity (62). 
 

3.4.4. Catalyst Amount 
Biodiesel production is strongly influenced by the 
amount and type of catalyst used. The basic catalyst 
can be used for biodiesel production if the free fatty 
acid content is less than 1-2% (63). However, the 

free fatty acid content in non-edible oils like neem oil 
exceeds 20% and the basic catalyst causes soap 
formation (64). As a result, it is necessary to 
minimize this FFA value by esterifying with an acid 
catalyst before transesterification or using a basic 
catalyst (65). The study used organic derivatives as 

acid catalysts during esterification, which affected 
biodiesel production. The optimal amount of acid 
catalyst for biodiesel production was 50mg, and by 
increasing or decreasing the amount, the yield also 
decreased, possibly due to the formation of by-
products or side reactions. 
 

 

 
Figure 6: Optimization of catalyst's amount. 

 

Similarly, the biodiesel production is also effected by 
concentration of basic catalyst (transesterification). 
The optimum amount calculated experimentally was 

10 mg of KOH. According to Aboelazayem and co-
workers, the optimum KOH ratio should be 1:3-1:7 
for high production yields (66). Strong alkali causes 
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soap formation and decreases the yield of biodiesel 
(64). To avoid this problem, KOH was preferred as a 

best activator for transesterification (67) with FAME’s 
yield up-to 99% (68). 

3.5. Characterization of Biodiesel 
A range of parameters such as moisture content, 

viscosity, density, pH and color were presented in 
Table 2.

 
Table 2: Characterization of biodiesel synthesized from organic heterocyclic catalysts. 

Sample Color %age 
Yield  

Density 
g/cm3 

Viscosity 
mm2/s 

pH Moisture 
content 
(%) 

Neem Oil 
(69,70) 

light yellow - 0.91 31.99 6.10 4.61 

Biodiesel (71) 
(standard) 

Yellow-colorless - 0.83-
0.89 

1.9-6 5.97-6.76 0.3-6.0 

Neem Biodiesel 
(70,72) 
(standard) 

Golden yellow - 0.89 4.99-5.21 6.69 >0.5 

L2 Bright yellow 79 0.81 5.1 6.52 0.3 

L12 Yellow 95 0.86 4.79 6.73  0.13 

L19 Light yellow 80 0.87 5.16 6.66 0.27 

L20 Yellow 90 0.81 5.41 6.91 0.19 

L21 Dull yellow 82 0.86 5.33 6.36 0.14 

L22 Light yellow 84 0.86 4.66 6.71 0.22 

L23 Light yellow 86 0.83 4.82 6.71 0.19 

L24 Golden  89 0.87 4.97 6.55 0.15 

 
As, high moisture content promote microbial growth 
(9). Moisture content of neem biodiesels was low 
ranging 0.13-0.3 % that was within the standard 
limits indicating purity of these biodiesels. The 
samples ranged in color from yellow to colorless, with 

little variation in pH between 6.3 and 6.91. According 
to the results, FFA value of neem oil was very high 

24.76 (mg/g), therefore, alone transesterification 
cause soap formation and affect the quality as well 
as yield of biodiesel (73). To reduce this FFA, 
esterification with acid catalysts (organic hydrazone 
derivatives) was successfully performed and FFA 

value is less than 1 in all cases indicating it as an 
excellent diesel fuel. Density of biodiesel is 0.83-0.89 
g/cm3 while for neem biodiesel 0.91 g/cm3. All the 
synthesized biodiesel exhibit densities ranges 0.81-
0.87g/cm3 suggest the good quality of these 
biodiesels. Viscosity of neem oil is very high 31.99 

(mm2/s) and cause smoke while standard biodiesel 
and neem biodiesel has low viscosity 1.9-6 (mm2/s) 
and 4.99-5.21 (mm2/s) respectively. All the 

synthesized biodiesel has also low viscosity ranges 
4.66-5.33 (mm2/s) that is better for good 
combustion and less smoky. Moisture content is also 
low in all biodiesels indicate the purity. 
 

Basically, acid value is the mg of KOH to neutralize 
FFA of 1 g oil/fat, higher the acid value less will the 

quality and quantity of biodiesel (9). Acid value of 
neem oil is very high due to high FFA (9.163 mg/g) 
while biodiesels have low acid value (0.161-0.261 
mg/g) within the standards. Iodine value indicate the 
unsaturation of neem oil due to the presence of 

unsaturated fatty and is very high 73.814 (mg I2/100 
g), while neem biodiesel has 49.49 (mg I2/100 g), 
other biodiesels also have low iodine value 51-58 
(mg I2/100 g). Saponification value of neem oil is 
also very high (199.810 mg/g) indicating its high 
tendency to form soap when reacted to basic catalyst 

which reduces to (167-176 mg/g) significantly and 
presented in Table 3. 

 

Table 1: Acid value, iodine value, FFA and saponification value of biodiesels. 

Sample Acid value 
(mg/g) 

Iodine value 
(mg I2/100g) 

FFA value Saponification 
value (mg/g) 

Neem Oil (71,74) 9.163 73.814 24.76 199.810 

Biodiesel (71,75) 
(standard) 

≤0.80  8.9  ≥2 - 

Neem Biodiesel (71,76) 
(standard) 

0.13 49.49 0.7 167.36 

L2 0.228 56.31 0.87 171.33 

L12 0.161 51.55 0.76 167.37 

L19 0.182 53.20 0.82 170.29 

L20 0.166 52.11 0.71 167.61 

L21 0.171 53.04 0.83 167.67 

L22 0.299 57.93 0.81 176.31 

L23 0.261 55.63 0.83 170.11 

L24 0.223 56.79 0.89 172.74 
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3.6. FTIR Characterization 
In addition to the physical parameters mentioned 

above, the synthesized biodiesels were characterized 
using FTIR (Figure 7-14). Broad absorption band of 
–OH near 3000-3400cm-1 is absent indicate these 
biodiesels are almost free from moisture. Sharp 
absorption peak near 1743 cm-1 are caused by C=O 

stretch indicating the presence of esters in all 
samples, while CH stretching results in peaks near 

2922 cm-1 and 2850 cm-1. Asymmetric and 
symmetric deformation vibrations of CH are 

approximated at 1458 cm-1 and 1380 cm-1, 
respectively indicate mono, di or triglyceride glycols 
in all tested samples. Due to C-O stretching, there 
are absorption peaks near 1166 cm-1, 1240 cm-1, and 
1100 cm-1, while long chain absorption peaks appear 

at 720 cm-1. 

 

 
Figure 7: FTIR spectra of biodiesel prepared by L2 as a catalyst. 

 

 
Figure 8: FTIR spectra of biodiesel prepared by L12 as a catalyst. 
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Figure 9: FTIR spectra of biodiesel prepared by L19 as a catalyst. 

 

 
Figure 10: FTIR spectra of biodiesel prepared by L20 as a catalyst. 
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Figure 11: FTIR spectra of biodiesel prepared by L21 as a catalyst. 

 

 
Figure 12: FTIR spectra of biodiesel prepared by L22 as a catalyst. 
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Figure 13: FTIR spectra of biodiesel prepared by L23 as a catalyst. 

 

 
Figure 14: FTIR spectra of biodiesel prepared by L24 as a catalyst. 
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5. CONCLUSION 

 
Biodiesel is an alternative fuel that contributes to 
energy stability. A variety of renewable sources can 
be used to produce biodiesel today, making it an 

extremely attractive alternative to fossil fuels that is 
non-toxic, biodegradable, and can be produced from 
a variety of renewable energy sources. In recent 

years, the extraction of neem oil from neem seeds 
has attracted the attention of many scientists based 

on the ease of cultivation, the lack of impact on food 
production, and the ability to grow on non-cultivable 
lands, compared to other biomass sources. 
 

 D:\Chemistry\23.0          23          Instrument type and / or accessory 12/23/2020

2
9
2
2
.2

0

2
8
5
2
.7

3

1
7
4
1
.0

8

1
4
5
7
.4

2

1
1
6
9
.2

7

7
2
1
.9

7

100015002000250030003500

Wavenumber cm-1

6
0

7
0

8
0

9
0

1
0
0

1
1
0

T
ra

n
s
m

it
ta

n
c
e
 [

%
]

 Page 1/1



Jabeen M et al. JOTCSA. 2024; 11(4): 1565-1580  RESEARCH ARTICLE 

1576 

This paper summarizes the use of some newly 
synthesized organic heterocyclic hydrazone 

derivatives as catalysts for the production of neem 
biodiesel instead of previously reported catalysts due 
to their high yields and ease of optimization. Using 
ultrasonic irradiation method, we synthesized 
hydrazone derivatives in less than three minutes and 

were able to characterized these compounds using 
EIMS, NMR, FTIR and CHN spectroscopic methods. It 
was expected that these compounds exist in ketonic 
form and were highly pure since they showed a 
significant N-H peak in the 1H-NMR range of 11.9-
12.2 ppm and in the FTIR range of 3146-3237 cm-1, 

which confirmed their purity. Accordingly, the O-H 
absorption peak was found at 11.8 ppm in 1H-NMR, 
and the broad band was found to be above 3000 cm-

1 in FTIR. A sharp peak range of 1600-1700 cm-1 was 
observed by FTIR for the carbonyl group. Elemental 

analysis and mass spectra confirmed their molecular 
weights and molecular formula. 

 
As FFA acid value of neem oil is very high 4.2% and 
before biodiesel formation it should be reduced and 
esterification performed before transesterification. 
For this purpose, we use, these derivatives as acid 
catalysts instead of simple acids. The reaction 
parameters like reaction temperature, reaction time, 

solvent and catalyst amount were optimized for 
better understandings. The optimized time for 
esterification was 60 min, optimized temperature for 
esterification as well as for transesterification was 
60°C, methanol used as optimized solvent while 
optimized amount of catalyst was 50 mg. These 

optimized parameters produced high yield and highly 
purified biodiesel ranges 79-95%. 
 
These produced biodiesels showed 6-6.91 pH range, 
density (0.81-0.87 g/cm3), viscosity (5.41-4.79 
mm2/s) and moisture content less than 0.5. Acid 
value, FFA, iodine value and saponification value of 

all these biodiesels were 0.161-0.261(mg/g), 0.71-
0.89 (%) 51-58(mgI2/100g), and 167.37-176.31 
(mg/g) very close to the reported standard neem 
biodiesel. These neem biodiesels were characterized 
by FTIR spectra, exhibited CH stretching peaks near 
2900 cm-1 and 2800 cm-1 while sharp absorption 
peak for C=O above 1700 cm-1 while –OH absorption 

band was absent. This conclude that hydrazone 

derivatives can be used as excellent acid catalysts in 
esterification for production of highly purified 
biodiesel from neem oil with a yield up to 95%. 
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