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activity. Historically, this fault line has been responsible for 
most of the devastating earthquakes in Turkey. Notably, the 
major tremor on August 17, 1999, known as the Marmara 
Earthquake, occurred along this fault line. This earthquake 
caused extensive destruction, particularly in Kocaeli and its 
surroundings, leading to over 17,000 deaths and injuring 
tens of thousands, according to official reports (Erdik 2001). 
The scale of the destruction was recorded as one of the most 
severe disasters in Turkey’s modern history.

The economic impact of the Marmara Earthquake was 
also severe. The direct damage and subsequent economic 
losses amounted to over 25 billion dollars, constituting 
approximately 2-3% of Turkey’s gross domestic product 
(GDP) (Ambraseys 2001). Workplaces were destroyed, 

1. Introduction
Earthquakes rank among the most devastating natural 
disasters globally, causing significant destruction and loss 
of life. Turkey, due to its geological location, is situated 
in one of the most active earthquake zones in the world. 
The North Anatolian Fault Line (NAF) runs through the 
northern part of the country, causing significant seismic 
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Öz

Bu çalışmada, İstanbul’da olası bir 7.5 büyüklüğündeki depremin etkilerini, özellikle de can kaybı sayısı, hastaneye ihtiyaç duyacak 
kişi sayısı ve geçici barınma ihtiyacı duyacak kişi sayısını tahmin etmek için makine öğrenmesi algoritmaları kullanılmaktadır. 
İstanbul Büyükşehir Belediyesi Açık Veri Portalı ve Türkiye İstatistik Kurumu’ndan derlenen bir veri seti kullanılarak Gradyan 
Artırma (Gradient Boosting), Uyarlanabilir Artırma (AdaBoost), Rastgele Orman (Random Forest) ve Ekstra Ağaçlar (ExtraTrees) 
algoritmaları değerlendirilmiştir. Gradient Boosting modeli, yüksek doğruluk ve düşük tahmin hataları ile en etkili model olarak öne 
çıkmıştır. Bu yaklaşım, gelişmiş analitiklerin kentsel afet hazırlığı ve yönetimini geliştirme konusundaki kritik rolünü vurgulamakta ve 
depreme eğilimli bölgelerdeki alınacak önlemler ve altyapı gelişimi için değerli öngörüler sağlamaktadır. 
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This study employs machine learning algorithms to forecast the impacts of a potential magnitude 7.5 earthquake in Istanbul, focusing 
on casualty rates, hospitalization needs, and temporary shelter requirements. Using a dataset compiled from the Istanbul Metropolitan 
Municipality Open Data Portal and the Turkish Statistical Institute, the research assesses Gradient Boosting, AdaBoost, Random 
Forest, and ExtraTrees algorithms. Gradient Boosting emerged as the most effective model, exhibiting high accuracy and low prediction 
errors in determining disaster impacts. This approach underscores the critical role of advanced analytics in enhancing urban disaster 
preparedness and management, providing valuable insights for policymaking and infrastructure development in earthquake-prone 
areas.
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infrastructure was damaged, and many industrial facilities 
had to cease operations. This situation created long-term 
negative effects on both local and national economies. 
Moreover, with thousands left homeless, the state faced 
significant responsibilities for housing and reconstruction. 
The economic recovery took years and was significantly 
supported by international aid. This heavy burden led 
to major changes in Turkey’s urban transformation and 
disaster management policies, promoting the development 
of stronger building standards and effective disaster 
management strategies (Stein 2000).

The earthquakes centered in Kahramanmaraş last year, 
particularly the main shock of magnitude 7.8 on February 
6, 2023, caused serious destruction in Southern and Central 
Turkey. This disaster resulted in the loss of thousands of lives 
and left hundreds of thousands homeless. The provinces of 
Hatay, Kahramanmaraş, Gaziantep, Malatya, and Adıyaman 
saw the most severe damage, accounting for 81% of the 
estimated total damage. This calamity is recorded as the 
largest natural disaster Turkey has faced in the last 80 years. 
Furthermore, these provinces house approximately 7.4% 
of Turkey’s population, significantly impacting the region’s 
socio-economic structure (World Bank 2023). Economically, 
the cost of the earthquake to Turkey is estimated at 34.2 
billion dollars in direct physical damages, equating to about 
4% of the country’s GDP in 2021 (Korkut et al. 2023).

Minimizing losses caused by earthquakes is possible through 
preventative measures and preparations. Earthquake scenario 
analysis allows for the anticipation of potential earthquake 
effects and the planning of necessary precautions based 
on this information. Particularly in major urban areas, the 
preparation of such scenarios can significantly reduce the 
loss of life and property ( Jaiswal and Wald 2010).

Istanbul, as Turkey’s largest metropolis, is distinguished by 
its dense population and cosmopolitan structure. The city 
harbors a serious risk of a major earthquake due to sporadic 
urbanization and a high proportion of structurally unsound 
buildings. The potential devastation of an earthquake in 
Istanbul is feared due to the concentration of the nation’s 
population and industrial density in this region (Parsons 
2000).

The literature contains various studies on estimating 
potential fatalities and other damages prior to earthquakes. 
In China, data from 84 earthquakes occurring between 1970 
and 2017 were tested using methods such as elaboration 
likelihood model (ELM), artificial neural networks, support 
vector machine (SVM), and Gaussian curves. The study 

achieved an r squared (R2) value of 96% (Xing et al. 2020). 
Another study analyzed 30 historical earthquakes in China, 
comparing the performance of the support vector regression 
(SVR) model with other machine learning (ML) methods. 
The comparisons concluded that the SVR model produced 
more successful outcomes than other models (Li et al. 2021). 
Additionally, another study attempted to estimate the 
number of potential fatalities in a severe earthquake using 
logistic regression on a dataset containing four attributes (age, 
gender, physical disability, and socioeconomic status). In one 
of the studies on earthquakes in Turkey, data collected from 
buildings damaged after three major earthquakes were used 
to predict structural damage and mitigate potential harms. 
This process demonstrated that the SVR model yielded 
better results than other models (Arslan et al. 2017). Corbi 
et al. (2019) discuss how machine learning can predict the 
timing and size of earthquakes by reconstructing complex 
system dynamics in subduction zones. Rouet-Leduc et al. 
(2017) show how machine learning can predict laboratory 
earthquakes based on acoustic signals previously thought 
to be noise, potentially improving earthquake forecasting. 
Ahamed and Daub (2019) present a machine learning model 
for predicting whether an earthquake rupture will propagate, 
using neural networks and random forest algorithms.

This study predicted the number of loss of lifes, the number 
of people needing hospital treatment, and the number of 
people requiring temporary shelter that a potential 7.5 
magnitude earthquake could cause during night hours 
in Istanbul. The data used for this analysis were obtained 
from the Istanbul Metropolitan Municipality (IMM) Open 
Data Portal and the Turkish Statistical Institute (TUIK). 
Initially, the “Earthquake Scenario Analysis Results” and 
“Neighborhood-Based Building Counts” datasets from the 
Istanbul Metropolitan Municipality Open Data Portal were 
merged. Subsequently, population and area data for each 
neighborhood in Istanbul were obtained from TUIK and 
added to the dataset. This merger produced a comprehensive 
and original dataset. Various ML techniques and algorithms 
were used on the collected dataset to perform detailed 
analyses. These analyses are critical for better understanding 
the potential effects of earthquakes and planning necessary 
precautions in advance.

2. Material and Methods
This section describes the dataset used in the study, the 
algorithms applied, and the metrics employed to evaluate 
the data derived from these algorithms.
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2.1. Dataset

In this study, a hybrid dataset was constructed. The attributes 
included in this dataset were obtained from various sources. 
There are 12 different attributes within this dataset. These 
attributes and their value ranges are shown in Table 1. The 
first attribute in the dataset, “Population Density,” was 
calculated using the population and area information for 
each neighborhood in Istanbul, as published by the TUIK. 
The attributes related to the total number of buildings, the 
rate of buildings built before 1980, the rate for buildings 
constructed between 1980-2000, the rate for buildings 
constructed after 2000, and the rates for building intervals 
of 1-4 floors, 5-9 floors, and 9-19 floors were sourced from 
the “Neighborhood-Based Building Counts” dataset created 
by the IMM (IMM Open Data Portal 2017). The last four 
attributes (Number of Too Severely Damaged Buildings 
Rate, Number of Severely Damaged Buildings Rate, 
Number of Moderately Damaged Buildings Rate, Number 
of Lightly Damaged Buildings Rate) along with three 
dependent variables used for model predictions (Number of 
Casualties, Number of People in Need of Shelter, Number 
of People in Need of Hospital Treatment) were also derived 
from the “Earthquake Scenario Analysis Results” dataset 
produced by the IMM (IMM Open Data Portal 2021).  This 
dataset contains a simulation of the potential outcomes of a 
7.5 magnitude earthquake occurring at night in Istanbul. 
The rationale behind our study’s focus on predicting the 

effects of a nighttime earthquake is precisely this. Following 
these processes, a unique dataset containing data from three 
different sources was established. For the hybrid dataset 
obtained by combining different datasets, the input values 
are similar for all datasets. Instead of forcing the algorithms 
to predict multiple outcomes, they are designed to predict 
each outcome independently. The absence of null values 
and outliers in the dataset eliminated the need for cleaning 
the dataset before the process. Techniques such as Principal 
Component Analysis (PCA) were not used for feature 
selection. The dataset used does not contain a large number 
of input parameters that would need to be eliminated.  

The dataset underwent several preprocessing steps to 
ensure its quality and suitability for the analysis. These steps 
included:

•	 Data Cleaning: Removal of any duplicate records and 
handling of missing values. Missing values were ad-
dressed using mean imputation for continuous variables 
and mode imputation for categorical variables.

•	 Normalization: Scaling of numerical features to a 
standard range using min-max normalization, ensuring 
that all features contribute equally to the model training 
process.

•	 Outlier Detection: Identification and treatment of 
outliers to prevent them from skewing the model results. 

Table 1. The features within the dataset and their value ranges.

Variables Type Features Min – Max Range

Independent 
Variables

Population Density 0.10992953-726.5714286
Total number of buildings 95-8118

Before 1980 Rate 0-0.958970793
1980-2000_Between Rate 0.01122449-0.930743243

2000_After Rate 0-0.986734694
1-4 Floor Interval Rate 0.045566502-0.997938144
5-9 Floor Interval Rate 0.002061856-0.951970443
9-19 Floor Interval Rate 0-0.844036697

Number of Too Severely Damaged Buildings Rate 0-0.095384615
Number of Severely Damaged Buildings Rate 0.002132196-0.143076923

Number of Moderately Damaged Buildings Rate 0.026448363-0.327443401
Number of Lightly Damaged Buildings Rate 0.099461049-0.508196721

Dependent 
Variables

Number of Casualties 0-0.01563
Number of People in Need of Shelter 0-0.460440986

Number of People in Need of Hospital Treatment 0-0.071428571
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is particularly effective for high-dimensional datasets as it 
minimizes unnecessary computations and reduces the risk 
of overfitting. Mathematically, the ExtraTrees model can be 
expressed as shown at Equation 4.

( ) ( , )f x b T x
1

b b
b

B

1
i=

=
/  	 (4)

In Equation 4, θb denotes the random parameters used in 
the construction of the b-th tree (Geurts et al. 2006)

2.2.5. Evaluation of the Models

Error metrics used to evaluate the success of ML algorithms 
are used to measure how well the model performs. These 
metrics help to assess how well a model’s predictions match 
the true values and the generalization ability of the model. 

The symbols P, r, m, c, and d commonly used in performance 
evaluation metrics are key terms frequently employed in 
modeling studies. P refers to the predicted values generated 
by the model, while r represents each observation or data 
point. m signifies the predicted values produced by the 
model, and c denotes the actual or observed values. Finally, 
d typically reflects the difference between the predicted and 
observed values, which is used to calculate error or deviation. 
These symbols form the foundation for measuring model 
performance and evaluating the accuracy of predictions.

Mean absolute error (MAE) is a metric that shows how 
close the predicted values are to the true values. This metric 
is calculated by Equation 5 (Hammid et al. 2018, Mishra et 
al. 2017, AlOmar et al. 2020).
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Root means square error (RMSE) was chosen to compare 
the prediction errors of different trained models. The closer 
the RMSE value is to 0, the better the predictive ability of 
the model in terms of its absolute deviation. The RMSE 
value is calculated by Equation 6 (Hammid et al. 2018, 
Mishra et al. 2017, AlOmar  et al. 2020, Willmott and 
Matsuura 2005).
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The coefficient of determination (R2) is used to estimate 
model efficiency and is calculated by Equation 7 (Hammid 
et al. 2018).
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2.2. Models Used

2.2.1. Gradient Boosting (GB)

GB is a method that sequentially enhances weak learners 
(typically decision trees) to form a strong predictive model. 
Each new learner focuses on minimizing the errors made 
by its predecessors. This process continues by assigning 
increasing weight to successive learners to reduce error 
terms. Mathematically, the model F(x) is shown at Equation 
1. In this equation, (x) is the prediction of the t-th learner 
and λ is the learning rate (Friedman 2001).

( ) ( )F x F x ht t t1 m= ++  	 (1)

2.2.2. Adaptive Boosting (Adaboost)

AdaBoost combines a series of weak classifiers to create a 
strong classifier. In each learning iteration, higher weight 
is given to observations that were incorrectly classified, 
thus the next classifier focuses on better predicting these 
observations. The fundamental update equation of AdaBoost 
is shown at Equation 2.

( )
( ) . ( ( ))exp

D i Z
D i y h x

t
t
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In Equation 2, Dt(i) is the weight of the i-th sample, at is 
the weight of the t-th learner, yi is the actual class label, ht(xi) 
is the predicted class, and Zt is the normalization factor 
(Freund and Schapire 1997).

2.2.3. Random Forest (RF)

RF operates by aggregating the predictions of multiple 
decision trees and presenting the most frequent outcome as 
the final prediction. Each tree is constructed independently 
using randomly selected subsets of data. This method reduces 
both variance and bias, generally yielding more stable and 
reliable predictions. Mathematically, the RF prediction is 
calculated as follows:

( ) ( )f x b T x
1

b
b

B

1
=

=
/  	 (3)

In this formula, Tb(x) represents the prediction of the b-th 
tree at point x (Breiman 2001).

2.2.4. Extremely Randomized Trees (ExtraTrees)

ExtraTrees method is an ensemble learning technique akin 
to RF, but it incorporates greater randomization at each 
node during splits. In this model, the optimal splitting 
point at each node is determined based on features chosen 
at random. This approach can further reduce the model’s 
variance while decreasing computational time. ExtraTrees 
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3.2. Selection Criteria for Hyperparameter Settings

In this study, the optimal hyperparameters obtained because 
of the experiments on the specified data sets were tested to 
improve the performance of each algorithm and improve 
the accuracy of the model. The process of hyperparameter 
tuning involved extensive experimentation to identify the 
optimal settings for each ML algorithm. The following 
criteria were used to select the final hyperparameters:

•	 Performance Metrics: MAE, RMSE, and R² were the 
primary metrics used to evaluate model performance.

•	 Cross-Validation: A k-fold cross-validation (with k=5) 
approach was employed to ensure that the models 
were robust and generalizable. This method helps in 
mitigating overfitting by training and validating the 
model on different subsets of the data.

•	 Grid Search: A grid search strategy was used to explore 
a predefined set of hyperparameters systematically. 
The grid search covered a range of values for each 
hyperparameter to identify the combination that yielded 
the best performance.

3.3. Trainings Conducted for Loss of Lifes Data and 
Results

Table 3 presents the training and test graphs, prediction 
error distributions, prediction and accuracy graphs, 
and validation graphs for the most and least successful 

MSE either assesses the quality of an estimator. The MSE 
metric is calculated by Equation 8.
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Accuracy is one of the fundamental metrics used to evaluate 
the performance of a classification model. It represents the 
ratio of correctly classified samples to the total number of 
samples. Mathematically, accuracy is defined as follows:

Accuracy Total Number of Samples
Number of Correct Predictions

=  	 (9)

This formula shows the percentage of correct predictions 
made by the model. For example, a model that makes 90 
correct predictions out of 100 total samples would have an 
accuracy of 90% ( James et al. 2013). 

3. Results
3.1. Model Fine-Tunning Process and Results

Different algorithms are used to model data sets and 
provide predictions in the fields of ML and data analytics. 
Hyperparameters must be adjusted to boost these algorithms’ 
efficiency and produce more accurate results. This work 
involves fine-tuning well-known algorithms including GB, 
AdaBoost, RF, and ExtraTrees using the datasets used for 
training. The hyperparameters were fine-tuned to maximize 
the performance of every algorithm. The most successful 
hyperparameter values obtained are presented in Table 2. 

Table 2. The best values of the hyperparameter values of the ML models tried and obtained for the best result.

Algorithms Trained Hypermeters Best Hypermeters Values

GB

‘n_estimators’ : [50, 75, 100],
‘max_depth’: [2, 4, 8],

‘min_samples_split’ : [1,2,4],
‘min_samples_leaf ’ : [1,2 ,8],

‘learning_rate’ : [0.05, 0.1 , 0.5, 1]

‘learning_rate’: 1, ‘max_depth’: 8, ‘min_samples_
leaf ’: 1, ‘min_samples_split’: 4, ‘n_estimators’: 50

ADABOOST ‘n_estimators’ : [30, 50, 75, 100,200],
‘learning_rate’ : [0.05, 0.1 , 0.5 , 1, 2] ‘learning_rate’: 0.1, ‘n_estimators’: 100

RF

‘n_estimators’ : [50,100,200],
‘max_depth’: [2, 4, 8, 16],

‘min_samples_split’ : [2,3,4],
‘min_samples_leaf ’ : [2,3,4,8]

‘max_depth’: 16, ‘min_samples_leaf ’: 2, ‘min_
samples_split’: 3, ‘n_estimators’: 50’

EXTRATREES

‘n_estimators’: [50, 100, 200],
‘max_depth’: [None, 10, 20, 30],
‘min_samples_split’: [2, 5, 10],
‘min_samples_leaf ’: [1, 2, 4]

‘max_depth’: 10, ‘min_samples_leaf ’: 1, ‘min_
samples_split’: 2, ‘n_estimators’: 100
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tolerance of 1e-8, while the false predictions of 0.003 are 
seen at different frequencies. This clearly demonstrates the 
prediction success. In the prediction and accuracy graph, the 
blue lines show the actual values, and the orange lines show 
the values predicted by the model. What we want to see 
in this graph is the overlap of these two different colored 
lines. In the ExtraTrees Regressor algorithm, the blue and 
orange lines overlap, but not perfectly. On the other hand, 
in the GB Regressor algorithm, only orange colors are seen 
in the graph with two different colors. This proves the high 
accuracy of the prediction.

According to Table 4, the performance of the models 
trained using four different algorithms (GB, AdaBoost, 
RF and ExtraTrees) is evaluated. MSE, MAE, RMSE, R2 

and Accuracy metrics were commonly used. The GB model 
performed the best, achieving very low error rates in MSE, 

algorithms used in predicting the loss of life in the Istanbul 
earthquake scenario using ML. Table 3 shows the training 
and test graphs, prediction error distributions, prediction 
and accuracy graphs and validation graphs of the most 
successful and least successful algorithms of the models 
trained to predict the loss of life in the earthquake scenario 
for Istanbul with ML. In the training and test graph, a linear 
line graph is expected for successful training. In the test and 
training graphs of the ExtraTrees Regressor algorithm, 
there are some values that break the linear line. However, 
in the GB Regressor algorithm, it is seen that this graph 
forms a linear line graph. In the error distributions graph, 
it is expected to see distributions that do not differ as much 
as possible. In the ExtraTrees Regressor algorithm, the 
error distribution graph of the GB Regressor algorithm 
concentrates almost all of them at the 0 point with a 

Table 3. Graphs for estimating possible casualties.

ALG. Real Values & Predıction Fault Distribution Predicting Values

GB

ADABOOST

RF

EXTRATREES
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3.4. Trainings Conducted for the Number of Shelter 
Needs and Results

As can be seen from Table 5, the GB Regressor algorithm is 
quite successful in the Real Values and Prediction graph and 
in the predicting graph. In addition, although it looks like a 
scattered column graph in the Error distribution graph, the 
tolerance multiplier value is quite low compared to other 
algorithms.

MAE and RMSE values. The r2 value of 0.99 indicates a 
very high explanation rate. Moreover, the accuracy rate is 
also very high at 99.99%. Although the AdaBoost model 
has slightly higher error rates in the other metrics, it still has 
a very high R2 value and an acceptable accuracy rate. The RF 
and ExtraTrees models have higher error rates and lower R2 
values. These models were less successful compared to GB 
and AdaBoost.

Table 4. Metrics for estimating possible casualties.

Algorithm MSE MAE RMSE R2 Accuracy
GB 2.366194013919057e-16 1.1559507427903762e-08 1.538243808347382e-08 0.99 99.99
AdaBoost 1.561541483737388e-08 0.0001048052560926842 0.00012496165346766937 0.99 86.54
RF 3.99632097624034e-08 0.00010438015990870665 0.00019990800324750234 0.97 86.41
ExtraTrees 1.9283873995273218e-07 0.0001937100020273874 0.0004391340796985952 0.87 71.82

Table 5. Graphs for estimating the number of people who will potentially need shelter.

ALG. Real Values & Predıction Fault Distribution Predicting Values

GB

RF

EXTRATREES

ADABOOST
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compared to the GB model. The AdaBoost model has 
higher error rates and lower R2 values compared to the other 
algorithms, and its accuracy is significantly lower than the 
other models.

3.5. Trainings Conducted for the Number of Treatment 
Needs in the Hospital and Results

As can be seen from Table 7, the ExtraTrees Regressor 
algorithm is quite successful in the Real Values and 

Table 6 evaluates the performance of models trained 
with four different algorithms (GB, RF, ExtraTrees and 
AdaBoost). Again, various metrics such as MSE, MAE, 
RMSE, R2 and Accuracy are used. The GB model has 
very low error rates and shows high performance in other 
metrics. In particular, the R2 value of 0.99 represents a very 
high explanation rate. The accuracy rate is also quite high 
at 95.03%. RF and ExtraTrees models show increased error 
rates and decreased R2 values. They perform slightly lower 

Table 6. Metrics for estimating the number of people who will potentially need shelter.

Algorithm MSE MAE RMSE R2 Accuracy
GB 5.907810132908763e-06 0.0016719927767314552 0.0024305987190214604 0.99 95.03
RF 0.00011401742245214174 0.005899589280678199 0.010677894101935164 0.93 84.83
ExtraTrees 0.0008459893248166345 0.00980782252598891 0.029085895633736886 0.70 74.49
AdaBoost 0.00035198198721687386 0.012938087377026323 0.01876118299086904 0.75 50.22

Table 7: Graphs for estimating the number of people who will potentially require hospital treatment

ALG. Real Values & Prediction Fault Distribution Predicting Values

EXTRATREES

RF

GB

ADABOOST
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4. Discussion and Conclusion
Istanbul, as Turkey’s largest metropolis, is notable for its 
dense population and cosmopolitan structure, yet it faces 
significant earthquake risks due to unplanned urbanization 
and a high proportion of structurally unsound buildings. 
This study utilized various ML techniques to predict 
potential casualties, the number of people requiring hospital 
treatment, and the number of people needing temporary 
shelter in the event of a potential magnitude 7.5 earthquake 
occurring during nighttime in Istanbul. The dataset used in 
this analysis was a composite set enriched with data obtained 
from the Istanbul Metropolitan Municipality Open Data 
Portal and the TUIK.

The dataset includes diverse features such as neighborhood-
based building counts, distribution of buildings according 
to their construction years, and structural damage rates. 
These features are critical for understanding the potential 
outcomes of earthquake scenarios and planning necessary 
measures during model training.

The modeling process employed algorithms like GB, 
AdaBoost, RF, and ExtraTrees, evaluating each algorithm’s 
performance using metrics such as MAE, RMSE, and the 
R². Results indicate that the GB algorithm outperformed 
others by achieving lower error rates and a high determination 
coefficient, signifying its ability to model the dataset with 
high accuracy and close proximity to true values.

When compared to the literature, similar studies also 
demonstrate the potential of ML approaches to successfully 
predict earthquake outcomes. While these studies provide 
significant insights, our study contributes uniquely by uti-
lizing a hybrid dataset specific to Istanbul, which integrates 
neighborhood-based building counts, construction year dis-
tributions, and structural damage rates. Unlike the afore-
mentioned studies that primarily focus on broad regional 
datasets or specific technical methods, our research empha-
sizes the application of multiple ML algorithms (GB, Ada-
Boost, RF, and ExtraTrees) on a localized and context-spe-
cific dataset. This allows for a more nuanced understanding 

Prediction Values graph. In addition, although it looks like a 
scattered column graph in the error distribution graph, the 
tolerance multiplier value is quite low compared to other 
algorithms.

Table 8 shows the performance of the models trained 
with four different algorithms (ExtraTrees, RF, GB and 
AdaBoost). Again, various metrics such as MSE, MAE, 
RMSE, R2 and Accuracy are used. The ExtraTrees model has 
very low error rates and a high R2 value. The RMSE value 
is also quite low. This indicates that the model explains the 
dataset well and makes accurate predictions. The accuracy 
rate is also high at 92.57%. The RF model has higher error 
rates and lower R2 value compared to the other models. 
However, its accuracy is still acceptable (72.05%). The GB 
and AdaBoost models perform moderately in terms of error 
rates and R2 values. However, their accuracy rates are lower 
than the other models (55.25% and 51.80%).

According to the performance metrics given in the tables, 
the GB algorithm is superior to the other algorithms. This 
superiority is especially evident in metrics such as MSE, 
MAE, RMSE, R2 and Accuracy.

One of the main reasons behind the success of the GB al-
gorithm is that this algorithm has a structure that iteratively 
corrects errors. By correcting the errors at each step, GB im-
proves model performance and can produce more accurate 
and generalized results. This iterative learning process allows 
the model to better learn the complexities in the dataset, 
resulting in lower error rates and higher accuracy rates. In 
terms of practical applications, a model with low MSE and 
RMSE values can make more accurate predictions, which 
can reduce the cost of error. A high R2 value indicates that 
the model is better able to explain the variability of the data 
set, which increases model reliability. In line with this analy-
sis, it is clear why the GB algorithm is more successful espe-
cially in our dataset. Therefore, it is recommended to prefer 
the GB algorithm for similar problems.

Table 8. Metrics for estimating the number of people who will potentially require hospital treatment.

Algorithm MSE MAE RMSE R2 Accuracy
ExtraTrees 2.917018737514533e-07 0.00022766724876766196 0.0005400943193104823 0.97 92.57
RF 1.4933443438588122e-05 0.0008048125853343117 0.0038643813785117173 0.70 72.05
GB 1.3869019221264514e-06 0.0005328583098645869 0.0011776680016568554 0.97 55.25
AdaBoost 2.221970996035838e-06 0.0008394849115527844 0.0014906277187936086 0.91 51.80
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of earthquake impacts in an urban setting like Istanbul. Fur-
thermore, our approach highlights the practical implications 
for urban disaster preparedness and management, providing 
actionable insights for policymakers. Compared to previous 
studies, our work stands out in the following ways:

•	 Localized Dataset: The use of a hybrid dataset specific 
to Istanbul, incorporating detailed local attributes not 
commonly found in broader datasets.

•	 Algorithm Comparison: A comprehensive comparison of 
multiple ML algorithms on the same dataset, providing 
a clear evaluation of their relative performance.

•	 Practical Implications: Direct applicability to urban 
disaster management and preparedness in Istanbul, 
offering specific recommendations based on the findings.

These aspects of our study offer a valuable contribution to the 
existing body of literature, addressing the need for localized 
analysis and practical applications in disaster management.

This study utilizes a dataset specific to the Istanbul province. 
Future studies aim to conduct similar analyses in other 
regions of Turkey or in other earthquake-prone areas around 
the world. This will help assess how the proposed models 
perform under different geographical and demographic 
conditions. Additionally, it is intended to test new and 
emerging ML and deep learning techniques on the current 
topic, alongside the existing algorithms.

In conclusion, this study contributes to understanding 
the possible damages a major earthquake could cause in 
Istanbul and assists in planning to mitigate these impacts. 
The findings provide valuable insights for policymakers in 
enhancing urban transformation and disaster management 
strategies. Future research could extend similar modeling 
to different regions, further improving earthquake risk 
management and emergency preparedness.
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