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Abstract 

In this study, new solitary wave solutions are obtained for the combination of the B-

type Kadomtsev-Petviashvili (BKP) equation and the potential Kadomtsev-

Petviashvili (pKP) equation, called the integrable (3+1)-dimensional pKP-BKP 

equation, and its two reduced forms. For this purpose, the Bernoulli auxiliary 

equation method, which is an ansatz-based method, is used. As a result, kink, lump, 

bright soliton and breather wave solutions are observed. It is concluded that this 

method and the results obtained for the considered pKP -BKP equations are an 

important step for further studies in this field. 

 

 
1. Introduction 

 

Nonlinear partial differential equations (NPDEs) are 

used to model the complexity of many physical, 

engineering, and mathematical systems [1-10]. These 

equations, which allow nonlinear effects to be taken 

into account, are essential for more accurately 

describing many real-world phenomena. NPDEs arise 

in many fields, including fluid mechanics, 

electromagnetism, wave propagation, and chemical 

reactions [11-13]. It is important that these equations 

are integrable because this makes them more 

mathematically accessible and solvable, making them 

easier to use in various applications [14]. It also 

means that these equations can have analytical 

solutions. Analytical solutions represent the general 

solution of the equations and are often useful for 

understanding the behavior of the system. By 

combining one integrable system with another, many 

different unexpected results can be seen [15]. There 

are many examples in the literature [16-20,31-33].  

Recently, the pKP-BKP equation also remains 

important for researchers to obtain more insights and 

solitary wave results [20-26]. 

The nonlinear pKP-BKP equation is obtained 

by considering the potential Kadomtsev-Petviashvili 

(pKP) equation and the B-type Kadomtsev-
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Petviashvili (BKP) equation [26]. The pKP (potential 

Kadomtsev–Petviashvili) equation [29], which 

models nonlinear and nonlinear waves in two-

dimensional space with an additional degree of 

freedom, has been used in fields as diverse as plasma 

physics, fluid dynamics, and nonlinear optics [20,21]. 

The BKP (B-type Kadomtsev–Petviashvili) equation, 

which describes the interactions between 

exponentially localized structures, is an important 

model for the shallow water wave in fluids and the 

electrostatic wave potential in plasmas [27,28]. The 

pKP-BKP  Eq.(1), which shows the double effect of 

the newly developed pKP equation and the BKP 

equation, has been a subject of curiosity and interest 

to researchers [20,21]. 

In this paper, the Bernoulli equation method 

is utilized to obtain solitary wave solutions for a 

general form of the (3+1)-dimensional pKP-BKP 

equation [26] as follows: 
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where some extra terms are inserted into the pKP-

BKP equation, such as 
xy

b  and 
xz

c  and 

 , , ,x y z t   .When 

a. 0   
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(2) 

eliminating three expressions from the pKP-BKP 

equation, 
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(3) 

eliminating two expressions from the pKP-BKP 

equation, reduction to two equations will be 

investigated. 

Wazwaz [26] obtained breath-wave solutions 

for the (3+1)-dimensional pKP-BKP equation using 

the Hirota bilinear method for Eq.(1). In the study of 

Ma [21], multiple soliton solutions and lumped 

solutions were determined. And these newly designed 

equations were verified to be Painlevé integrable, 

yielding multiple soliton solutions and lumped 

solutions for each model developed [26]. For the 

(3+1)-dimensional pKP-BKP model, several studies 

have been conducted in the literature [20-26] and the 

aim of this study is to obtain new results to improve 

the previous findings. 

In summary, the structure of this paper is as, 

In Section 2 the fundamental properties of the utilized 

method are desribed and the steps to be used. In 

Section 3, solutions for the (3+1)-dimensional pKP-

BKP equation and its two reduced forms are presented 

and supported by figures for a better understanding of 

the dynamics of these solutions. In Section 4, we have 

given a comparison. In Section 5 the gained results 

are presented. 

2. Bernoulli Auxiliary Equation Method 

 

In this part of the study, we will use the Bernoulli 

auxiliary equation method to obtain analytical 

solutions to nonlinear equations. To obtain a solution 

using this method, the following steps must be  

followed. Suppose to solve the nonlinear partial 

differential equation given in the following form: 

 , , , , , , 0
x y z t xx

P        , (4) 

where P  is a function of ( , , ,  )x y z t . Assume the 

following solitary wave transform structure:

( , , ,  ) ( ),   -  dx y z t u x y z t        , 0d  ,  

Eq. (4) reduces to the following ordinary differential 

equation (ODE) using the above transformation, 

2 3
, , , , 0

u u u
O u

  

  


  

 
 
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. 
(5) 

Assume that the Eq. (5) has the exactly the following 

solution: 

   
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N
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i

i

u g z 


 , 
(6) 

where 
i

g  are the parameters to be determined later. 

According to the homogeneous equilibrium principle, 

the value of N is found by adjusting the nonlinear 

term and the highest order subterms in Eq. (5). The 

Bernoulli auxiliary equation method [30] is used to 

determine the function  z   in Eq. (6): 

2
( ) ( )

dz
Pz Qz

d
 


  , 

(7) 

where P and Q  are constants other than zero and its 

solution is  
1

P

P
z

e PC Q





 


 where 
1

C  is a 

constant of integration. Substituting Eq. (6) and Eq. 

(7) into Eq. (5) and setting the coefficients of  z   

equal to zero gives a set of algebraic equations that, 

when solved, give the values of the elements. By 

calculating the results of these algebraic equations 

and substituting the aforementioned solution sets into 

Eq. (6), we can easily obtain the explicit solutions of 

Eq. (4). 

 
3. Implementation Of Generalized (3+1)-Dimensional  

pKP-BKP Equation And Reduced Forms 
3.1. The application of Eq. (1) 

 

First of all, to reduce Eq.(1) to an ODE, using the 

classical wave transformation  

( , , ,  ) ( ),   -  dx y z t u x y z t         where 

0  , 0  , 0   and 0d  , the Eq.(1) becomes: 
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(8) 

When the  
5

v
N    and    

3
3 1N    

terms in Eq.(1) are balancing, 1N   is obtained. And 

from here we found , 
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 (9) 

where 
0

g  and 
1

g  are constants. Substituting Eq.(7) 

and Eq.(9) into Eq.(8), equating all coefficients of 

 i
z  , 1, ,7i   to zero, gives the following set of 

algebraic equations: 
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The following results are obtained by solving 

the above equations: 

 

 

 

Case 1: 
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(11) 

Figure 1 plots the 3D and contour profiles of 

solution Eq. (11) with various values of parameters 
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(a) 1y  , 2z  , 0.05  , 0.5  , 
1

1g  , 1a  , 

1.8b  , 1.3c  , 
0

1g  , 
1

0.1C  , 1.7Q  , 1   , 

0.78  , 1.5  , 0.07   and (b) is a contour map 

that can be useful for analysis of the difference 

between two shapes. The resulting shape is a kink 

soliton, which shows a localized perturbation of the 

wave along a phase shift. 

 

(a)     (b) 

Figure 1. (a) 3D and (b) contour plots of the kink solution. 

 

Case 2: 
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(13) 

Figure 2 shown the 3D and contour profiles 

of solution Eq.(13) with various values of parameters 

(a) 1y  , 2z  , 0.05  , 0.5  , 2P  , 1a  , 

1.8b  , 1.3c  , 
0

1g  , 
1

0.1C  , 1.7Q  , 1   , 

0.78  , 1.5  , 0.07   and (b) is a contour plot 

that can be useful for analysis of the difference 

between two shapes. The resulting shape is a lump 

soliton. 

 



F. N. Kaya Sağlam / BEU Fen Bilimleri Dergisi 13 (3), 822-835, 2024 

826 
 

  

(a)        (b) 

Figure 2. (a) 3D and (b) contour plots of the lump solution. 

 

Case 3: 
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(15) 

 

Figure 3 shown the 3D and contour profiles 

of solution Eq.(15) with various values of parameters 

(a) 0y  , 0z  , 0.5  , 0.02  , 
1

2g  , 3a  , 

1.8b  , 1.3c  , 
0

1g  , 
1

0.5C  , 1.1   , 

0.78  , 1.5  , 0.07  , 1.1d   and (b) is a 

contour plot that can be useful for analysis of the 

between two shapes. Such solitons is determined by 

the local structure of the soliton. 



F. N. Kaya Sağlam / BEU Fen Bilimleri Dergisi 13 (3), 822-835, 2024 

827 
 

 

(a)        (b) 

Figure 3. (a) 3D and (b) contour plots of the solution Eq.(15). 

 

3.2. The application of Eq. (2) 

To reduce Eq.(2) to an ODE, using the classical 

wave transformation  

( , , ,  ) ( ),   -  dx y z t u x y z t         where 

0  , 0  , 0   and 0d  , the Eq.(2) becomes: 
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(16) 

Balancing Eq.(8), we found 1N  . Apply the 

transform, 

   0 1
u g g z   , (17) 

where 
0

g  and 
1

g  are constants. Inserting Eq. (7) and 

Eq. (17) into Eq. (16) and setting all coefficients of 

 i
z  , 1, ,7i   to zero results in the set of 

algebraic equations. Three cases of the parameters 

obtained by solving this algebraic equation are 

discussed as follows: 

 

Case 1: 
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(19) 

Figure 4 shown the 3D and contour profiles 

of solution Eq.(19) with various values of parameters 

(a) 1y  , 2z  , 0.5  , 0.5  , 1a  , 1.8b  , 

1.3c  , 
0

1g  , 
1

0.1C  , 1.7Q  , 1   , 

0.78  , 1.5  , 0.07   and (b) is a contour plot 

that can be useful for analysis of the between two 

shapes. Breather wave solution is obtained for the (3 

+ 1) dimensional pKP - BKP Eq.(2). 
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(a)        (b) 

Figure 4. (a) 3D and (b) contour plots of the breather solution. 

 

Case 2: 
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(21) 

Figure 5 plots the 3D and contour maps of 

solution Eq.(17) with different values of parameters 

(a) 0y  , 0z  , 0.82  , 0.5  , 1a  , 1.8b  , 

1.3c  , 
0

1g  , 
1

0.3C  , 1.7Q  , 1  , 

0.78   , 1.5  , 0.07   and (b) is a contour 

plot that can be useful for analysis of the between two 

shapes. One bright soliton solution is found for the 

(3+ 1) dimensional pKP - BKP Eq.(2). 
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(a)        (b) 

Figure 5. (a) 3D graph of the solution Eq.(17) and (b) contour graph of the solution Eq.(21).  

 

Case 3: 
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(23) 

Figure 6 shows the 3D and contour maps of 

solution Eq.(23) with different values of parameters 

(a) 0y  , 5z  , 0.08  , 0.5d  , 1a  , 1.8b  , 

1.3c  , 
0

1g  , 
1

0.1C  , 1.7Q  , 1   , 

0.78   , 0.5  , 0.04  , 
1

1g   and (b) is a 

contour plot that can be useful for analysis of the 

between two shapes. Kink solution is obtained for the 

(3+ 1) dimensional pKP - BKP Eq.(2). 



F. N. Kaya Sağlam / BEU Fen Bilimleri Dergisi 13 (3), 822-835, 2024 

830 
 

 

(a)        (b) 

Figure 6. (a) 3D graph of the kink solution Eq.(23) and (b) contour graph of the kink solution Eq.(23).  

 

3.3. The application of Eq. (3) 

 

Reducing Eq.(3) to an ODE, using the classical wave 

transformation  

( , , ,  ) ( ),   -  dx y z t u x y z t         where 

0  , 0  , 0   and 0d  , the Eq.(3) is 

transformed into: 

 2

4 5 52 6

3 2
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(24) 

 

 

 

If we balance Eq.(8), we find 1N  . The use 

of the conversion, 

   0 1
u g g z   , (25) 

where 
0

g  and 
1

g  are constants. Exchange Eq.(7) and 

Eq.(25) into Eq.(24), equating all coefficients of 

 i
z  , 1, ,7i   to zero, provides the set of 

algebraic equation systems. We found parameters 

corresponding to the following cases when solving 

these systems: 

 

Case 1: 

 

1
2g Q  ,

4 6 2 3 2 2
P P a b c

d
     
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    
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(26) 

 
  

0

1
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, , , .

exp

QP
x y z t g

P dt y x z C P Q



  
  

     
 

(27) 

Figure 7 plots the 3D and contour profiles of 

solution Eq.(27) with various values of parameters (a) 

1y  , 2z  , 0.05  , 0.5  , 
1

2g  , 1a  , 

1.8b  , 1.3c  , 
0

1g  , 
1

0.1C  , 2Q  , 1   , 

0.06  , 1.5  , 0.07  , 1.1d   and (b) is a 

contour map that can be useful for analysis of the 

difference between two shapes. Two lump soliton 

solution is found for the (3 + 1) dimensional pKP - 

BKP Eq.(3). 

 



F. N. Kaya Sağlam / BEU Fen Bilimleri Dergisi 13 (3), 822-835, 2024 

831 
 

 

(a)        (b) 

Figure 7. (a) 3D and (b) contour plots of the two lump solution Eq.(27). 

 

Case 2: 
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(29) 

Figure 8 plots the (a) 3D and (b) contour maps 

of solution Eq.(29) with different values of 

parameters for 0y  , 0z  , 2P  , 0.05  , 

0.5  , 
1

1g  , 2a  , 1.8b  , 1.3c  , 
0

1g   , 

1
0.5C  , 2Q  , 1   , 0.06  , 0.07  , 

1.1d  . The one bright soliton shape and amplitude 

modulation of the soliton are shown in the graph. 

 

(a)        (b) 
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Figure 8. (a) 3D and (b) contour plots of Eq.(29) when 0y  , 0z  , 2P  , 0.05  , 0.5  , 
1

1g  , 

2a  , 1.8b  , 1.3c  , 
0

1g   , 
1

0.5C  , 2Q  , 1   , 0.06  , 0.07  , 1.1d  . 

 

Case 3: 
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(31) 

Figure 9 shows the (a) 3D and (b) contour 

maps of solution Eq.(31) with different values of 

parameters for 0y  , 2z  , 0.07  , 1.7  , 

1
2g  , 3a  , 0.02b  , 2c  , 

0
1g  , 

1
0.8C  , 

1Q  , 1   , 0.2  , 0.07  , 1.7d  , 0.5 

. The obtained kink solution is important for the 

understanding of the dynamics and the explanation of 

complex phenomena such as phases and pattern 

formation. 

 

(a)        (b) 

Figure 9. Select 0y  , 2z  , 0.07  , 1.7  , 
1

2g  , 3a  , 0.02b  , 2c  , 
0

1g  , 
1

0.8C  , 1Q  , 

1   , 0.2  , 0.07  , 1.7d  , 0.5   for (a) 3D and (b) contour plots of Eq.(31). 

 

4. Comparison 

 

In this section, we compare the obtained solutions 

with the solutions obtained by Wazwaz [26] using the 

Hirota bilinear method, the tan method, and the tanh 

method. Wazwaz used the Hirota bilinear method, the 

tan method, and the tanh method to search for soliton 

solutions of the (3+1) dimensional pKP-BKP 

equation for which the kink, singular, periodic, and 

exponential solutions exist. In this context, new 

solutions with many physical properties such as kink, 

lump, breather and bright soliton have been shown. 

On the other hand, using the Bernoulli auxiliary 

equation method, we found nine exact solutions of the 

(3+1) dimensional pKP-BKP equation. [26] shows 

that there are significant differences between them. 

This proves the superiority of the Bernoulli auxiliary 

equation method over other computational methods. 
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Also a new extended direct algebraic method 

proposed in [34] focuses on providing closed-form 

solutions for a wide class of nonlinear pseudo-

parabolic models by direct algebraic manipulations, 

while the Bernoulli auxiliary equation method can 

provide fast and efficient solutions for specific 

models and conditions, since it is usually applied 

under specific conditions. Thus, we can state that this 

method provides a powerful, efficient and easy-to-use 

option for all NPDEs. 

 

5. Conclusion 

 

In this study we derive solutions for the (3+1)-

dimensional pKP-BKP equation and its two reduced 

forms. We derive different types of wave solutions for 

each of the equations studied. Solitons are types of 

waves in which energy is transported in a localized 

form that remains unchanged in time and space. They 

include bright solitons, dark solitons, and kink 

solitons. By giving different values to the parameters 

in the master equation, different types of soliton 

solutions are obtained. Bright soliton waves, which 

occur in many nonlinear systems and are waves in 

which the energy or intensity increase is localized in 

a specific region, are constructed in Figs. 5 and 8. 

Kink soliton waves that result from changes in the 

environment or from local changes in the structure of 

the object are observed in Figs. 1, 6, and 9. Also 

breather waves, which are waves that occur in a given 

medium and spontaneously change their wavelength 

or form certain periodic or quasiperiodic shapes, are 

observed in Figure 4. Figure 7 shows a lump wave, 

which is defined as a wave with a solitonic structure, 

usually carrying a localized energy density. It is 

believed that these solutions will make an important 

contribution to the understanding of nonlinear 

phenomena. 3D and contour plots are presented 

together to understand the dynamics of these wave 

solutions. 3-D graphs show how the wave varies in 

space and time, while contour graphs show the wave 

as an array of lines connecting points of the same 

magnitude. It has been observed that different 

solutions emerge from those obtained in previous 

studies [20-26]. This will provide a basis for future 

studies on the pKP-BKP equation. 
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