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Abstract: In the present work, a prediction on the wind energy potential in Semarang City (Central Java Province, 

Indonesia) has been performed by leveraging a novel combination of machine learning and natural neighbor 

interpolation (NNI) methodology. This integrated approach uniquely combines the predictive power of 

machine learning to estimate wind speeds based on historical and spatial data, with the spatial mapping 

capabilities of NNI, which provides a more accurate and seamless visualization of wind speed distribution. 

This combination addresses challenges of data sparsity and variability, offering a more reliable and localized 

mapping approach than traditional methods. Additionally, air density is considered to calculate energy 

density, enabling a comprehensive evaluation of wind energy potential. The results show an average monthly 

wind speed of 5.23 m/s, ranging from 3.38 m/s to 7.39 m/s. Wind speeds between 7 m/s and 10 m/s are 

predicted to occur for up to 10 months annually, with an estimated energy density of 102.7 W/m². These 

findings underscore the feasibility of small-scale wind power generation in the study area and provide 

actionable insights for advancing renewable energy policies and implementations at the local level. 
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1. INTRODUCTION 

The use of wind energy is rapidly increasing and gaining global attention. Its consumption is observed 

to be the highest compared to other renewable energy sources throughout the world [1]. At a certain 

level, it can fulfill significant energy needs and minimize pollution caused by fossil fuels [2,3]. This is 

necessary because energy generated by power plants reduces fossil fuel consumption and has a 

significant influence on the layout of the electricity market. Moreover, wind power stands out as a 

prominent technology in the context of the renewable energy transition as evidenced by the increasing 

number of wind turbines and industry workers each year [4]. Throughout the last decade, global installed 

wind energy capacity has tripled by hitting 837 GW in 2021 up from 283 GW in 2012 [5]. Some major 

challenges such as the intermittent fluctuations caused by weather conditions are usually linked to the 

use of wind energy [6]. Therefore, there is a need for careful analysis of locations with the potential to 

plan for wind turbine and power generation output. Wind energy can generate power continuously 

throughout the day, demonstrating its suitability for systems that need sustainable energy. It is also 

possible to predict seasonal fluctuations and install turbines in different locations without losing 

coverage. Moreover, wind energy forecasting contributes to system stability and has the potential to 

save significant costs in the whole system [7]. Accurate forecasts can also maximize wind farm operation 

and energy system management. Extensive studies are currently being conducted on wind energy 

forecasting using several analytical methods at different time horizons. Certain methods rely on the 

statistical characteristics of wind time series data while new ones have also been designed using machine 

learning methods [8,9]. This shows that machine learning is now playing a crucial role in the energy 

sector as indicated by the application of its methods in interpreting historical data and predicting the 

future to improve the performance of wind power generation forecasts [10,11]. Machine learning 

algorithms are mainly being used due to their ability to adapt to changing trends in the dataset and 

generate models based on input data. They have been successfully applied to describe the behavior of 

datasets, input features into models, and generate output based on historical records. These algorithms 

provide an alternative for forecasting using wind speed data [12]. Wind characteristics of a region are a 

key factor in the process of generating energy. Therefore, this study evaluates wind resources of 

Semarang City which is geographically located on the northern coast of Central Java of Indonesia. The 

area has been identified to be naturally windy and has relatively constant speeds throughout the year 

[13]. The main aim was to obtain information about wind speed potential, speed distribution maps, and 

energy density. This was achieved through the adoption of a machine learning method to predict wind 

speeds using daily data and the distribution was subsequently mapped through the application of natural 

neighbor interpolation (NNI) methods. The density per unit area, a measure of wind energy intensity, 

was also determined through the air mass flow parameters in the study area. 

The major insight from this study was to provide information on the process of planning local-scale 

wind power production systems. This was mainly due to the variations in wind energy potential based 

on the different areas in Indonesia. It was previously reported that the use of this source remains 

relatively low as indicated by the installed capacity of 157.41 MW out of the possible 154.9 GW [14]. 

This prompted the government to establish national energy policies aiming to raise the use of renewable 

energy to 23% by 2025 and 31% by 2050. 

 

2. RELATED WORKS 

Machine learning techniques have been extensively utilized to analyze historical data and forecast future 

trends, thereby enhancing the accuracy of wind power generation predictions. A previous study 

identified four broad wind speed modeling methods including [15], 

1. Physical models,  
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2. Statistical models,  

3. Spatial algorithms,  

4. Artificial intelligence (metaheuristic algorithms).  

Several wind speed prediction methods have also been proposed but some studies neglected the 

importance of parameter optimization and data preprocessing. For example, Shao et al. (2021) proposed 

advanced optimization algorithms as superior to other well-known metaheuristic algorithms [16]. Wang 

et al. (2021) also applied a combined method for wind farm management and decision-making in China 

based on sub-model selection and optimization algorithms to improve forecasting performance [17]. In 

another study conducted by Tarek et al. (2023), a novel optimization approach employing stochastic 

fractal search and particle swarm optimization (SFSPSO) was introduced to optimize the parameters of 

the long short-term memory (LSTM) network [18]. The method involved assessing the efficacy of the 

regression model based on five evaluation criteria: mean absolute error (MAE), Nash Sutcliffe 

Efficiency (NSE), mean square error (MSE), coefficient of determination (R2), and root mean squared 

error (RMSE). The analysis revealed that the proposed LSTM optimization using the SFS-PSO model 

yielded superior results in wind energy prediction, achieving an R2 value of 99.99% [18]. Moreover, 

Cheng and Wang (2020) combined four artificial neural networks to estimate wind speed through 

optimal weighting coefficients and data preprocessing, including decomposition and denoising. The 

results showed that multi-objective optimization algorithms could enhance accuracy and stability, 

achieve excellent precision and stability, and outperform other combined models [19]. Krechowicz et 

al. (2022) also reviewed 262 relevant study articles from the Scopus database and showed that extreme 

learning machine and ensemble methods were the most popular applied to forecast the generation of 

power from renewable energy sources in the last three years (2020–2022), particularly for wind energy 

systems and short-term models [20]. 

Yürek et al. (2021) applied various machine learning algorithms to forecast wind energy production in 

Turkey using historical wind power generation data and weather forecasts. The results showed that more 

accurate energy production was predicted for each hour [21]. Buturache et al. (2021) also proposed a 

prediction model using several machine learning algorithms, including artificial neural networks, 

support vector regression, random trees, and random forest, and achieved very good accuracy [22]. 

Furthermore, Alkesaiberi et al. (2022) suggested a machine learning model to efficiently predict 

univariate wind time series using wind speed and direction input variables. The validation of the actual 

measurement of three turbines in France, Turkey, and Kaggle was observed to have improved the model 

efficiency [23]. Tarek et al. (2023) also proposed the application of several machine learning models to 

predict wind power generation using a dataset with 4 features and 50,530 samples, and the results 

showed good accuracy [18].  

GIS is a technology with unique capabilities to organize, analyze, and edit geographical reference data 

and spatial maps. B. Kilic (2019) applied GIS to map land wind dissipation and its potential in Turkey 

[24] using data obtained from artificial neural networks. The outcome revealed regions with promising 

potential for future wind energy integration, hinting at the feasibility of employing Artificial Neural 

Networks (ANN) and Geographic Information Systems (GIS) as convenient alternatives to conventional 

prediction approaches. Zahedi et al. (2022) also applied a practical method to measure wind resource 

potential for electricity generation using a GIS as part of the criteria for wind power plant selection [25]. 

Moreover, Noorollahi et al. (2016) used GIS to assess wind resources in the western region of Iran and 

also applied a decision-making method with different location selection criteria. The findings indicated 

that 28% of the surveyed area could accommodate large-scale wind power installations capable of 

generating electricity meeting international standards [26]. Feng et al. (2020) combined GIS modeling, 

turbine performance, and daily speed distribution to estimate wind and clean energy potential on Chinese 

land with due consideration for the impact of local topographic conditions such as changes in air density, 

surface roughness, air density, and placement efficiency. The technical potential for the onshore wind 

was estimated to be 2,560 TWh/year and 3,501 TWh/year respectively while clean energy had 2,335 

TWh/year and 3,194 TWh/year based on agricultural land scenarios [27].  
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Assouline et al. (2019) proposed a methodology that combined Machine Learning, GIS, and parametric 

wind models to estimate speed potential in Switzerland. The monthly speeds were approximated based 

on measurements and several meteorological, topographical, and specific wind features available 

nationwide, and the installed capacity of wind turbines was found to average between 80 kW and 1,600 

kW in the most suitable regions [28]. Moreover, Sachit et al. (2022) presented a method for global wind 

and solar mapping based on eXplainable Artificial Intelligence (XAI), made the first attempt to create a 

global map to determine the locations of land-based wind and solar energy systems, and formulated new 

criteria for decision-making. A total of thirteen conditioning factors or independent variables were 

determined through a comprehensive literature review and multicollinearity analysis, thereby providing 

support to decision-makers on sustainable energy planning worldwide [29]. Grassi et al. (2015) 

suggested an evaluation of the worldwide wind energy capacity on a national level employing 

Geographic Information Systems (GIS). This was accomplished by integrating GIS-formatted global 

data on land usage, topography, administrative borders, and wind speed recordings from around 12,000 

surface stations worldwide. Wind speed measured at 10 m height from surface stations was used to 

generate worldwide wind maps at 50 m, 80 m, and 130 m through the application of co-Kriging. The 

validation results showed an average uncertainty of 1.1 m/s and this was used to map the spatial 

uncertainty distribution. Theoretical, geographical, and technical potentials for each country were 

assessed. Moreover, the global technical potential at a height of 130 meters was projected to be 400 

PWh/year, assuming a power density of 5 MW/km2. This figure was approximately 20 times the global 

electricity consumption of 19.3 PWh in 2011 [30]. 

Despite advances in wind energy research, many studies still rely on traditional spatial interpolation 

methods which can be limited by data sparsity and variability, particularly in under-researched regions. 

This study addresses this gap by combining machine learning for wind speed predictions with the 

Natural Neighbor Interpolation (NNI) method to generate more accurate, localized wind energy maps. 

The motivation behind this approach is to provide a more reliable tool for energy planners, particularly 

in areas with insufficient wind data, to enhance the feasibility of wind energy development. 

 

3. MATERIALS 

3.1. Study Case Area 

Semarang is the capital of Central Java Province, Indonesia, and serves as the administrative and 

economic center of the province. It is the country's sixth-largest metropolitan city, covering 

approximately 373.7 square kilometers and comprising 16 Subdistricts. The location ranges in elevation 

from 0 to 348 meters above sea level and topographically comprises coastal areas, lowlands, and hills, 

leading to its designation as the lower and upper city. Semarang is geographically situated between 

109°35'-110°50' East Longitude and 6°50'-7°10' South Latitude as shown in Fig. 1 and this means it is 

influenced by a tropical climate with both rainy and dry seasons. From November to May, wind blows 

from the north to the northwest, creating the rainy season with moisture and rainfall. Meanwhile, from 

June to October, wind blows from the Southeast, creating a dry season with less moisture. The average 

hourly wind speed in Semarang experiences significant seasonal variations throughout the year. 

Moreover, the kinetic energy of wind is highly attractive to drive turbines and generate clean electricity 

without emissions, and the potential energy resources of this local area are expected to contribute to the 

future energy transition plan. 
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Figure 1. Semarang City Area, Central Java 

3.2. Data Description 

Wind patterns and speeds are observed to vary significantly across the entire Indonesian region and are 

influenced by bodies of water, vegetation, and terrain differences. These characteristics are presented in 

the form of time series data consisting of observations of wind speed, temperature, humidity, pressure, 

wind direction, density, and others for several years. The spatial data in Fig. 2 show the daily speeds at 

a height of 10 meters above the ground at an original resolution of 0.5° latitude x 0.625° longitude with 

coordinates at Latitude 7.0 and Longitude 110.0. Successive Figs. 2(a-e) show daily wind speed 

variations for the successive years 2018, 2019, 2020, 2021, and 2022. This historical data of daily wind 

speeds was studied and analyzed. In another section, Fig. 2f presents daily wind speeds over 5 years. 

These characteristics are crucial in assessing energy resources as indicated by the importance of surface 

wind flow or kinetic energy for several purposes, including energy generation. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 2. Wind speed at a height of 10 meters in Semarang City. 

 

4. METHODS 

This study aims to gather information on wind energy potential using the framework presented in the 

flowchart shown in Fig. 3. The daily wind speed data served as the starting point for the estimation of 

this resource potential. Moreover, the machine learning method was adopted to obtain estimated wind 

speed values while the information regarding the distribution was presented in the form of a digital map 

using NNI methods. Wind energy density was also determined by considering the air mass within the 

study area. This was necessary because these characteristics were considered highly significant in 

assessing wind resources but often not adequately addressed. 

 
Figure 3. Framework for investigating wind energy potential 

Recurrent Neural Networks (RNN) were selected for time-series prediction in this study due to their 

capability to model temporal dependencies in sequential data, which is essential for wind speed 

prediction. Unlike traditional feed-forward neural networks, RNNs are specifically designed to handle 

sequences by maintaining a memory of previous inputs, making them effective for modeling time-series 

data where the current wind speed depends on previous values. Although Long Short-Term Memory 

(LSTM) networks, a specialized form of RNN, are known for their ability to capture long-term 

dependencies, they are more computationally expensive due to their complex architecture, which 

includes gates to control the flow of information over time. While LSTM networks excel in datasets 

with long sequences where long-term dependencies are critical, they tend to require more training data 

and computational resources. In contrast, the wind speed data in this study is relatively short-term and 

exhibits periodicity, where dependencies are typically limited to a few previous time steps rather than 

long sequences. Therefore, RNNs, with their simpler structure and faster training times, were sufficient 

for capturing the short-term dependencies inherent in the wind speed data without overfitting or 

excessive computational costs. Moreover, RNNs were able to provide robust performance in accurately 

forecasting wind speeds, which meets the requirements of the study while offering a more efficient 

solution compared to LSTM. This choice of RNN was validated through preliminary testing, where the 

model demonstrated satisfactory accuracy in predicting wind speeds while maintaining lower 

computational overhead, making it well-suited for real-time or large-scale applications in wind energy 

forecasting. 
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4.1. Wind Speed Forecasting 

Knowledge of wind speed is observed to have a crucial role in estimating energy potential at each 

location. This is because accurate speed forecasting is a key factor in wind farm planning and economic 

potential calculations. Moreover, wind parameters are essential for regulating energy systems and aiding 

wind farm maintenance. The wind speed forecasting strategy followed in the study is presented in the 

following in Fig. 4. It is important to state that most of the existing models usually use all historical data 

for prediction and this can be influenced by the variations in seasons. Therefore, daily historical wind 

data was used as the input in the machine learning method in the form of a recurrent neural network 

(RNN) model applied to forecast the speed. This RNN is currently highly suitable for time series 

prediction due to its unique structure [31,32].  

 
Figure 4. Wind speed forecasting strategy. 

A standard RNN consists of input, hidden, and output layers [33]. For example, the input layer is 

provided with a time series 𝑥 =  (𝑥1 𝑥2 … 𝑥𝑡). At time t, the outputs in the hidden layer ℎ𝑡 and the 

output layer 𝑦𝑡  can be calculated using the following equation [33]: 

ℎ𝑡 = 𝐹 (𝑊ℎℎ ℎ𝑡−1 +  𝑊𝑥ℎ  𝑋𝑡 +  𝑏ℎ   ) (1) 

 

𝑦𝑡 =  𝜎 (𝑊ℎ𝑦 ℎ𝑡 +  𝑏𝑦 ) (2) 

In this context, ℎ𝑡 represents the output of the hidden layer of a neural network at a specific time instance 

t, 𝑦𝑡 denotes the output of the output layer of a neural network at a specific time instance t, 𝐹 is the 

activation function for the hidden layer, σ is the activation function for the output layer, 𝑥𝑡 is the input 

at time t, ℎ𝑡−1 is the output of the previously hidden layer, while 𝑊ℎℎ and 𝑊𝑥ℎ are the weight matrix 

corresponding to the output of the previously hidden layer and the weight matrix corresponding to the 

input at time 𝑡. Moreover, 𝑊ℎ𝑦 is the weight matrix corresponding to the output layer while 𝑏ℎ and 

𝑏𝑦 are deviations associated with the hidden and output layers, respectively. 

An appropriate neural network architecture can be trained to predict future values of the dependent 

variable [34]. This was achieved in this study using the architecture and configuration of the RNN model 

in Fig. 5 where the input size = 5, Optimizer = Adam W, Output size = 1, Learning rate = 0.001, Hidden 

size = 32, Criterion = MSE, Hidden layer = 2, Sequence length = 21, and Batch Size = 16. In this context, 

the shape of wind speed data was expressed in the NSF format. Here, N represented the amount of data, 

S was the number of data sequence groups, and F indicated the features or variables used. Moreover, 

interpolation was conducted to rectify the issues of missing or unrecorded data. Time series data, 

specifically those related to daily wind speed, were used in another part of the study. Furthermore, some 

features were added by dividing the time data into four quarters within a year to optimize the RNN 

model and this led to the application of five features for data arrangement. The amount of data used led 

to the designation of N as 366 to maintain a balanced data shape, S was determined to be 21, and F was 

5, representing Wind Speed, Quarter 1, Quarter 2, Quarter 3, and Quarter 4. Therefore, the NSF 

arrangement became Data Training (N, S, F) = (69, 21, 5) and Data Test (N, S, F) = (17, 21, 5). 
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Figure 5. Architectural model for wind speed forecasting. 

4.2. Wind Speed Mapping 

GIS is a comprehensive system designed to generate, organize, evaluate, and visualize diverse datasets. 

It connects data to maps, merging geographical data with various descriptive details about existing 

entities. Additionally, it aids users in comprehending geographical trends, correlations, and 

backgrounds. This system enhances communication and productivity, facilitating more effective 

management and decision-making processes. 

In mapping, interpolation refers to the technique of predicting values in areas or points that lack direct 

measurement or sampling, thereby enabling the creation of maps or distributions representing values 

across the entire area. It is a method normally used to predict grid values that are not represented by 

sample points [35]. Some of the methods include Inverse Distance Weighting, Kriging, Natural 

Neighbor, Spline, and Triangulated Irregular Network.  

NNI was used in this study for wind speed mapping. NNI method, also known as Sibson interpolation, 

is local and focuses on using only the samples around the point to be interpolated. Typically, 

interpolation involves identifying the nearest subset of input samples to the query point and assigning 

weights based on the proportional areas to interpolate a value [36]. The basic equation for NNI method 

is provided in the following Eq. 3 [36]:  

𝐺(𝑥, 𝑦) =     ∑ 𝑤𝑖   𝑓 (𝑥𝑖   , 𝑦𝑖  )

𝑁

𝑖=1

 (3) 

where, 𝐺(𝑥, 𝑦 ) presents the estimated value at (𝑥, 𝑦), 𝑤𝑖 is the weight, 𝑓(𝑥𝑖   , 𝑦𝑖  ) is the known data at 

(𝑥𝑖 , 𝑦𝑖), and 𝑁 is the total number of sample points. The weight 𝑤𝑖 was calculated based on the area 

around the points to be interpolated as follows [36]:    

𝑤𝑖(𝑥, 𝑦) =  
𝐴(𝑥𝑖 , 𝑦𝑖)

𝐴(𝑥, 𝑦)
 (4) 

where, 𝐴(𝑥, 𝑦) is the area of the new cell centered at (𝑥, 𝑦) while 𝐴(𝑥𝑖  , 𝑦𝑖  ) it represents the area of 

intersection between the new cell centered at coordinates (𝑥, 𝑦) nd the old cell centered at coordinates 

(𝑥𝑖 , 𝑦𝑖  ).   

The predicted wind speed data were interpolated to determine the values forecasted for the target 

locations. The flowchart of wind data processing transformed into GIS-based data is presented in Fig. 



Journal of Energy Systems 

201 

6. The predicted speed data were transformed into wind location points to create interpolation of this 

energy distribution followed by a process to produce the mean wind speed raster data. 

 
Figure 6. Wind speed mapping flowchart. 

4.3. Estimation of Wind Power Density (WPD) Potential 

Calculating energy density is crucial for assessing the wind resources available at a specific location. 

The emphasis lies on the kinetic energy resulting from the mass of air and its velocity. This implies that 

the kinetic energy potential, also referred to as Wind Power Density (WPD), serves as a valuable method 

to evaluate the available resources at a potential location, and it is expressed as follows [37]: 

𝑊𝑃𝐷𝑡 =  
1

2
 𝜌 𝑈𝑡

3 (5) 

where, 𝑊𝑃𝐷𝑡 is wind power per swept area in [W/m2] at time t, 𝜌 is the air density in [kg/m3], and U is 

the speed in [m/s] at each grid point [37]. 

The amount of known speed data was observed to be limited and this led to the formulation of the 

equation related to the time interval as follows [37]: 

𝑊𝑃𝐷 =  
1

2

1

𝑛
 ∑ 𝜌𝑗 𝑈𝑗

3

𝑛

𝑗=1

 (6) 

where 𝑛 is the number of wind speed readings, 𝜌𝑗 and 𝑈𝑗 are the readings of the j-th air density and wind 

speed at a specific location. Meanwhile, the air density was determined by considering the altitude ℎ of 

the location in meters as follows [38]: 

𝜌 = 1.225 − (1.194  𝑥 10−4 ) ℎ (7) 

The estimation of the air density was more accurate because altitude played a crucial role in its variance. 

Moreover, Eq. 7 provided a more precise estimate of air and WPD. 

 

5. RESULTS AND DISCUSSION 

5.1. Wind Speed Data 

This study was conducted using the database containing the daily wind speed values measured in 

Semarang City by The National Aeronautics and Space Administration (NASA). The data collected 

were daily speed readings for 5 years from 2018 to 2022 at a height of 10 meters. Time series analysis 
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was performed by examining and grouping the daily data by each month and this was used to predict 

the speed potential as shown in Fig. 7. Monthly average speeds were also predicted as presented in Fig. 

8. It was discovered that wind exhibited relatively homogeneous behavior over a month, making it 

essential to conduct monthly calculations. Furthermore, most wind system design calculations were 

performed monthly.  

 
Figure 7. Wind Speed Forecasting of Semarang City. 

 

 
Figure 8. The monthly average wind speed of Semarang City. 

Wind speed variations were predicted to generally range from 3.38 to 7.39 m/s with the maximum 

exceeding 7 m/s in December, January, and February while the minimum was estimated at 3.38 m/s and 

recorded in June. The prediction for an entire year suggested that the monthly average speed of 5.23 m/s 

remained highly suitable to be harnessed. These results showed the availability of potential energy to be 

harvested, thereby leading to the consideration of the area as a possible location for wind farms to use 

renewable energy.  

5.2. Wind Speed Mapping 

Using the ArcGIS version 10.8, wind energy maps were created by integrating spatial data and wind 

speed predictions derived from machine learning models. The process involved interpolating wind speed 

values using the Natural Neighbor Interpolation (NNI) method, a tool within the Spatial Analyst 

extension, to visualize distribution patterns across the study area and the Raster Calculator was used to 

calculate wind power density (WPD) by incorporating air density. The characteristics of monthly wind 

potential were identified to be essential and valuable, leading to the combination of the results from the 

deep learning model predictions with the NNI method to generate distribution maps (Figs. 9(a-l)). 

Geographically, Semarang City covers 16 sub-districts, with 4 bordering the coastline, 3 adjacent to the 

coast, and 9 located further inland or in the upper city areas (Figs. 9(a-l)). The predicted wind speed 

potential distribution map for each month from January to December is visualized in Fig. 8. Based on 

the wind speed distribution map legend, it was predicted that the maximum speed ranged from 7 to 10 

m/s for 10 months of the year, while the minimum was between 4 and 6 m/s for 2 months. Moreover, 
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the maximum speed distribution was concentrated in the 7 sub-districts near the coastline (lower areas), 

while the minimum was observed in the 9 sub-districts farther from the coast (upper areas). This map 

highlights the identified areas with potential for wind energy systems. 

   
(a) January (b) February (c) March 

   
(d) April (e) May (f) June 

   
(g) July (h) August (i) September 

   
(j) October (k) November (l) December 

Figure 9. Monthly Wind Speed Estimate Mapping. 

5.3. Wind Power Density (WPD) Potential 

The magnitude of WPD is crucial to identify potential locations for energy deployment. Generally, there 

are suitable sites or locations for wind energy to be connected to a grid or isolated to serve only local 
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needs. The monthly WPD estimations presented in Table 1, showed that the average over a year was 

102.7 W/m² but the value fluctuated between 36.0 W/m² and 243.3 W/m². The maximum was recorded 

in December, January, and February at an average of 228.9 W/m² and this showed the high potential of 

the location to harness wind energy to generate electricity. The WPD was estimated with due 

consideration for the air density at a height of 10 meters.  

Table 1. Wind Power Density 
Monthly WPD,Watt/m2  (20 OC) 

January 226.1 

February 217.3 

March 90.5 

April 44.5 

May 40.6 

Jun 23.3 

July 79.1 

August 65.7 

September 102.4 

October 36.0 

November 63.1 

December 243.3 

Total 1231,9 

 

6. CONCLUSIONS 

In conclusion, the availability of wind resource potential data is crucial for the planning and development 

of renewable energy systems. This study introduced a novel approach by combining machine learning 

for wind speed predictions with the Natural Neighbor Interpolation (NNI) method to create detailed 

wind energy maps. By estimating the monthly average wind speeds (as shown in Fig. 8) and visualizing 

the distribution in Figs. 9(a-l), we analyzed the energy potential of Semarang City, located in Central 

Java Province, at a height of 10 meters. The results revealed that the wind speeds ranged from 3.38 m/s 

to 7.39 m/s each month, with an average of 5.23 m/s. Maximum wind speeds between 7 m/s and 10 m/s 

were observed in 7 sub-districts near the coastline, while the monthly average wind power density 

(WPD) was recorded at 102.7 W/m². These findings provide valuable insights into harnessing wind 

energy for local-scale clean electricity generation, with implications for future energy 

policy and regional development. Further research could explore integrating solar energy forecasts with 

wind data to enhance the sustainability of renewable energy systems. 

Acknowledgement 

We would like to express our sincere gratitude to everyone who contributed to the completion of this 

research. Special thanks go to our funding agencies, colleagues, and mentors for their invaluable support 

and guidance. Your contributions have been instrumental in the success of this study. 

 

REFERENCES 

[1] Sadorsky, P. Wind energy for sustainable development: Driving factors and future outlook. Journal of 

Cleaner Production 2021; 289, DOI: 10.1016/j.jclepro.2020.125779. 

[2] Darwish, H, H, Al-Quraan, A. Machine Learning Classification and Prediction of Wind Estimation Using 

Artificial Intelligence Techniques and Normal PDF. Sustainability 2023; 15: 1-29, DOI: 

10.3390/su15043270. 

[3] Saidur, R, Rahim, N, A, Islam, M, A. Environmental impact of wind energy. Renewable and Sustainable 

Energy Reviews 2011; 15: 2423-2430, DOI: 10.1016/j.rser.2011.02.024. 

https://doi.org/10.1016/j.jclepro.2020.125779
https://doi.org/10.3390/su15043270
https://doi.org/10.1016/j.rser.2011.02.024


Journal of Energy Systems 

205 

[4] Enevoldsen, P, Permien, F-H. Mapping the Wind Energy Potential of Sweden: A Sociotechnical Wind 

Atlas. Journal of Renewable Energy 2018; 2018: 1-11, DOI: 10.1155/2018/1650794. 

[5] Global Wind Energy Council. Global Wind Report 2022. Brussels: Global Wind Energy Council, 2022. 

[6] Hanifi, S, Liu, X, Lin, Z. A Critical Review of Wind Power Forecasting Methods—Past, Present and Future. 

Energies 2020; 13: 1-24, DOI: 10.3390/en13153764. 

[7] Hopp, W, Spearman, M. Factory Physics. New York: Springer, 2014. 

[8] Manero, J, Bejar, J, Cortes, U. Wind Energy Forecasting with Neural Networks: A Literature Review. 

Computacion y Sistemas 2018; 22: 1085–1098, DOI:10.13053/CyS-22-4-3081. 

[9] Sacie, M, Santos, M, López, R. Use of State-of-Art Machine Learning Technologies for Forecasting 

Offshore Wind Speed, Wave and Misalignment to Improve Wind Turbine Performance. Journal of Marine 

Science and Engineering 2022; 10: 1-18, DOI: 10.3390/jmse10070938. 

[10] Shin, H, Rüttgers, M, Lee, S. Neural Networks for Improving Wind Power Efficiency: A Review.  Fluids 

2022; 7: 1-16, DOI: 10.3390/fluids7120367. 

[11] Zhang, J, Jiang, X, Chen, X. Wind Power Generation Prediction Based on LSTM. In: ICMAI 2019. 

Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence; 12-15 

April 2019: Association for Computing Machinery, pp. 85–89, DOI: 10.1145/3325730.3325735. 

[12] Demolli, H, Dokuz, A S, Ecemis, A. Wind power forecasting based on daily wind speed data using machine 

learning algorithms. Energy Conversion and Management 2019; 198, DOI:  

10.1016/j.enconman.2019.111823. 

[13] Purba, N P, Kelvin, J, Sandro, R. Suitable locations of Ocean Renewable Energy (ORE) in Indonesia 

Region - GIS approached. In: Conference and Exhibition Indonesia – New Renewable Energy and Energy 

Conservation (The 3rd Indo-EBTKE ConEx 2014); 13 March 2015: Elsevier Ltd, pp: 230-238, DOI: 

10.1016/j.egypro.2015.01.035. 

[14] Ministry of Energy and Mineral Resources of the Republic of Indonesia. Handbook of Energy & Economic 

Statistics of Indonesia. Jakarta: Ministry of Energy and Mineral Resources of the Republic of Indonesia, 

2023. 

[15] Younis, A, Elshiekh, H, Osama, D. Wind Speed Forecast for Sudan Using the Two-Parameter Weibull 

Distribution: The Case of Khartoum City. Wind 2023; 3: 213-231, DOI: 10.3390/wind3020013. 

[16] Shao, Y, Wang, J, Zhang, H. An advanced weighted system based on swarm intelligence optimization for 

wind speed prediction. Applied Mathematical Modelling 2021; 100: 780–804, DOI: 

10.1016/j.apm.2021.07.024. 

[17] Wang, C, Zhang, S, Xiao, L. Wind speed forecasting based on multi-objective grey wolf optimisation 

algorithm, weighted information criterion, and wind energy conversion system: A case study in Eastern 

China. Energy Conversion and Management 2021; 243, DOI: 10.1016/j.enconman.2021.114402. 

[18] Tarek, Z, Shams, M Y, Elshewey, A M. Wind Power Prediction Based on Machine Learning and Deep 

Learning Models. Computer, Materials & Continua 2023; 74: 715-732, DOI: 10.32604/cmc.2023.032533. 

[19] Cheng, Z, Wang, J. A new combined model based on multi-objective salp swarm optimization for wind 

speed forecasting. Applied Soft Computing 2020; 92, DOI: 10.1016/j.asoc.2020.106294. 

[20] Krechowicz, A, Krechowicz, M, Poczeta, K. Machine Learning Approaches to Predict Electricity 

Production from Renewable Energy Sources. Energies 2022; 15, DOI: 10.3390/en15239146. 

[21] Yürek, Ö E, Birant, D, Yürek, İ. Wind Power Generation Prediction Using Machine Learning Algorithms. 

DEUFMD 2021; 23: 107–119, DOI: 10.21205/deufmd.2021236709. 

[22] Buturache, A N, Stancu, S. Wind Energy Prediction Using Machine Learning. Low Carbon Economy 2021; 

12: 1–21, DOI: 10.4236/lce.2021.121001. 

[23] Alkesaiberi, A, Harrou, F, Sun, Y. Efficient Wind Power Prediction Using Machine Learning Methods: A 

Comparative Study. Energies 2022; 15, DOI: 10.3390/en15072327. 

[24] Kılıç, B. “Determination of wind dissipation maps and wind energy potential in Burdur province of Turkey 

using geographic information system (GIS). Sustainable Energy Technologies and Assessments 2019; 36, 

DOI: 10.1016/j.seta.2019.100555. 

[25] Zahedi, R, Ghorbani, M, Daneshgar, S. Potential measurement of Iran’s western regional wind energy using 

GIS. Journal of Cleaner Production 2022; 330, DOI: 10.1016/j.jclepro.2021.129883. 

https://doi.org/10.3390/en13153764
https://doi.org/10.3390/fluids7120367
https://doi.org/10.1145/3325730.3325735
https://doi.org/10.1016/j.egypro.2015.01.035
https://doi.org/10.3390/wind3020013
https://doi.org/10.1016/j.apm.2021.07.024
https://doi.org/10.1016/j.enconman.2021.114402
https://doi.org/10.32604/cmc.2023.032533
https://doi.org/10.1016/j.asoc.2020.106294
https://doi.org/10.3390/en15239146
https://doi.org/10.1016/j.seta.2019.100555
https://doi.org/10.1016/j.jclepro.2021.129883


Journal of Energy Systems 

206 

[26] Noorollahi, Y, Yousefi, H, Mohammadi, M. Multi-criteria decision support system for wind farm site 

selection using GIS. Sustainable Energy Technologies Assessments 2016; 13: 38-50, DOI: 

10.1016/j.seta.2015.11.007. 

[27] Feng, J, Feng, L, Wang, J. Evaluation of the onshore wind energy potential in mainland China—Based on 

GIS modeling and EROI analysis. Resource, Conservation and Recycling 2020: 152, DOI: 

10.1016/j.resconrec.2019.104484. 

[28] Assouline, D, Mohajeri, N, Mauree, D. Machine learning and geographic information systems for large-

scale wind energy potential estimation in rural areas. In: Journal of Physics Conference Series, Volume 

1343, CISBAT 2019; 4-6 September 2019: IOP Publishing Ltd, pp. 1-6, DOI: 10.1088/1742-

6596/1343/1/012036. 

[29] Sachit, M S, Shafri, H Z M, Abdullah, A F. Global Spatial Suitability Mapping of Wind and Solar Systems 

Using an Explainable AI-Based Approach. ISPRS International Journal of Geo-Information 2022; 11: 1-

26, DOI: 10.3390/ijgi11080422. 

[30] Grassi, S, Veronesi, F, Schenkel, R. Mapping of the global wind energy potential using open source GIS 

data. In: Proceedings of the 2nd International Conference on Energy and Environment: bringing together 

Engineering and Economics, Guimarães, Portugal; 18-19 June 2015: ICEE, pp. 1-6. 

[31] Music, E, Halilovic, A, Jusufovic, A. Wind Direction and Speed Prediction using Machine Learning. In: 

Proceedings of the 10th Days of BHAAAS in B&H - The International Symposium on Computer Science 

- ISCSAt, Jahorina, Bosnia and Herzegovina; 21 June 2018: ISCS, pp.1-8.  

[32] Peiris, A T, Jayasinghe, J, Rathnayake, U. Forecasting wind power generation using artificial neural 

network: ‘Pawan danawi’ - A case study from Sri Lanka. Journal of Electrical and Computer Engineering 

2021; 2021: 1-10, DOI: 10.1155/2021/5577547. 

[33] Liu, M-D, Ding, L, Bai, Y-L. Application of hybrid model based on empirical mode decomposition, novel 

recurrent neural networks and the ARIMA to wind speed prediction. Energy Conversation and 

Management 2021; 233, DOI: 10.1016/j.enconman.2021.113917. 

[34] Cao, Q, Ewing, B T, Thompson, M A. Forecasting wind speed with recurrent neural networks. European 

Journal of Operational Research 2012; 221: 148-154, DOI: 10.1016/j.ejor.2012.02.042. 

[35] Childs, C. Interpolating Surfaces in ArcGIS Spatial Analyst. California: ESRI Education Services, 2004. 

[36] Sukumar, N, Moran, B, Semenov, A Y. Natural neighbour Galerkin methods. International Journal for 

Numerical Methods in Engineering 2001; 50: 1–27, DOI: 10.1002/1097-0207. 

[37] Manwell, J F, McGowan, J G, Rogers, A L. Wind Energy Explained: Theory, Design and Application, 2nd 

Edition. Michigan University: Wiley, 2009. 

[38] Mentis, D, Hermann, S, Howells, M. Assessing the technical wind energy potential in Africa a GIS-based 

approach. Renewable Energy 2015; 83: 110–125, DOI: 10.1016/j.renene.2015.03.072. 

https://doi.org/10.1016/j.seta.2015.11.007
https://doi.org/10.1016/j.resconrec.2019.104484
https://doi.org/10.1016/j.enconman.2021.113917
https://doi.org/10.1016/j.ejor.2012.02.042
https://doi.org/10.1002/1097-0207
https://doi.org/10.1016/j.renene.2015.03.072

