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 This study compares various classification methods to assign land use land cover (LULC) 
classes. Using Geographic Information Systems (GIS) and Remote Sensing (RS) to leverage the 
dynamic and complex area of LULC, this study examines the potential of different machine 
learning classification methods. Precise differentiation and classification of various land cover 
categories, such as green vegetation, urban areas, water bodies, dark green vegetation, and 
bare terrain, are made possible by the high spatial and spectral resolution of Landsat imagery. 
For efficient land management and planning, the integration of Landsat data with GIS and RS 
approaches provides insightful information about the distribution and temporal changes in 
LULC. This study uses four classifiers to explore the fundamentals of supervised machine 
learning techniques and identify their drawbacks and advantages. Testing results show that 
the Support Vector Machine with four kernels- linear (99.17%), radial basis (RBF) (99.11%), 
sigmoid (99.11%), and polynomial (99.11%) is a reliable option for LULC classification, 
outperforming other classifiers in terms of accuracy, including the Minimum Distance 
Classifier (MDC-93.47%), Maximum Likelihood Classifier (MLC-98.98%), and Mahalanobis 
Distance Classifier (MHC-97.83%). Among the tested classifiers, Support Vector Machine  with 
four kernels notably shows the highest accuracy. With their essential insights for well-
informed decision-making towards sustainable development and resource utilization, our 
findings add to a thorough understanding of LULC dynamics. For accurate mapping and long-
term monitoring of deviations in LC, the study emphasizes the value of using advanced 
classification systems in remote sensing applications. This study compares several 
classification methods to assign Land Use Land Cover (LULC) classes using Landsat-8 imagery 
from September 2022. Although this research focuses on a single time point, the resulting 
LULC map provides insights into the spatial distribution of human activities such as 
urbanization and agricultural expansion. The findings serve as a foundation for future studies 
that will incorporate time series data to detect temporal changes in land cover. This 
information is crucial for promoting sustainable land management practices in the study area.   
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1. Introduction  
 

LULC analysis is an essential part of natural resource 
management, land-use planning, and environmental 
monitoring programs around the globe [1]. The rapid 
expansion of human activities and urbanization has led 
to significant changes in LC patterns, necessitating 
accurate and timely monitoring techniques. The 
utilization of satellite images in particular has made 
remote sensing an effective means of recording the 
geographical and temporal dynamics of land cover 

changes. Landsat-8, launched by NASA and the USGS in 
2013, offers high-resolution multispectral imagery with 
a revisit time of 16 days, making it an invaluable resource 
for LULC analysis [2].  

The utilization of Landsat-8 data for LULC analysis 
presents numerous advantages, including its moderate 
spatial resolution (30 meters), which strikes a balance 
between detail and coverage, and its multi-temporal 
capabilities, allowing for the detection of seasonal and 
long-term changes. Furthermore, Landsat-8 data are 
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freely available, enabling widespread access and 
facilitating large-scale studies across diverse 
geographical regions [3]. Leveraging these advantages, 
researchers have employed Landsat-8 imagery to 
investigate various land cover dynamics, including urban 
expansion, deforestation, agricultural intensification, 
and ecosystem monitoring [4]. 

 The implication of this research is that it is possible 
to enhance our consideration of LULC dynamics and 
inform evidence-based administrative in environmental 
management and land-use planning [5]. 

Ultimately, the study's findings are expected to 
contribute valuable insights to the broader scientific 
community and facilitate the development of effective 
strategies for mitigating environmental degradation and 
promoting ecosystem resilience considering the state of 
the world today [6]. 

Remote sensing and GIS technologies have 
revolutionized the study of LCLU changes, offering 
unprecedented capabilities in spatial data collection, 
storage, analysis, and visualization. These tools provide a 
flexible framework for detecting variations in LC over 
time, primarily driven by the availability of remote 
sensing imagery and the analytical prowess of machine 
learning algorithms [7]. The abstraction of LULC data 
from such imagery relies on discerning spectral, textural, 
geometric, and contextual properties embedded within 
the images. This information serves as the foundation for 
creating maps essential in diverse fields such as urban 
planning, environmental conservation, disaster 
management, and infrastructure development [8]. 

 

2. LITERATURE REVIEW 
 

The effectiveness of machine learning methods in 
LULC classification has been compared in a number of 
studies. For example, using Landsat-8 images, machine 
learning algorithms like Random Forest (RF), Support 
Vector Machines, and artificial neural networks (ANN) 
achieved good accuracy in categorizing LULC types, 
according to a study focused on the Dehradun region in 
India. [9-10]. 

An object-oriented approach using time series 
Landsat-8 images has been proposed for more accurate 
LULC mapping. This method involves segmenting images 
into meaningful objects and then classifying them, which 
has been shown to reduce misclassification compared to 
traditional pixel-based methods [11]. 

Studies have also examined how LULC alterations 
affect the ecosystem. For example, studies in various 
regions have assessed how changes in land use and land 
cover influence hydrology, biodiversity, and ecosystem 
services, using Landsat-8 data to track these changes and 
model their future impacts [11]. 

The utilization of cloud-based platforms like Google 
Earth Engine (GEE) has facilitated large-scale LULC 
mapping and analysis. Studies leveraging GEE have 
demonstrated its capability to process large datasets 
efficiently, enabling the monitoring of LULC changes over 
time with high accuracy [10]. 

Research has shown the benefits of integrating 
Landsat-8 data with other satellite data, such as Sentinel-
2. This combination improves classification accuracy, 

especially in heterogeneous and urban environments. 
For example, one study evaluated Landsat-8, Landsat-9, 
and Sentinel-2 imagery for LULC classification in urban 
areas, highlighting the complementary strengths of each 
dataset [11]. 

This research provides a thorough examination of the 
function of remote sensing and GIS technologies in 
detecting changes in land use and land cover. We 
highlight the importance of machine learning classifiers 
in improving the precision and effectiveness of 
categorization. Through empirical evaluation and 
comparison of classification methodologies [12]. This 
research contributes to advancing our understanding of 
effective approaches for characterizing LULC changes, 
enabling well-informed decision-making in sustainable 
development and land management initiatives. 

The importance of this study to analysis using remote 
sensed data in a selected study area lies in its ability to 
provide critical insights for environmental management, 
urban and regional planning, and agricultural 
optimization. It supports disaster preparedness, water 
resource management, and infrastructure development 
by identifying land use patterns and changes. LULC 
analysis aids in achieving Sustainable Development Goals 
(SDGs), fostering economic growth, and preserving 
cultural sites, thereby enabling informed decision-
making and sustainable development for the area's 
overall well-being. 

This paper is to do a comprehensive analysis of LULC 
dynamics using Landsat-8 data and machine learning 
techniques. By using advanced classification algorithms 
with Landsat-8 imagery, the study seeks to elucidate the 
spatial patterns of land cover changes over a selected 
study area. The research will employ a range of machine 
learning classifiers and four classification methods to 
accurately classify land cover classes based on spatial, 
spectral, and temporal information extracted from 
Landsat-8 imagery. 

The objective of this study is to compare classification 
methods for assigning LULC classes using Landsat-8 
imagery. The LULC map produced serves as a tool to 
evaluate the influence of human activities, such as urban 
expansion and deforestation, on natural ecosystems. 
While the study focuses on the 2022 data, the insights 
gained will aid in future work on change detection and 
sustainable land management by identifying key areas of 
concern. The results will support policymakers and land 
managers in making data-driven decisions. 

In this study, the research workflow is, 1. Use 
Landsat-8 data to classify five different land cover types. 
2. Assess the land cover classification's correctness 
results by comparing them against ground-truth data or 
higher-resolution imagery. 3. Examine the spatial 
distribution of land use and land cover across the study 
area to understand landscape patterns and spatial 
heterogeneity. 

 

3. STUDY AREA 
 
This study focuses on the socioeconomic dynamics of 

Sillod taluka, which is located in the India, Marathwada 
region of Maharashtra, Aurangabad district. Sillod Taluka 
is in the Aurangabad Division's administrative authority 
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and is situated in the northeastern section of the 
Aurangabad city. At latitude 19.88 and longitude 75.34 
are its coordinates. A 33-degree bearing points in the 
direction of Sillod from Aurangabad. At this juncture, the 
height is 330 meters above sea level. 

  
Figure 1. (a) India, (b) Maharashtra, (c)Aurangabad, 
(d)Landsat-8 Data, (e)Selected Study Area using Landsat-
8 Image. 
 
4. METHODS 

 
In this study, land use land cover, the research 

process involves several key steps, starting with defining 
the study's objectives, such as monitoring urban growth 
or assessing environmental changes, then collecting 
remote sensing Landsat-8 satellite data and 
preprocessing it through georeferencing, radiometric 
corrections, and image enhancement. The data is 
classified using techniques such as supervised 
classification methods. Classification accuracy is 
assessed against ground truth data. Post-classification 
processing, including smoothing, refines the results. To 
analysis like machine learning algorithms, i.e., SVM, MLC, 
MDC, and MHC, the accuracy and depth of insights. 
Integrating these findings with GIS data further supports 
environmental monitoring, urban planning, and 
sustainable development efforts. 

 
4.1 Remote sensing data and preprocessing 
 
The imagery consisted of 2022 Landsat-8 satellite 

images, including OLI (Operational Land Imager). 
Geometric correction and L1T (level 1T) acquisition 
were applied to every image [13]. They were 
downloaded for free from the USGS website but sourced 
through the Google Earth Engine [14-15]. The image was 
taken last week of September 2022, since many types of 
vegetation are in a stable stage at this time of year. Table 
1. shows the database and its sources. 

11 spectral bands are seen in this image. Table 2. 
provides further acquisition parameters of Lansat-8 
imagery. As a result, the high spatial, temporal, and 

spectral resolution of sentinel satellites is suitable for 
LULC monitoring missions.  

including Landsat 8, capture images across multiple 
wavelengths (or spectral bands) of the electromagnetic 
spectrum. Each of these bands records data at different 
portions of the spectrum, such as visible light, near-
infrared, shortwave infrared, and thermal infrared, 
which allows for detailed analysis of various surface 
features and phenomena on Earth [16-17]. 

Table 1. Shows the Database and its sources. 

Sr. 
No. 

Dataset Apparatus 
Sensor 

Source 

 Landsat- 
8 

Operational 
Land Imager 
(OLI) 

https://earthex
plorer.usgs.gov
/ 

 

Table 2. Spectral Band Description. 

Spectral 
Band 

Spectral Range Resolution 

Band 1 Coastal Aerosol-0.43 - 
0.45 µm 

30 m 

Band 2 Blue -0.450 - 0.51 µm  30 m 
Band 3 Green -0.53 - 0.59 µm 30 m 
Band 4 Red -0.64 - 0.67 µm 30 m 
Band 5 Near-Infrared - 0.85 - 

0.88 µm 
30 m 

Band 6 SWIR 1-1.57 - 1.65 µm 30 m 
Band 7 SWIR 2 - 2.11 - 2.29 µm 30 m 
Band 8 Panchromatic (PAN) - 

0.50 - 0.68 µm 
15 m 

Band 9 Cirrus -1.36 - 1.38 µm 30 m 
Band 10 TIRS 1 - 10.6 - 11.19 µm 100 m 
Band 11 TIRS 2 - 11.5 - 12.51 µm 100 m 

 
ArcGIS 10.8.2 [18] The Dark Object Subtraction (DOS) 

technique [19] was used to apply atmospheric correction 
through [20]. The suggested methodology was validated 
using field data and a Google Earth image [21-22]. 
Ground control points (GPSs) [23]. were used in the field 
to conduct surveys of ground truth. The cloud cover is 
0.01 of Landsat-8 data. Furthermore, baseline 
information was acquired based on an official map of the 
research area's forest stand, in addition to earlier 
information and detailed discussions with stakeholders 
and native specialists to identify the LULC classes. Figure 
2. displays a flowchart that details the study 
methodology. To guarantee that the radiance values are 
precise and constant across various images, the 
calibration process adjusts for sensor-specific 
properties, including gain, offset, and responsiveness 
[24-25]. through Equation (1) 

 
L=G⋅DN+O           (1) 
 
Where L is the calibrated radiance, G is the sensor 

gain, O is the sensor offset, and the digital number (DN) 
that the sensor recorded. After that, the brightness is 
transformed into top-of-atmosphere (TOA) [26]. after 
this conversion [26]. Equation-based reflectance (2): 
Reflectance calibration involves correcting for 
atmospheric effects, such as absorption and scattering, to 
obtain accurate surface reflectance values. 
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𝜌𝜆 =
𝜋𝐿𝜆 ⅆ

2

𝐸𝑆𝑈𝑁𝜆𝑠𝑖𝑛𝜃
          (2) 

 
Where ρλ is the surface reflectance. Lλ is the radiance 

in units of W/(m2 * sr * µm); Watts (W)- This is the unit 
of power, square meter (m2)- This is the unit of the area, 
Steradian (sr)- This is the unit of solid angle, micrometer 
(µm)- This is the unit of wavelength. d is the Earth-sun 
distance, measured in astronomical units. ESUNλ is the 
solar irradiance in units of W/(m2 * µm), and Ɵ is the 
solar elevation angle in degrees. After the TOA 
reflectance, the brightness temperatures are calculated 
(in Kelvin) [26-27] using equation (3) and computed as 
follows: The relationship between temperature and 
brightness in remote sensing is often expressed by the 
Stefan-Boltzmann Law: 

 
B=σ⋅T4                                             (3) 

 

 
Figure 2. LULC Methodology for the Study Area 
 

4.2 Machine Learning Classifiers 

Supervised classification can be done in a number of 
ways, including with the Support Vector Machine, 
Maximum Likelihood Classifier, Minimum Distance 
Classifier, and Mahalanobis Distance Classifier [28]. 
 
4.2.1 Maximum Likelihood 
 

The maximum likelihood classification method 
determines the probability that a given pixel belongs to a 
specific class by assuming that the statistics for each class 
in each band are normally distributed [29]. All pixels are 
classified unless you choose a probability threshold. The 
class with the highest probability is allocated to each 

pixel [30]. A pixel is not classified if its highest probability 
is less than a threshold that you set. 

 
 D=ln(ac) [0.5ln (Covc)] + [0.5(X-Mc) T(Covc-1) (X-Mc)]                               
(1) 
 

The variables in this equation are D (the weighted 
distance), c (a specific class), X (the candidate pixel's 
measurement vector), Mc (the mean vector of the class c 
sample), and T (the transposition function). ac (which is 
either entered based on previous knowledge or defaults 
to 1.0) represents the percent probability that every 
potential pixel is a member of class C. The covariance 
matrix of the class c sample's pixels is called Covc, along 
with its determinant and inverse, ln, and the natural 
logarithm function [31]. 

 
4.2.2 Mahalanobis Distance 
 

The Mahalanobis distance statistic uses the 
precision matrix to calculate the distance while 
accounting for a correlation with the data. During 
studies, the Mahalanobis Distance is employed for 
spectrum matching, outlier detection when predicting or 
calibrating, and model extrapolation detection [32]. 
Equation 2 shows creating the variance-covariance 
matrix C is the first step towards computing the 
Mahalanobis distance [33]. Mahalanobis distance is 
defined as:         

𝑀𝐷𝑖 = √(𝑥𝑖 − 𝑥)𝐶𝑥
−1(𝑥𝑖 − 𝑥)

𝑇

                                  (2) 

 
where X is the data matrix with n items measured for 
each of the p variables in the rows. The column-cantered 
data matrix is denoted by X [34]. 
 
4.2.3 Support Vector Machine 
 

SVM is a supervised machine learning approach 
used for regression and classification issues [35]. SVM 
classifies data by identifying the hyperplane that divides 
the data into the most distinct classes. In order to 
increase the model's generalizability, the hyperplane is 
selected to maximize the margin between the classes [36-
37]. By utilizing a technique known as a "kernel trick," 
SVM is able to handle both linear and non-linear 
correlations between characteristics and the target 
variable [38]. Finding a hyperplane that can divide the 
classes is made simpler by SVM's ability to turn the input 
information into an area with more dimensions thanks to 
the kernel function [39]. 
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Figure 3. Support vector machine 

 
There are several kinds of kernels that can be used 

in SVM, each suitable for different types of data 
distributions. Here are some common kernel types: 

1. Linear Kernel: 
Formula: K (xi, xj) = xiTxj 
Data that can be separated linearly is used. The 

decision boundary is a straight line [40]. 
1. Polynomial Kernel: 
Formula: K (xi, xj) = (gxiTxj + r) d, g > 0. 
It is used for non-linear data. The degree d and the 

constant term r are hyperparameters [39]. 
1. Radial Basis Function (RBF) or Gaussian Kernel- 
Formula: K (xi, xj) = exp (-g||xi - xj||2), g > 0 
It is commonly used for non-linear data. The 

parameter g determines the spread of the kernel [40]. 
1. Sigmoid Kernel- 
Formula: K (xi, xj) = tanh (gxiTxj + r) 
It is suitable for information that cannot be divided 

linearly and can be used in neural network applications 
[41]. 

 
4.2.4 Minimum Distance Classification 
 

Minimum distance classification is used in multi-
feature space to place unknown picture data into classes 
based on how close the image data is to the class. As an 
index of similarity, the distance is defined as the sum of 
the minimum and maximum distances. This method 
involves finding the mean point in digital parameter 
space for pixels belonging to known classes. Then, when 
digital number values of the various bands are plotted, 
unknown pixels are allocated to the class that is 
arithmetically closest [42]. In order to categorize the 
research area, a ROI was created for each of the following 
five primary classes- built-up areas, barren land, dark 
green vegetation, and green vegetation with water 
bodies. 

 
5. ACCURACY ASSESSMENT  

The statistical findings obtained from the accuracy 
evaluation approaches are utilized to confirm the 
precision of the categorization outcome [43]. It is a 
crucial process since it helps with the error analysis of 
each class to determine the categorized map's overall 
dependability [42]. Accuracy evaluation starts with a 
confusion matrix, sometimes referred to as an error 
matrix. It compares the categorized image with known 
reference data that is regarded as correct. Both the total 
accuracy and the kappa coefficient are evaluated in order 

to make the forecast. These values are computed using a 
confusion matrix [44].  

A crucial strategy for confirming how effectively the 
classification captured reality and guaranteeing the 
correctness of the data obtained from LULC maps was to 
provide quantitative claims on accuracy evaluation for 
the classification procedures [45]. To assess how the 
reference data that were used and the final categorized 
LULC maps related to each other, confusion matrices 
were calculated. Confusion matrices, which provide 
information regarding producer accuracy or mistakes of 
omission (% of a particular LULC class on the ground that 
is correctly classified) and user accuracy or errors of 
commission, are one of the most-often-used techniques 
to assess the overall classification accuracy [44,46]. The 
following formula [47]. Equation 1 is used to calculate the 
percentage of total accuracy: 
 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑇𝑜𝑡𝑎𝑙𝑁𝑜.𝑜𝑓𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒ⅆ𝑆𝑎𝑚𝑝𝑙𝑒

𝑇𝑜𝑡𝑎𝑙𝑁𝑜.𝑜𝑓𝑆𝑎𝑚𝑝𝑙𝑒
∗ 100                                                              

(1) 
 
The following formula, when simplified, equation 2, 

is used to determine the Kappa coefficient for each of the 
several categorization algorithms [45,48]. 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑃(𝐴)−𝑃(𝐸)

1−𝑃(𝐸)
                          (2) 

 
where P(A) is the observed accuracy and P(E) is the 

chance agreement. 
The producer accuracy and user accuracy of a 

classification model. Here’s how they are calculated: 

Producer accuracy measures how well a certain 

class has been classified from the perspective of the class 

(i.e., how many of the actual features of a class are 

correctly identified). 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑃𝐴) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒ⅆ𝑝𝑖𝑥𝑒𝑙𝑠𝑓𝑜𝑟𝑎𝑔𝑖𝑣𝑒𝑛𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑎𝑐𝑡𝑢𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠∈𝑡ℎ𝑎𝑡𝑐𝑙𝑎𝑠𝑠
× 100                                

                                                                 (3) 

The user accuracy measures the reliability of 

classification, from the perspective of the user of 

classification (i.e., how many of the pixels classified as a 

certain class are actually correct). 

 

𝑈𝑠𝑒𝑟𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑈𝐴) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒ⅆ𝑝𝑖𝑥𝑒𝑙𝑠𝑓𝑜𝑟𝑎𝑔𝑖𝑣𝑒𝑛𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑖𝑥𝑒𝑙𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒ⅆ𝑎𝑠𝑡ℎ𝑎𝑡𝑐𝑙𝑎𝑠𝑠
× 100  

                                                                                                      

                                                                                               (4) 
6. RESULT 

 
Four distinct classifiers using four SVM kernel types 

have been used to complete the LULC classification and 
an overall accuracy comparison for the LULC type, as 
shown in Table 3 below. Since the Landsat image was 
obtained on September 22, 2022, the outcomes of two 
suggested procedures could be compared. MLC Achieved 
an overall accuracy of 98.99%, with notable confusion 
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between urban and barren land classes. Linear Kernel for 
SVM- The overall accuracy of 99.18%, with good 
separation of vegetation types. Polynomial kernel- 
Achieved 99.11%, slightly better than the linear kernel. 
RBF Kernel- The highest accuracy at 99.11%, effectively 
distinguishing complex LULC classes. Sigmoid Kernel- 
95.50% accuracy; struggled slightly with mixed pixels. 
MHC Recorded an accuracy of 97.83%, effectively 
differentiating water bodies, but struggled with urban 
areas. The MDC Lowest accuracy at 93.45%, significant 
misclassification in densely vegetated regions. Kappa 
Coefficient also done, MLC-0.98, MHC- 0.96, MDC- 0.91 
with users and producer accuracy in Table 3. And SVM- 
linear (0.98), polynomial (0.98), RBF (0.98), sigmoid 
(0.98) with users and producer accuracy in Table 4. 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. (a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. (b) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. (c) 
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Figure 4. (d) 

 
 
 
 
 
 
 

 
 

Figure 4. (e) 
 
 

 
 

Figure 4. (f) 
 
 
 
 
 

 
 
 

 
 

Figure 4. (g) 
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Figure 4. (h) Legends for Figure 4 (a,b,c,d,e,f,g) 
respectively. 

 
Figure 4. LULC classification results using SVM 

classifier with all kernel function (a, b, c, d), maximum 
Likelihood (e), Mahalnobies Distance classifier(f), 
Minimum Distance classifier (g). 

 
Also seen all above figure latitude and longitude value 

around and other specification such as projection, datum, 
ellipsoid, along with scale. 

 
Table 3.  The result of Classification Methods 

 
 
Table 4. The result of Classification Methods 

 
 
6.1 Comparisons the Given Classifiers 

 
Our validation results showed that, for both sets of 

satellite data, SVM produced LULC maps with generally 
higher accuracy. The comparison of the algorithms' 
overall accuracy for Landsat-8 image is shown in Figure 
4. The SVM algorithm performed best in terms of overall 
accuracy and the best tuning parameter, with overall 

accuracies of 99.17%, 99.11%, 99.11%, and 95.50% for 
Landsat-8, accordingly Table 2. The various outcomes 
from other categorization algorithms are also displayed 
in Figure 5. MLC came in second place with an overall 
accuracy of 98.98%, behind SVM. The MHC and MDC 
algorithms came in third and fourth, respectively, with 
accuracies of 97.83% and 93.47%, with MDC having the 
worst performance. 
 

 
 

Figure 5. (a) 
 

 
 

Figure 5. (b) 
 

Figure 5 (a, b). Comparison of Machine Learning 
Techniques 

 
7. DISCUSSION 

 
SVM with an RBF kernel outperformed other 

algorithms, demonstrating its capability to handle 
complex class boundaries and high-dimensional data. 
MLC provided good results but was less effective in areas 
with high spectral overlap. MHC performed well in areas 
with distinct class separations but had limitations in 
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mixed land cover types. MDC was computationally 
efficient but had lower classification accuracy, 
particularly in heterogeneous landscapes. 

The superior performance of SVM with a linear kernel 
is consistent with recent studies highlighting its 
effectiveness in LULC classification. The performance of 
MLC aligns with historical data but underscores the 
improvements possible with advanced machine learning 
techniques. 

Land Use Land Cover (LULC) analysis using Landsat-
8 data faces several limitations for a selected study area, 
including its moderate spatial resolution of 30 meters, 
which may miss fine-scale details, and its 16-day revisit 
time, which might not capture rapid changes. Cloud cover 
and atmospheric conditions can obscure images, while 
spectral limitations can lead to misclassification of 
similar land cover types. Data processing requires 
advanced technical expertise and significant 
computational resources. Temporal gaps, mixed pixels, 
and terrain-induced geometric distortions can further 
complicate analysis. Additionally, managing the large 
data volume and associated processing costs can be 
challenging, necessitating complementary data, sources, 
and advanced techniques to improve accuracy. While 
pixel-based classification, which often resulted in higher 
rates of misclassification due to the mixed pixel problem. 

In future work, we aim to enhance Land Use Land 
Cover (LULC) analysis by utilizing high-resolution and 
frequent satellite imagery, integrating data from diverse 
sources such as multispectral, hyperspectral, LiDAR, and 
SAR sensors. We plan to apply advanced machine 
learning techniques, including deep learning and transfer 
learning, to improve classification accuracy and 
automation. Additionally, leveraging cloud computing 
and big data platforms will enable scalable and real-time 
monitoring. We will also explore the integration of LULC 
data with socio-economic datasets to support policy-
making and sustainable development. Future research 
will focus on developing improved change detection 
methods and creating user-friendly tools to facilitate 
broader application and collaboration. 

The limitation of the study lies in its focus on a single 
year of data (2022), which restricts the ability to perform 
comprehensive change detection over time. Without 
multiple temporal data points, the study can only provide 
a snapshot of land cover at that particular time, limiting 
the analysis of long-term trends or dynamic shifts in 
LULC caused by human activities or natural processes. 

 

8. CONCLUSION  
 

The conclusion from the above results is that the 
Support Vector Machine (SVM) with four different 
kernels-linear, radial basis function (RBF), sigmoid, and 
polynomial-demonstrated the highest accuracy in 
classifying land use land cover (LULC) compared to other 
classifiers. When compared to four other machine 
learning techniques, the experimental findings further 
demonstrated the superiority of the SVM for LULC 
classification. In addition, SVM using a radial kernel 
performs noticeably better than another kernel when it 
comes to classifying land cover. Subsequent research 
endeavors may enhance the classification accuracy by 

assessing water bodies and green vegetation using 
seasonal data sets and integrating them with diverse data 
sets. Including the Minimum Distance Classifier (MDC), 
Maximum Likelihood Classifier (MLC), and Mahalanobis 
Distance Classifier (MHC). The study highlights the 
effectiveness of SVM in providing precise and reliable 
LULC classification, which is crucial for informed 
decision-making in land management, sustainable 
development, and resource utilization. Additionally, 
research underscores the importance of integrating 
advanced classification methods and Geographic 
Information Systems (GIS) and Remote Sensing (RS) for 
accurate mapping and long-term monitoring of land 
cover changes. 
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