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Abstract. This paper presents the idea of a Brouwerian almost distributive lattice, a generalization of

an almost distributive lattice, and a Brouwerian algebra. We also derive some properties on Brouwerian

almost distributive lattices. A set of equivalent conditions is provided for a Brouwerian almost distribu-
tive lattice to transform into a Brouwerian algebra.
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1. Introduction

Lattice [1, 2] and [4] is a mathematical structure constructed on a set of elements associated with
two binary operations ⊓⋆ (greatest lower bound) and ⊔⋆ (least upper bound). These operations satisfy
specific properties, such as associativity, commutativity, and idempotence. A distributive lattice is a type
of lattice where meet and join operations distribute over each other. The inclusion of another unary
operation on a distributive lattice paved the way to study a new concept known as Boolean algebra [9].
Heyting algebras [3] generalize the idea of Boolean algebras, with the implication operation →⋆ playing
a central role. Brouwerian algebras, also known as Kripke or topological algebras, are a specific subclass
of Heyting algebras that incorporate topological structures. In addition to the algebraic operations of a
Heyting algebra, Brouwerian algebras [10] include topological constraints, often represented by topological
spaces or partial orders with additional topological properties.

Swamy and Rao studied almost distributive lattice [11] to understand the behavior of lattices when
distributivity is nearly satisfied. In an almost distributive lattice, the distributive law holds almost every-
where, but a few exceptions may exist. The connection between lattices and almost distributive lattices
lies in their relationship to distributivity. While distributive lattices strictly adhere to the distributive
law for all elements, almost distributive lattices relax this requirement by allowing a few exceptions. This
relaxation allows for a broader class of structures to be studied while retaining some distributive lattices’
properties.

Almost distributive lattices were first studied under two binary operations, ⊓⋆ and ⊔⋆. The inclusion of
another binary operation →⋆ laid the foundation for studying many more algebras on almost distributive
lattices [5,6] and [7]. Till now, the study of all these algebras on an almost distributive lattice where with

1 ramesh.sirisetti@gmail.com; 0000-0002-5658-2295
2 vlenka@gitam.in; 0009-0004-2342-8170
3 vvratnamani@gmail.com; 0000-0002-5170-4804
4 ravimaths83@gmail.com-Corresponding author; 0000-0001-8661-7914
5 asalali@pnu.edu.sa; 0000-0001-7856-2861. 2025 Ankara University

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

35

https://doi.org/10.31801/cfsuasmas.1506415


36 R. SIRISETTI, L. V. RAMANA, M. V. RATNAMANI, R. BANDARU, A. S. ALALI

the inclusion of both the least element 0 and maximal element ν1. In this paper, we initiated to define an
algebra named a Brouwerian almost distributive lattice, which is a generalization of a Brouwerian algebra
and an almost distributive lattice, with the exclusion of the least element 0. In this context, we will go
through the fundamental definition of a Brouwerian almost distributive lattice and provide some examples
demonstrating the independence of the axioms stated in the definition and some properties related to the
structure. Finally, we present a collection of equivalence conditions that enable the Brouwerian almost
distributive lattice to transform into a Brouwerian algebra.

2. Preliminaries

Let us recall some beneficial, necessary results on an almost distributive lattice, semi-Brouwerian
algebra, and semi-Brouwerian almost distributive lattice, which are frequently used in the paper.

Definition 1. [11] An algebra (B,⊔⋆,⊓⋆) of type (2,2) is called an almost distributive lattice (ADL), if
it assures the subsequent axioms;

1. (χ1 ⊔⋆ χ2) ⊓⋆ χ3 = (χ1 ⊓⋆ χ3) ⊔⋆ (χ2 ⊓⋆ χ3)
2. χ1 ⊓⋆ (χ2 ⊔⋆ χ3) = (χ1 ⊓⋆ χ2) ⊔⋆ (χ1 ⊓⋆ χ3)
3. (χ1 ⊔⋆ χ2) ⊓⋆ χ2 = χ2

4. (χ1 ⊔⋆ χ2) ⊓⋆ χ1 = χ1

5. χ1 ⊔⋆ (χ1 ⊓⋆ χ2) = χ1

for all χ1, χ2, χ3 ∈ B.

Example 1. [11] If B is a non-empty set, for any χ1, χ2 ∈ B, define χ1 ⊓⋆ χ2 = χ2, χ1 ⊔⋆ χ2 = χ1, then
(B,⊔⋆,⊓⋆) is an discrete ADL.

Unless otherwise stated, B represents an almost distributive lattice (B,⊔⋆,⊓⋆) in this section. For any
χ1, χ2 ∈ B, χ1 ≤∗ χ2 if χ1 = χ1 ⊓⋆ χ2 or equivalently χ1 ⊔⋆ χ2 = χ2, and it is noticed that ≤∗ is a partial
order on B .

Theorem 1. [11] For any ν1 ∈ S, the following are equivalent,

172. ν1 is a maximal element.
173. ν1 ⊔⋆ χ1 = ν1, for all χ1 ∈ B.
174. ν1 ⊓⋆ χ1 = χ1, for all χ1 ∈ B.

Theorem 2. [11] For any χ1, χ2, χ3 ∈ B,
172. χ1 ⊔⋆ χ2 = χ1 ⇐⇒ χ1 ⊓⋆ χ2 = χ1.
173. χ1 ⊔⋆ χ2 = χ2 ⇐⇒ χ1 ⊓⋆ χ2 = χ1.
174. χ1 ⊓⋆ χ2 = χ2 ⊓⋆ χ1 = χ1 whenever χ1 ≤∗ χ2.
175. ∧∗ is associative.
176. χ1 ⊓⋆ χ2 ⊓⋆ χ3 = χ2 ⊓⋆ χ1 ⊓⋆ χ3.
177. (χ1 ⊔⋆ χ2) ⊓⋆ χ4 = (χ2 ⊔⋆ χ1) ∧∗ χ4.
178. χ1 ⊓⋆ χ2 ≤∗ χ2 and χ1 ≤∗ χ1 ∨∗ χ2.
179. χ1 ⊓⋆ χ1 = χ1 and χ1 ⊔⋆ χ1 = χ1.
180. If χ1 ≤∗ χ3 and χ2 ≤∗ χ3, then χ1 ∧∗ χ2 = χ2 ⊓⋆ χ1 and χ1 ⊔⋆ χ2 = χ2 ⊔⋆ χ1.

Theorem 3. [11] Let (B,⊔⋆,⊓⋆, ν1) be an ADL. Then the following are equivalent;

172. B is a distributive lattice.
173. (B,≤∗) is directed above.
174. ⊔⋆ is commutative.
175. ⊓⋆ is commutative.
176. ⊔⋆ is right distributive over ⊓⋆.
177. The relation θ = {(χ1, χ2) ∈ B × B | χ2 ⊓⋆ χ1 = χ1} on B is antisymmetric.

Definition 2. [10] An algebra (B,⊔⋆,⊓⋆,→⋆, 1) of type (2,2,2,0) is said to be a Brouwerian algebra, if
it assures the subsequent axioms;

172. The system (B,⊔⋆,⊓⋆, 1) is a lattice with a greatest element 1.
173. For all χ1, χ2, χ3 ∈ B, χ1 ⊓⋆ χ3 ≤ χ2 if and only if χ3 ≤ χ1 →⋆ χ2.
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Definition 3. [8] B with a maximal element ν1 is said to be a semi-Brouwerian almost distributive
lattice (SBADL), if there is a binary operation →⋆ on B with the subsequent axioms;

(N1) (χ1 →⋆ χ1) ⊓⋆ ν1 = ν1
(N2) χ1 ⊓⋆ (χ1 →⋆ χ2) = χ1 ⊓⋆ χ2 ⊓⋆ ν1
(N3) χ1 ⊓⋆ (χ2 →⋆ χ3) = χ1 ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ (χ1 ⊓⋆ χ3)]
(N4) (χ1 →⋆ χ2) ⊓⋆ ν1 = [(χ1 ⊓⋆ ν1) →⋆ (χ2 ⊓⋆ ν1)]

for all χ1, χ2, χ3 ∈ B.

3. Brouwerian Almost Distributive Lattices

In this section, we introduce Brouwerian almost distributive lattices and provide several counterex-
amples. We compare Brouwerian almost distributive lattices with semi-Brouwerian almost distributive
lattices. We obtain several algebraic properties on Brouwerian almost distributive lattices. We derive
some necessary and sufficient conditions for a Brouwerian almost distributive lattice to become a Brouw-
erian algebra.

Definition 4. An almost distributive lattice (B,⊓⋆,⊔⋆) with a maximal element ν1 is said to be a Brouw-
erian almost distributive lattice (abbreviated as BrADL), if there is a binary operation →⋆ on B, satisfying
the following axioms;

B1. (χ1 →⋆ χ1) ⊓⋆ ν1 = ν1
B2. χ1 ⊓⋆ (χ1 →⋆ χ2) = χ1 ⊓⋆ χ2 ⊓⋆ ν1
B3. χ2 ⊓⋆ (χ1 →⋆ χ2) = χ2 ⊓⋆ ν1
B4. χ1 →⋆ (χ2 ⊓⋆ χ3) = (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ χ3)

for all χ1, χ2, χ3 ∈ B.

In examples 2, 3, 4 and 5 we exhibit the independence of the axioms B1,B2,B3 and B4 of Definition 4.

Example 2. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 1 5 5 5 5
2 1 5 5 5 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B2,B3 and B4 of Definition 4 but B1 fails for the pair (1, 1).
(1 →⋆ 1) ⊓⋆ 5 = 5 ⇒ 1 ⊓⋆ 5 = 5

⇒ 1 ̸= 5.

Example 3. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 5 5 5 5 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B1,B3 and B4 of Definition 4 but B2 fails for the pair (2, 1).
2 ⊓⋆ (2 →⋆ 1) = 2 ⊓⋆ 1 ⊓⋆ 5 ⇒ 2 ⊓⋆ 5 = 1 ⊓⋆ 5

⇒ 2 ̸= 1.

Example 4. Let B = {1, 2, 3, 4, 5} be a set whose Hasse-diagram is
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5

with the binary operation →⋆ as illustrated in the following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 1 5 5
3 1 1 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B1,B2 and B4 of Definition 4 but B3 fails for the pares (2, 3) and (3, 2). For the pair (2, 3)
3 ⊓⋆ (2 →⋆ 3) = 3 ⊓⋆ 5 ⇒ 3 ⊓⋆ 1 = 3 ⊓⋆ 5

⇒ 1 ̸= 3.

Example 5. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 5 2 3 4 5
2 1 5 3 4 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B1,B2 and B3 of Definition 4 but B4 fails for the triplets (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 3, 1),
(1, 4, 1), (2, 2, 3), (2, 2, 4), (2, 3, 2) and (2, 4, 2).
For the triplet (1, 1, 2)
1 →⋆ (1 ⊓⋆ 2) = (1 →⋆ 1) ⊓⋆ (1 →⋆ 2) ⇒ 1 →⋆ 1 = 5 ⊓⋆ 2

⇒ 5 ̸= 2.

In examples 6 and 7 we define a binary operation →⋆ on an ADL in such a way that it forms a
Brouwerian almost distributive lattice.

Example 6. Let B = {1, 2, 3, 4, 5} be a set whose Hasse-diagram is

4

2

1

3

5

with the binary operation →⋆ as illustrated in the following table;



BROUWERIAN ALMOST DISTRIBUTIVE LATTICES 39

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 3 5 3 5 5
3 2 2 3 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies all the
axioms B1,B2,B3 and B4 of Definition 4. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is a Brouwerian almost distributive
lattice.

Example 7. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 5 5 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element, and the binary operation →⋆ satisfies
all the axioms B1,B2,B3 and B4 of Definition 4. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is a Brouwerian almost
distributive lattice.

In example 8 we demonstrate that the every binary operation →⋆ defined on an ADL need not be a
BrADL.

Example 8. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation ⊔⋆,⊓⋆ and →⋆ as
illustrated in the following tables;

⊔⋆ 1 2 3 4 5
1 1 1 1 1 1
2 1 2 5 2 5
3 4 3 3 4 4
4 4 4 4 4 4
5 5 5 5 5 5

⊓⋆ 1 2 3 4 5
1 1 2 3 4 5
2 2 2 3 3 2
3 2 2 3 3 2
4 1 2 3 4 5
5 1 2 3 4 5

→⋆ 1 2 3 4 5
1 1 2 5 2 5
2 5 5 5 5 5
3 5 2 5 2 5
4 5 1 2 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element, and the binary operation →⋆ does not
satisfy the axioms B1, B2 ,B3 and B4 of Definition 4.
B1 for the pair (1, 2).
B2 for the pares (1, 3), (1, 4), (4, 1), (4, 2), (4, 3).
B3 for the pares (1, 4), (3, 4).
B4 for the triplets (3, 2, 3), (3, 2, 4), (3, 3, 1), (3, 3, 2), (3, 3, 4), (3, 3, 5), (3, 4, 1),
(3, 4, 3), (4, 2, 1), (4, 2, 4), (4, 2, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5).
Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is not a BrADL.

Every Brouwerian algebra is a Brouwerian almost distributive lattice. Vice versa is not possible. For,
see Example 9.

Example 9. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation ⊔⋆,⊓⋆ and →⋆ as
illustrated in the following tables;



40 R. SIRISETTI, L. V. RAMANA, M. V. RATNAMANI, R. BANDARU, A. S. ALALI

⊔⋆ 1 2 3 4 5
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5

⊓⋆ 1 2 3 4 5
1 1 2 3 4 5
2 1 2 3 4 5
3 1 2 3 4 5
4 1 2 3 4 5
5 1 2 3 4 5

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 3 4 5
3 5 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is a discrete ADL also (B,⊔⋆,⊓⋆,→⋆, 5) is a BrADL but not a BA (since it is not a
lattice).

Example 10 shows that there is a binary operation →⋆ on a five element chain which forms a BrADl
but not a SBADL.

Example 10. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in
the following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 5 5 5
3 1 2 5 5 5
4 1 2 5 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element, and all the axioms B1,B2,B3 and B4 of
Definition 4 are satisfied by the binary operation →⋆ . As a result (B,⊔⋆,⊓⋆,→⋆, 5) is a BrADL.
Furthermore, the triplet (4, 5, 3) does not satisfy the axiom N3 of Definition 3 when using the binary
operation →⋆. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) not a SBADL. Hence (B,⊔⋆,⊓⋆,→⋆, 5) is a BrADL but not
a SBADL.

Example 11 shows that there is a binary operation →⋆ on a five element chain which forms a SBADL
but not a BrADl.

Example 11. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in
the following table;

→⋆ 1 2 3 4 5
1 5 2 3 4 5
2 1 5 3 4 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and that all the axioms N1,N2,N3 and N4

of Definition 3 are satisfied by the binary operation →⋆. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is a SBADL.
Here for the triplets (1, 1, 2), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 3, 1), (1, 4, 1),
(2, 2, 3), (2, 2, 4), (2, 3, 2), (2, 4, 2), the binary operation →⋆ fails to satisfy the axiom B4 of Definition
4. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is not a BrADL. Hence (B,⊔⋆,⊓⋆,→⋆, 5) is not a BrADL but rather a
SBADL.

Here, we derive the primary characteristics on BrADL that are crucial for advancing the theory’s
development. Unless otherwise stated, B denotes a Brouwerian almost distributive lattice (B,⊔⋆,⊓⋆,→⋆

, ν1), with ν1 as its maximal element.
The properties that we derive in Theorem 4 and Theorem 5 plays a crucial role in developing the

theory further.
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Theorem 4. For any χ1, χ2 ∈ B, the following hold;

172. ν1 →⋆ χ1 = χ1 ⊓⋆ ν1
173. χ1 →⋆ ν1 = ν1
174. χ1 →⋆ (χ1 ⊓⋆ χ3) = χ1 →⋆ χ3.

Proof. Let χ1, χ2 ∈ B. Consider,

172. ν1 →⋆ χ1 = ν1 ⊓⋆ (ν1 →⋆ χ1) (by 174 of Theorem 1.)
= ν1 ⊓⋆ χ1 ⊓⋆ ν1 (by B2 of Definition 4.)
= χ1 ⊓⋆ ν1 (by 176 of Theorem 2.)

173. χ1 →⋆ ν1 = ν1 ⊓⋆ (χ1 →⋆ ν1) (by 174 of Theorem 1.)
= ν1 ⊓⋆ ν1 (by B3 of Definition 4.)
= ν1

174. χ1 →⋆ (χ1 ⊓⋆ χ3) = (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) (by B4 of Definition 4.)
= (χ1 →⋆ χ1) ⊓⋆ ν1 ⊓⋆ (χ1 →⋆ χ3)
= ν1 ⊓⋆ (χ1 →⋆ χ3) (by B1 of Definition 4.)
= χ1 →⋆ χ3.

□

Theorem 5. If χ1 ≤ χ2 in B and χ1, χ2, χ3 ∈ B, then the following holds;

172. χ3 →⋆ χ1 ≤ χ3 →⋆ χ2

173. (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1

Proof. Let χ1, χ2, χ3 ∈ B. Consider,

172. (χ3 →⋆ χ1) ⊓⋆ (χ3 →⋆ χ2) = χ3 →⋆ (χ1 ⊓⋆ χ2) (by B4 of Definition 4.)
= χ3 →⋆ χ1 (since χ1 ≤ χ2).

Therefore χ3 →⋆ χ1 ≤ χ3 →⋆ χ2.
173. χ1 ≤ χ2 ⇒ χ1 →⋆ χ1 ≤ χ1 →⋆ χ2 (by 172)

⇒ (χ1 →⋆ χ1) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
⇒ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 (by B1 of Definition 4.)
⇒ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 ≤ ν1
⇒ (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1

□

Corollary 3.15, is the consequence of B2 and B3 of Definition 4.

Corollary 1. For any χ1, χ2 ∈ B, the following holds;

172. χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
173. χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1.

Theorem 6. For any χ1, χ2, χ3 ∈ B, χ1⊓⋆χ3⊓⋆ ν1 ≤ χ2⊓⋆ ν1 if and only if χ3⊓⋆ ν1 ≤ (χ1 →⋆ χ2)⊓⋆ ν1.

Proof. Let χ1, χ2, χ3 ∈ B. Then, χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1
⇒ χ1 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1) ≤ χ1 →⋆ (χ2 ⊓⋆ ν1)

(by 172 of Theorem 5.)
⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ (χ1 →⋆ ν1) ≤ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ ν1)

(by B4 of Definition 4.)
⇒ (χ1 →⋆ χ1) ⊓⋆ ν1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1

(by 173 of Theorem 4.)
⇒ ν1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1

(by B1 of Definition 4.)
⇒ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
⇒ χ3 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1

(by 173 of Corollary 1.)
⇒ χ3 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1.

On the other hand,
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χ3 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 ⇒ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1
⇒ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ1 ⊓⋆ χ2 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1.

□

Theorem 7. For any χ1, χ2 ∈ B the following hold,
χ1 ⊓⋆ ν1 ≤ [(χ1 →⋆ χ2) →⋆ χ2] ⊓⋆ ν1.

Proof. Let χ1, χ2 ∈ B. Then, by B2 of Definition 4.
χ1 ⊓⋆ (χ1 →⋆ χ2) = χ1 ⊓⋆ χ2 ⊓⋆ ν1
⇒ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1
⇒ (χ1 →⋆ χ2) ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1 (by 176 of Theorem 2.)
⇒ χ1 ⊓⋆ ν1 ≤ [(χ1 →⋆ χ2) →⋆ χ2] ⊓⋆ ν1 (by Theorem 6.).

□

Theorem 8. For any χ1, χ2, χ3 ∈ B, the following holds;

172. χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1 if and only if (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1.
173. χ1 ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1 if and only if χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1
174. χ1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ χ3 ⊓⋆ ν1 if and only if (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ ν1

Proof. Let χ1, χ2, ν1 ∈ B. Consider,
172. χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1

⇒ χ1 →⋆ (χ1 ⊓⋆ ν1) ≤ χ1 →⋆ (χ2 ⊓⋆ ν1)
(by 172 of Theorem 5.)

⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ ν1) ≤ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ ν1)
(by B4 of Definition 4.)

⇒ (χ1 →⋆ χ1) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
(by 173 of Theorem 4.)

⇒ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 ≤ ν1
(by B1 of Definition 4.)

⇒ (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1
On the other hand,
(χ1 →⋆ χ2) ⊓⋆ ν1 = ν1 ⇒ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = χ1 ⊓⋆ ν1

⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ⊓⋆ ν1 = χ1 ⊓⋆ ν1
(by B2 of Definition 4.)

⇒ χ1 ⊓⋆ ν1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ ν1
(by 176 of Theorem 2.)

Therefore χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1.
173. χ1 ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1

⇒ χ2 ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ (χ2 →⋆ χ3) ⊓⋆ ν1
⇒ χ2 ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ χ3 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ2 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1

(by 176 of Theorem 2.)
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1
⇒ χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1

(by Theorem 6.)
On the other hand,
χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1

⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ1 ⊓⋆ χ3 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ χ2 ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1

(by 176 of Theorem 2.)
⇒ χ1 ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1

(by Theorem 6.)
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174. χ1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ χ3 ⊓⋆ ν1
⇒ χ1 →⋆ (χ1 ⊓⋆ χ2 ⊓⋆ ν1) = χ1 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)

(by 172 of Theorem 5.)
⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ ν1)

= (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ (χ1 →⋆ ν1)
(by B4 of Definition 4.)

⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1
(by 173 of Theorem 4.)

⇒ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ χ1) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ (χ1 →⋆ χ1) ⊓⋆ ν1
(by 176 of Theorem 2.)

⇒ (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ ν1
(by B1 of Definition 4.)

On the other hand, (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ ν1
⇒ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = χ1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ χ3 ⊓⋆ ν1 (by B2 of Definition 4.)

□

Theorem 9. For any χ1, χ2, χ3 ∈ B, the following holds;

172. [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1
173. [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 = [(χ2 ⊓⋆ χ1) →⋆ χ3] ⊓⋆ ν1
174. [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = [χ2 →⋆ (χ1 →⋆ χ3)] ⊓⋆ ν1

Proof. Let χ1, χ2, χ3 ∈ B.
172. (χ1 ⊓⋆ χ2) ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1

= χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1 (by B2 of Definition 4.)
⇒ χ2 →⋆ [χ1 ⊓⋆ χ2 ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1]

= χ2 →⋆ (χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1) (by 172 of Theorem 5.)
⇒ χ2 →⋆ [χ2 ⊓⋆ [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1]]

= χ2 →⋆ (χ2 ⊓⋆ χ1 ⊓⋆ χ3 ⊓⋆ ν1) (by 176 of Theorem 2.)
⇒ χ2 →⋆ [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1]

= χ2 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)−−−−(I)
(by 174 of Theorem 4.)

Consider,
[χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1] ⊓⋆ [χ2 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)] ⊓⋆ ν1
= [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1] ⊓⋆ [χ2 →⋆ [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1]] ⊓⋆ ν1

(by I)
= [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1] ⊓⋆ ν1. (by B3 of Definition 4.)
Therefore χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1 ≤ [χ2 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)] ⊓⋆ ν1.
Hence by B4 of Definition 4,
χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1.
Thus from Theorem 6,
(χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1 ≤ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1.
On the other hand,
χ1 ⊓⋆ χ2 ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1

= χ2 ⊓⋆ χ1 ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1
(by 176 of Theorem 2.)

= χ2 ⊓⋆ χ1 ⊓⋆ (χ2 →⋆ χ3) ⊓⋆ ν1
(by B2 of Definition 4.)

= χ1 ⊓⋆ χ2 ⊓⋆ (χ2 →⋆ χ3) ⊓⋆ ν1
(by 176 of Theorem 2.)

= χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1
(by B2 of Definition 4.).

Therefore χ1 ⊓⋆ χ2 ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1.
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Now, (χ1 ⊓⋆ χ2) ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1
⇒ (χ1 ⊓⋆ χ2) →⋆ [(χ1 ⊓⋆ χ2) ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1]

= (χ1 ⊓⋆ χ2) →⋆ [χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1]
⇒ (χ1 ⊓⋆ χ2) →⋆ [(χ1 ⊓⋆ χ2) ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1]

= (χ1 ⊓⋆ χ2) →⋆ (χ3 ⊓⋆ ν1)
(by 174 of Theorem 4.)

⇒ [(χ1 ⊓⋆ χ2) →⋆ (χ1 ⊓⋆ χ2)] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ (χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ ν1]
= [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ ν1]

(by B4 of Definition 4.)
⇒ [(χ1 ⊓⋆ χ2) →⋆ (χ1 ⊓⋆ χ2)] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ (χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ ν1

= [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1
(by 174 of Theorem 4.)

⇒ [(χ1 ⊓⋆ χ2) →⋆ (χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ ν1
= [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1

(by B1 of Definition 4.)
⇒ [(χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ ν1 ≤ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1

(by 173 of Corollary 1.)
Therefore [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1.
173. (χ1 ⊓⋆ χ2) ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ (χ2 ⊓⋆ χ1) ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1

(by 176 of Theorem 2.)
⇒ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 ≤ [(χ2 ⊓⋆ χ1) →⋆ χ3] ⊓⋆ ν1

(by Theorem 6.).
By symmetry, [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 = [(χ2 ⊓⋆ χ1) →⋆ χ3] ⊓⋆ ν1
174. Follows from 172 and 173. □

Theorem 10. For any χ1, χ2, χ3 ∈ B, (χ1 →⋆ χ2) ⊓⋆ χ3 =
[(χ1 ⊓⋆ χ3) →⋆ (χ2 ⊓⋆ χ3)] ⊓⋆ χ3

Proof. Let χ1, χ2, χ3 ∈ B. Then
[(χ1 ⊓⋆ χ3) →⋆ (χ2 ⊓⋆ χ3)] ⊓⋆ χ3

= [((χ1 ⊓⋆ χ3) →⋆ χ2) ⊓⋆ ((χ1 ⊓⋆ χ3) →⋆ χ3)] ⊓⋆ χ3 ⊓⋆ χ3

(by B4 of Definition 4.)
= [((χ1 ⊓⋆ χ3) →⋆ χ2) ⊓⋆ χ3 ⊓⋆ ((χ1 ⊓⋆ χ3) →⋆ χ3)] ⊓⋆ χ3

(by 176 of Theorem 2.)
= [((χ1 ⊓⋆ χ3) →⋆ χ2) ⊓⋆ ν1 ⊓⋆ χ3

(by B3 of Definition 4.)
= [((χ3 ⊓⋆ χ1) →⋆ χ2) ⊓⋆ ν1 ⊓⋆ χ3

(by 173 of Theorem 9.)
= [χ3 →⋆ (χ1 →⋆ χ2)] ⊓⋆ ν1 ⊓⋆ χ3

(by 172 of Theorem 9.)
= χ3 ⊓⋆ [χ3 →⋆ (χ1 →⋆ χ2)] ⊓⋆ ν1 ⊓⋆ χ3

(by 176 of Theorem 2.)
= χ3 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 ⊓⋆ χ3

(by B2 of Definition 4.)
= (χ1 →⋆ χ2) ⊓⋆ χ3

(by 174 of Theorem 1 and 176 of Theorem 2.)
□

Corollary 2. For any χ1, χ2, χ3 ∈ B, if χ1 ⊓⋆ χ3 = χ2 ⊓⋆ χ3, then

172. (χ1 →⋆ χ3) ⊓⋆ χ3 = (χ2 →⋆ χ3) ⊓⋆ χ3

173. (χ3 →⋆ χ1) ⊓⋆ χ3 = (χ3 →⋆ χ2) ⊓⋆ χ3.

Theorem 11. If (B,⊔⋆,⊓⋆,→⋆, ν1) is a BrADL, then for any maximal element ν2 in B, (B,⊔⋆,⊓⋆,→ν2

, ν2) is a BrADL where χ1 →ν2
χ2 = (χ1 →⋆ χ2) ⊓⋆ ν2 for χ1, χ2 ∈ B.
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Proof. Let (B,⊔⋆,⊓⋆,→⋆, ν1) be a BrADL and →ν2 is a maximal element in B. For χ1, χ2 ∈ B, define
χ1 →ν2 χ2 = (χ1 →⋆ χ2) ∧ ν2.
Then, for any χ1, χ2 ∈ B,
172. (χ1 →ν2

χ1) ⊓⋆ ν2 = (χ1 →⋆ χ1) ⊓⋆ ν2 ⊓⋆ ν2

= ν1 ⊓⋆ ν2

= ν2.

173. χ1 ⊓⋆ (χ1 →ν2
χ2) = χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν2

= χ1 ⊓⋆ χ2 ⊓⋆ ν1 ⊓⋆ ν2

= χ1 ⊓⋆ χ2 ⊓⋆ ν2.

174. χ2 ⊓⋆ (χ1 →ν2
χ2) = χ2 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν2

= χ2 ⊓⋆ ν1 ⊓⋆ ν2

= χ2 ⊓⋆ ν2.

175. χ1 →ν2
(χ2 ⊓⋆ χ3) = [χ1 →⋆ (χ2 ⊓⋆ χ3)] ⊓⋆ ν2

= [(χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ χ3)] ⊓⋆ ν2

= [(χ1 →⋆ χ2) ⊓⋆ ν2] ⊓⋆ [(χ1 →⋆ χ3)] ⊓⋆ ν2]

= (χ1 →ν2
χ2) ⊓⋆ (χ1 →ν2

χ3).

Therefore (B,⊔⋆,⊓⋆,→ν2
, ν2) is a BrADL. □

We give several equivalent conditions for a BrADL to become a Brouwerian algebra as we wrap up the
paper.

Theorem 12. [11] Let (B,⊔⋆,⊓⋆, ν1) be an ADL. Then the subsequent statements are comparable;

172. B is a Brouwerian algebra.
173. (B,≤∗) is directed above.
174. (B,⊔⋆,⊓⋆) is a distributive lattice.
175. ⊔⋆ is commutative.
176. ⊓⋆ is commutative.
177. ⊔⋆ is right distributive over ⊓⋆.
178. The relation θ = {(χ1, χ2) ∈ B × B | χ2 ⊓⋆ χ1 = χ1} is antisymmetric.

4. Conclusion

The concept of a Brouwerian almost distributive lattice is presented in this paper with several examples
and counter-examples, and some of its primary and necessary properties are studied. We derive a few iden-
tities and inequalities in a Brouwerian almost distributive lattice. Also, we provided a set of equivalence
conditions required for transforming the Brouwerian almost distributive lattice into a Brouwerian algebra.
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