

International Journal of Multidisciplinary Studies and Innovative

Technologies

e-ISSN: 2602-4888

dergipark.org.tr/en/pub/ijmsit

Research Article

2024, 8 (2), 52-58

DOI: 10.36287/ijmsit.8.2.1

Received: July 3, 2024; Accepted: August 30, 2024

52

Comparison of Different Optimization Algorithms in the Fashion

MNIST Dataset

Umut Saray 1*, Uğur Çavdar 2

1* Department of Electronic Automation, Turhal Vocational School, Tokat Gaziosmanpaşa University, Tokat,

Türkiye,(umutsaray@gmail.com) (ORCID: 0000-0003-3339-6876)
2 Department of Mechanical Engineering, Faculty of Engineering, Izmir Democracy University, İzmir, Türkiye,(ugur.cavdar@idu.edu.tr)

(ORCID:0000-0002-3434-6670)

Abstract – This study examines the effects of various optimization algorithms used in deep learning models to classify fashion-

oriented clothing items. The Fashion MNIST dataset has been chosen as a rich data source. Models developed using

Convolutional Neural Networks (CNN) have been trained with various optimization algorithms such as Nadam, Adadelta,

Adamax, Adam, Adagrad, SGD, and RMSprop. Understanding the impact of these algorithms on the model's performance during

the training process forms the basis of the study. The findings of the research reveal that optimization algorithms have a

significant effect on the accuracy rates of the model. While the Nadam and Adadelta algorithms achieved the highest accuracy

rates, the RMSprop algorithm displayed relatively lower performance. These results indicate that different optimization

techniques can significantly influence the performance of deep learning-based classification systems.

Keywords – Convolutional Neural Networks (CNN),Fashion MNIST, Optimization Algorithms, Adam, RMSprop

Citation: Saray, U., Çavdar, U. (2024). Comparison of Different Optimization Algorithms in the Fashion MNIST Dataset.

International Journal of Multidisciplinary Studies and Innovative Technologies, 8(2): 52-58.

I. INTRODUCTION

Deep learning has become one of the most attractive areas

in artificial intelligence and machine learning over the past

decade, undergoing significant evolution. This method offers

the ability to learn from comprehensive and voluminous

datasets through models composed of multi-layered neural

networks. Particularly, revolutionary results have been

achieved in fields such as visual and auditory recognition,

forecasting apps, natural language processing, and various

pattern recognitions [1],[2]-[5].

Optimization algorithms play an indispensable role in the

training process of these models [6]. The success of a deep

learning model is largely dependent on the effectiveness of the

chosen optimization algorithm. Stochastic Gradient Descent

(SGD) [7-8] and its variants enable the model to demonstrate

superior performance on the dataset by adjusting its weights

and bias values. In literature, comparing different optimization

algorithms and the identification of the most suitable one have

become important research topics, especially for models

operating on large and complex datasets [9].

Recent studies on deep learning and optimization algorithms

have examined the performance of various algorithms on

different datasets. For instance, Ö. Dolma [1] classified

COVID-19 and non-COVID-19 lung CT scan images using

deep convolutional neural networks. E. Avuçlu [2-3] evaluated

the classification performance of COVID-19 images using

deep learning methods. In another study, M. C. Bingöl and G.

Bilgin [4] investigated the prediction of chicken diseases using

transfer learning methods. Comparing optimization

algorithms, especially for large and complex datasets, is

crucial to determining which algorithm is more suitable.

Stochastic Gradient Descent (SGD) and its variants enable the

model to adjust its weights and biases to perform optimally on

the dataset [6], [7-8]. Algorithms with adaptive learning rates,

such as Adam [9], [10-11], Nadam [12], [13-14], RMSprop

[15], [16-17], and Adagrad [18], [19-20], are widely used to

achieve strong results in the training process of deep learning

models. In this context, the Fashion MNIST dataset is

frequently preferred as a rich data source for classifying

fashion-oriented clothing items. For example, R. Sirisha and

colleagues [23] compared the performance of different

optimization algorithms on the Fashion MNIST dataset; A. S.

Henrique and his team [24] developed CNN models using this

dataset. Khanday and colleagues [25] examined the effect of

filter sizes on classification accuracy. Other studies include

those by Tang et al. [26], Kayed et al. [27], Zhu et al. [28], and

Hur et al. [29], who have all utilized the Fashion MNIST

dataset for various purposes, such as optimizing deep residual

networks, using CNN LeNet-5 architecture, space-efficient

optical computing, and quantum convolutional neural

networks, respectively. These studies examined the impact of

different optimization algorithms on the accuracy rates of deep

learning-based classification models and identified the most

effective algorithms [21], [22-29].

Researchers and practitioners have closely examined the

algorithms used in optimizing deep learning models in recent

years. Among these algorithms, methods with adaptive

learning rates such as Adam, Nadam, RMSprop, and Adagrad

have become popular for achieving strong results in the

training process of deep learning models [21].

https://dergipark.org.tr/en/pub/ijmsit

International Journal of Multidisciplinary Studies and Innovative Technologies, 2024, 8(2): 52 – 58

53

This study aims to examine the effects of these algorithms

on the Fashion MNIST dataset [22], [23-29], a widely used

dataset for training and testing contemporary artificial

intelligence and machine learning systems. This dataset

contains grayscale images of various clothing items and offers

an excellent test ground for algorithmic classification [30].

The purpose of this research is to understand the impact of

different optimization algorithms on the accuracy rates of deep

learning-based classification models and to use this knowledge

to enhance the effectiveness of classification systems. The

findings highlight the importance of selecting optimization

strategies in AI applications and guide future research in this

direction.

II. MATERIALS AND METHOD

Convolutional Neural Networks (CNNs)[31] are frequently

utilized in image processing and visual recognition tasks.

Essentially, they employ convolutional layers to detect local

features in an image, such as edges, textures, and shapes.

These layers, through a specific learning process,

automatically learn to extract useful features from different

parts of the image. CNNs are capable of recognizing complex

visual patterns by combining and interpreting these features in

subsequent layers.

The fundamental components of CNNs include

convolutional layers, activation functions, pooling layers, and

fully connected layers. Convolutional layers apply filters to the

input image to create feature maps, effectively extracting

information from different sections of the image to identify

important features.

Activation functions enhance the network's non-linear

learning capability. One of the most commonly used activation

functions is ReLU, which speeds up the model's training

process by setting negative values to zero and helping to

address the gradient vanishing problem.

Pooling layers reduce the dimensionality of feature maps,

lightening the network's computational load. This is achieved

by taking the maximum or average value of certain sections of

the image. Pooling ensures the network's robustness against

translational variances, such as changes in the position of an

object within the image [32].

Fully connected layers are located at the end of the network

and use the learned features to perform tasks such as

classification or regression, producing the final output. These

layers associate each input with probabilities for each class in

the output.

Due to their ability to successfully recognize complex visual

patterns, CNNs are effectively used in various application

areas such as face recognition, vehicle license plate

recognition, medical image analysis, and object detection from

satellite images. Recent advancements in deep learning have

further improved the performance and applicability of CNNs,

making them an indispensable component of artificial

intelligence applications [33].

In this study, Convolutional Neural Networks (CNNs) were

used. Various optimization algorithms within the CNN have

been compared for their success rates on the MNIST dataset.

The optimization algorithms used are explained in sequence.

The algorithms employed include Stochastic Gradient Descent

(SGD), Adagrad, RMSprop, Adadelta, Adamax, Nadam, and

Adam.

A. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a method that

calculates the gradient using a single training example at each

step to update the model parameters. This approach enables

quick parameter updates based on randomly selected samples,

eliminating the need to process the entire dataset in each

iteration. This efficiency makes SGD particularly effective for

large datasets. However, the optimization path of SGD can be

somewhat erratic, leading towards the target through a

fluctuating route, which necessitates precise hyperparameter

tuning for optimal performance.

The core of SGD's methodology is encapsulated in its

update rule, where the parameter θ at any given iteration

t+1 is adjusted according to the formula:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ∇𝜃 𝐿 (𝜃𝑡; 𝑥𝑖 , 𝑦𝑖) (1)

In this equation, 𝜃𝑡 represents the parameter vector at

iteration t, η denotes the learning rate, and

 ∇𝜃 𝐿 (𝜃𝑡; 𝑥𝑖 , 𝑦𝑖) signifies the gradient of the loss function L

with respect to θ, evaluated for the i th training example at the

t th iteration. This process underscores the iterative nature of

SGD, where each step is calculated to steer the parameters

closer to the optimum by leveraging the gradient information

from a single, randomly selected training example [7-8].

B. Adagrad

Adagrad is an optimization algorithm that adaptively

adjusts the learning rate for each parameter, making it

particularly well-suited for dealing with sparse datasets.

Unlike conventional methods that use a single learning rate for

all parameters throughout the training process, Adagrad

modifies the learning rate individually for each parameter

based on the historical gradient information. This approach

lowers the learning rate for parameters corresponding to

frequently occurring features, while ensuring a higher learning

rate for rare features. As a result, Adagrad can significantly

improve the efficiency of model training, especially in

scenarios where the data is sparse.The key to Adagrad's

adaptive learning rate adjustment lies in its update rule, which

is mathematically formulated as follows:

For each parameter 𝜃𝑡, the update at iteration t is given by;

𝜃𝑖,𝑡+1 = 𝜃𝑖,𝑡 −
𝜂

√𝐺𝑖,𝑡+∈
 . 𝑔𝑖,𝑡 (2)

Here 𝑔𝑖,𝑡 , represents the gradient of the loss with respect to

the parameter 𝜃𝑖 at iteration t, 𝐺𝑖,𝑡 is the sum of the squares of

the past gradients with respect to 𝜃𝑖 up to time t, η is a global

learning rate, and ϵ is a smoothing term added to improve

numerical stability (often set to a small constant like 1e−8),

preventing division by zero.

This formula ensures that parameters with large gradients

have their learning rate decreased over time, which helps in

honing in on the minimum more efficiently. However, a

notable downside of Adagrad is its tendency for the learning

rate to decrease continually throughout training, potentially

leading to premature convergence and the model stopping

early in long training processes. Despite this limitation,

Adagrad's ability to adapt the learning rate to the parameters

has made it a foundational algorithm for further developments

in adaptive learning rate techniques[18], [34-35].

International Journal of Multidisciplinary Studies and Innovative Technologies, 2024, 8(2): 52 – 58

54

C. RMSprop

RMSprop, short for Root Mean Square Propagation, is an

optimization algorithm designed to overcome the challenge of

the excessively decreasing learning rate that Adagrad faces. By

focusing on the magnitude of gradients in only the most recent

iterations, RMSprop dynamically adjusts the learning rate.

This method ensures that the learning rate does not diminish

too quickly, maintaining a level that is conducive to continued

learning and optimization over time. RMSprop is particularly

effective in scenarios involving recurrent neural networks and

non-stationary targets, where the landscape of the optimization

problem changes over time.

The mathematical foundation of RMSprop is expressed

through its update rule, which modifies the learning rate for

each parameter based on the recent gradients. The update for a

parameter θ at iteration t is given by:

𝜃 𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡+∈
 . 𝑔𝑡 (3)

In this equation, 𝑔𝑡 is the gradient of the loss with respect to

the parameter θ at iteration t, η is the initial learning rate, and

ϵ is a small constant (like 1e−8) to prevent division by zero. The

term 𝑣𝑡 represents the exponentially weighted moving average

of the squares of the gradients, calculated as:

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 + 𝛽) 𝑔𝑡
2 (4)

Here, β is a decay rate that determines the extent to which

the moving average considers the most recent gradient

magnitudes, typically set to a value like 0.9. This mechanism

of adjusting 𝑣𝑡ensures that RMSprop considers the magnitude

of recent gradients, enabling adaptive learning rates that

respond to the current state of the optimization process.

By employing this strategy, RMSprop effectively prevents

the learning rate from dropping too low, a significant

improvement over Adagrad's approach. This adaptability

makes RMSprop a robust choice for training deep neural

networks, particularly in the challenging environments

presented by recurrent neural networks and tasks with non-

stationary objectives. [36],[18].

D. Adadelta

Adadelta is an optimization algorithm that extends the

principles of RMSprop to enhance stability in the learning rate

throughout the training process. It achieves this by employing

a unit measure for weight updates, which allows for

continuous model improvement without the explicit need to

adjust the learning rate manually. This approach addresses one

of the key challenges in optimization algorithms - the

sensitivity to the choice of learning rate. By eliminating the

dependence on a global learning rate, Adadelta simplifies the

optimization process, making it more robust and easier to use,

especially in environments where parameter tuning can be

laborious.

The foundation of Adadelta is grounded in the modification

of the RMSprop update rule, incorporating the use of the

moving average of squared gradients to adjust the learning rate

dynamically, but it also introduces the concept of

accumulating updates over time to determine the step size. The

update rule in Adadelta for a parameter θ at iteration t can be

expressed as follows:

∆𝜃 𝑡+1 = −
√∑ ∆𝜃𝑖−1

2 +∈ 𝑡−1
𝑖=1

√𝐸[𝑔2]𝑡 +∈
 . 𝑔𝑡 (5)

Here, 𝑔𝑡 represents the gradient of the loss with respect to

the parameter θ at iteration t, 𝐸[𝑔2]𝑡 is the exponentially

decaying average of squared gradients up to time t, and ϵ is a

small constant (similar to RMSprop) added for numerical

stability. The term ∆𝜃𝑡denotes the change in θ at iteration t,

and the numerator √∑ ∆𝜃𝑖−1
2 +∈ 𝑡−1

𝑖=1 represents the root mean

square of previous parameter updates, which serves to scale

the gradient in proportion to the historical update magnitudes.

The key innovation of Adadelta is that it does not require an

explicit learning rate. Instead, it adapts the parameter updates

based on the moving averages of the squared gradients and the

squared updates, thus regulating the step size based on the

history of changes. This self-adjusting mechanism ensures

more stable and consistent learning progress, mitigating the

risk of drastic updates that could potentially derail the

optimization process.

By combining the adaptive gradient approach of RMSprop

with the innovative update adjustment mechanism, Adadelta

offers a sophisticated solution to the challenge of learning rate

selection and stability, making it an attractive choice for

training deep neural networks where tuning hyperparameters

can be particularly challenging [36-37].

E. Adamax

Adamax is a variation of the Adam optimization algorithm,

designed to enhance stability in scenarios characterized by

extreme gradient values. While Adam employs adaptive

moment estimation to adjust learning rates based on the first

and second moments of gradients (mean and uncentered

variance), Adamax introduces an alternative approach by

utilizing a different norm, making it potentially more robust in

the face of extreme updates. This characteristic of Adamax

stems from its adaptation of the ∞-norm, which provides a

theoretical upper bound on the updates, hence its name. The

update rules for Adamax at iteration t for a parameter θ can be

summarized as follows:

Update the first moment (the mean) of the gradient:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) 𝑔𝑡 (6)

where 𝑔𝑡is the gradient of the loss with respect to θ at

iteration t, and 𝑚𝑡 is the first moment vector.

Update the ∞-norm of the gradients rather than the second

moment:

𝑢𝑡 = max (𝛽2 𝑢𝑡−1, |𝑔𝑡|) (7)

Here, 𝑢𝑡 represents the ∞-norm of the gradients, which is

updated to be the maximum of the previous ∞-norm scaled by

𝛽2 and the absolute value of the current gradient. This replaces

the second moment estimation used in the original Adam.

Compute the parameter update using the first moment and

the ∞-norm:

𝜃 𝑡+1 = 𝜃 𝑡 −
𝜂

𝑢𝑡+ ∈
 𝑚 𝑡 (8)

In this equation, η is the step size (learning rate), and ϵ is a

small constant added for numerical stability.The introduction

of the ∞-norm in Adamax, as opposed to the squared gradients

norm in Adam, aims to provide a more stable and less

aggressive adaptation of the learning rates, especially in the

presence of large gradients. This makes Adamax an appealing

alternative for optimization in machine learning tasks where

gradients can vary significantly in magnitude, potentially

International Journal of Multidisciplinary Studies and Innovative Technologies, 2024, 8(2): 52 – 58

55

leading to more consistent and reliable convergence over the

course of training [38-39].

F. Nadam

Nadam, short for Nesterov-accelerated Adaptive Moment

Estimation, merges the Adam optimization algorithm with

Nesterov momentum, harnessing the strengths of both

methodologies to achieve more efficient optimization. By

integrating Adam's adaptive learning rate features with the

anticipatory updates of Nesterov momentum, Nadam

facilitates faster convergence and improved performance,

particularly in the context of deep learning and complex

optimization tasks. This combination allows Nadam to

navigate the optimization landscape more effectively, making

it a powerful tool for training neural networks.

The mathematical formulation of Nadam incorporates

elements from both Adam and Nesterov momentum, resulting

in an update rule that looks as follows:

Update the first moment (mean) and the second moment

(uncentered variance) of the gradients, similar to Adam:

𝑚 𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , 𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 + 𝛽) 𝑔𝑡
2 (9)

where 𝑔𝑡 is the gradient of the loss with respect to the

parameter θ at iteration t, 𝑚𝑡 is the first moment vector, and

𝑣𝑡 is the second moment vector.

Incorporate Nesterov momentum into the moment update

by adjusting the first moment before the parameter update:

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡
 +

(1− 𝛽1)𝑔𝑡

(1−𝛽1
𝑡)(1− 𝛽1)

 (10)

𝑣̂𝑡 =
𝑣𝑡

(1−𝛽2
𝑡)

 (11)

Compute the parameter update using the adjusted first

moment and the second moment:

𝜃 𝑡+1 = 𝜃 𝑡 −
𝜂

√𝑣̂𝑡+ ∈
 𝑚̂𝑡 (12)

In this equation, η is the learning rate, and ϵ is a small

constant added for numerical stability.

By leveraging the lookahead nature of Nesterov

momentum, which essentially incorporates information about

the future gradient, Nadam ensures that each update is more

informed and precise. This results in a more aggressive and

effective approach to finding the minimum of the loss

function, reducing the number of iterations needed to achieve

convergence. Nadam’s unique blend of Adam’s adaptiveness

and Nesterov’s accelerated updates provides a significant

advantage in training deep learning models, offering a balance

between speed and accuracy in the optimization process [38-

39].

G. Adam

The Adam optimization algorithm, standing for Adaptive

Moment Estimation, is widely recognized for its ability to

adaptively adjust both the learning rate and momentum for

each parameter, making it a popular and effective method for

deep learning tasks. By calculating exponential moving

averages of both the gradients and the squared gradients,

Adam maintains separate learning rates for each parameter,

which are adjusted as learning progresses. This adaptability

allows Adam to perform well across a wide range of deep-

learning tasks, from simple to complex models. The

mathematical formulation of Adam involves several key steps,

as outlined below:

First and Second Moment Estimation: For each parameter

θ, Adam computes the first moment (the mean) and the second

moment (the uncentered variance) of the gradients:

𝑚 𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , 𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 + 𝛽2) 𝑔𝑡
2

(13)

Here, 𝑔𝑡 represents the gradient of the loss with respect to

θ at iteration t, 𝑚 𝑡 and 𝑣𝑡 are the estimates of the first and

second moments respectively, and 𝛽1 and 𝛽2 are the decay

rates for these moments.

Bias Correction: To counteract the biases introduced by

initializing the moments as zeros, Adam applies bias

corrections:

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡
 , 𝑣̂𝑡 =

𝑣𝑡

(1−𝛽2
𝑡)

 (14)

This step ensures that the moment estimates are unbiased

towards zero at the start of optimization.

Parameter Update: The parameters are updated using the

bias-corrected moments:

𝜃 𝑡+1 = 𝜃 𝑡 −
𝜂

√𝑣̂𝑡+ ∈
 𝑚̂𝑡 (15)

In this equation, 𝜂 is the step size (learning rate), and ∈ is a

small constant added for numerical stability. Adam’s approach

to adjusting the learning rate based on the first and second

moments of the gradients allows for more effective and

efficient optimization, especially in the context of deep

learning. This adaptability, combined with its straightforward

implementation and robust performance across various tasks,

has cemented Adam’s status as a go-to optimization algorithm

for many deep learning practitioners.[9],[40].

III. IMPLEMENTATION

Dataset and Preprocessing; The Fashion MNIST dataset

consists of 60,000 training and 10,000 test images. Each image

is a grayscale image of a garment with a resolution of 28x28

pixels.

In terms of data preprocessing steps, the images have been

normalized between 0 and 1 and reshaped to the appropriate

input size for the model (28x28x1), facilitating more effective

learning by the model.

Model Architecture; First Convolutional Layer: Equipped

with 32 filters, each having a kernel size of (3,3), and utilizes

the ReLU activation function. This layer accepts input data of

28x28 pixel resolution with 1 color channel (grayscale

images).

First Max Pooling Layer: Has a pool size of 2x2, aiming to

halve the spatial dimensions.

Second Convolutional Layer: Contains 64 filters, also using

the ReLU activation function, with each filter having a kernel

size of (3,3).

Second Max Pooling Layer: Applies a 2x2 pooling operation

again to further reduce spatial dimensions.

Flatten Layer: Transforms the outputs from the

convolutional and pooling layers into a single, long feature

vector.

First Dense Layer: Comprises 128 neurons and employs the

ReLU activation function.

Output Dense Layer: Contains 10 neurons corresponding to

the ten different garment classes in the dataset, using the

International Journal of Multidisciplinary Studies and Innovative Technologies, 2024, 8(2): 52 – 58

56

softmax activation function to output probability distributions

for classification.

This study aims to compare the performance of different

optimization algorithms: SGD, Adagrad, RMSprop, Adadelta,

Adamax, Nadam, and Adam. Each algorithm is evaluated

separately using the same model architecture.

The models are trained over twenty epochs, and the accuracy

rates of each optimization algorithm are assessed on the test

set. Performance evaluations are conducted using loss and

accuracy metrics on the test set. This methodology allows the

research to be conducted within a concrete and reproducible

framework, contributing to the reliability of the results

obtained.

IV. RESULTS

This research has yielded significant findings by examining

the impact of different optimization algorithms on the Fashion

MNIST dataset. The study reveals that optimization

algorithms have substantial effects on the training process and

accuracy rates of the model.

The graphs depicted in the figures demonstrate the variations

in loss and accuracy values during the training process for

different optimization algorithms. Figure 1 presents the

comparative training and validation loss across training

epochs, while Figure 2 illustrates the training and validation

accuracy throughout the training iterations for various

optimization algorithms on the Fashion MNIST dataset.

Figure 1. Optimization Algorithm Comparison: Training and Validation Loss

Across Epochs for Fashion MNIST Dataset

Figure 2. Comparative Analysis of Training and Validation Accuracy Over
Epochs Among Various Optimization Algorithms on Fashion MNIST

Dataset

Overall, all algorithms manage to reduce training loss, but

some are notably more effective in reducing validation loss.

The Nadam and Adam algorithms, in particular, maintain low

and stable validation losses, indicating their strong

generalization capabilities. On the other hand, the Adadelta

algorithm, despite rapidly decreasing high initial loss values,

appears to be less effective than other algorithms. The

validation losses for SGD and Adagrad are also observed to be

higher, which could suggest inferior generalization

performance.

As seen in Figure 2, Nadam and Adam algorithms also

display high validation accuracy, signifying robust

performance. This high accuracy suggests that the model is

well-generalized to new data. In contrast, SGD and Adagrad

have lower validation accuracy, hinting that they may be less

effective for training the model on this dataset. RMSprop,

although exhibiting high training accuracy, has a validation

accuracy that falls short of expectations, a possible indication

of overfitting.

These insights reveal that the efficacy of an algorithm can

vary significantly based on the dataset and specific problem at

hand. They also highlight the critical role of model selection

and hyperparameter tuning in machine learning. When

selecting the best model, the performance on the validation set

should be carefully considered.

Table.1. Performance Metrics of Different Optimization Algorithms on

Fashion MNIST Dataset

Optimization

Algorithm

Final

Training

Accuracy

Final

Training

Loss

Final

Validation

Accuracy

Final

Validati

on Loss

SGD 0.9019 0.2651 0.8765 0.3398

Adagrad 0.8325 0.4681 0.8352 0.4603

RMSprop 0.9751 0.0678 0.8998 0.5287

Adadelta 0.7214 0.8193 0.7305 0.8004

Adamax 0.9557 0.1269 0.9115 0.2569

Nadam 0.9876 0.0331 0.9040 0.4831

Adam 0.9839 0.0436 0.9098 0.4788

According to Table 1; SGD has shown lower training

accuracy and higher training loss compared to other

algorithms. These findings suggest that SGD is less applicable

to this particular problem than other alternatives.

International Journal of Multidisciplinary Studies and Innovative Technologies, 2024, 8(2): 52 – 58

57

Adagrad Optimization Algorithm: Adagrad has shown a

moderate performance similar to SGD. Its accuracy and loss

values were found to be at an average level. While Adagrad's

dynamic adjustment of the learning rate can be advantageous

in some problems, it has not achieved the best performance in

this study.

RMSprop Optimization Algorithm: The RMSprop

algorithm achieved high training accuracy and low training

loss but maintained a high validation loss. This could indicate

that the model did not generalize well to the validation data

and might be an indication of overfitting.

Adadelta Optimization Algorithm: Adadelta’s performance

was lower compared to other algorithms. Both its training and

validation accuracy, as well as loss values, were found to be

high, indicating that Adadelta's generalization capability and

training performance are lower than other alternatives.

Adamax Optimization Algorithm: Adamax exhibited good

performance with high training and validation accuracy. Its

low validation loss indicates that the model generalizes well to

new data.

Nadam Optimization Algorithm: Nadam overall showed the

best performance with the highest validation accuracy and the

lowest validation loss. This indicates that the model

generalizes very well to new data and that this optimization

algorithm is effective for the chosen dataset.

Adam Optimization Algorithm: Adam showed a

performance very close to Nadam. Its high training and

validation accuracy and low validation loss indicate that this

algorithm generalizes effectively.

V. DISCUSSION

This study evaluates the effectiveness of various

optimization algorithms on the Fashion MNIST dataset,

revealing significant differences in overall model

performance. Specifically, the Nadam and Adam algorithms

demonstrate superior generalization capabilities with their low

validation losses and high validation accuracies, indicating

their resilience against overfitting due to adaptive learning

rates. On the other hand, the weaker performance exhibited by

algorithms such as SGD and Adagrad, particularly in terms of

high training and validation losses, highlights their limitations

in developing effective learning strategies for high-

dimensional datasets. These findings emphasize the critical

importance of selecting and tuning optimization algorithms in

machine learning projects and underscore the significance of

further research to improve these algorithms. Additionally, a

better understanding of performance variations among

algorithms can enhance the applicability of models across

broader datasets and ensure more successful implementations

in practical applications.

VI. CONCLUSION

This study has demonstrated that the most effective

optimization algorithms for the Fashion MNIST dataset are

Nadam and Adam. The performance of other alternatives was

found to be lower compared to these two algorithms. However,

since the performance of each algorithm can vary depending

on the dataset and the problem, conducting more

comprehensive tests such as cross-validation is recommended

to select the most suitable algorithm.

Statement of Conflicts of Interest

There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

The authors declare that this study complies with Research and

Publication Ethics

REFERENCES

[1] Ö. Dolma, “COVID-19 and Non-COVID-19 Classification from
Lung CT-Scan Images Using Deep Convolutional Neural

Networks,” Int. J. Multidiscip. Stud. Innov. Technol., vol. 7, no. 2,

p. 53, 2023, doi: 10.36287/ijmsit.7.2.3.
[2] E. Avuçlu, “Examining The Effect of Pre-processed Covid-19

Images On Classification Performance Using Deep Learning

Method,” Int. Sci. Vocat. Stud. J., vol. 7, no. 2, pp. 94–102, Dec.

2023, doi: 10.47897/bilmes.1359954.

[3] E. Avuçlu, “Classification of Pistachio Images Using VGG16 and

VGG19 Deep Learning Models,” Int. Sci. Vocat. Stud. J., vol. 7, no.
2, pp. 79–86, Dec. 2023, doi: 10.47897/bilmes.1328313.

[4] M. C. Bıngol and G. Bilgin, “Prediction of Chicken Diseases by

Transfer Learning Method,” Int. Sci. Vocat. Stud. J., vol. 7, no. 2,
pp. 170–175, Dec. 2023, doi: 10.47897/bilmes.1396890.

[5] Y. Durgun, "Classification of Starch Adulteration in Milk Using

Spectroscopic Data and Machine Learning," Int. J. Eng. Res. Dev.,
vol. 16, no. 1, pp. 221-226, 2024, doi: 10.29137/umagd.1379171.

[6] A. Williams, N. Walton, A. Maryanski, S. Bogetic, W. Hines, and

V. Sobes, “Stochastic gradient descent for optimization for nuclear
systems,” Sci. Rep., vol. 13, no. 1, p. 8474, May 2023, doi:

10.1038/s41598-023-32112-7.

[7] S. Nagendram et al., “Stochastic gradient descent optimisation for
convolutional neural network for medical image segmentation,”

Open Life Sci., vol. 18, no. 1, Aug. 2023, doi: 10.1515/biol-2022-

0665.
[8] C. Song, A. Pons, and K. Yen, “AG-SGD: Angle-Based Stochastic

Gradient Descent,” IEEE Access, vol. 9, pp. 23007–23024, 2021,

doi: 10.1109/ACCESS.2021.3055993.
[9] C. Milovic et al., “Comparison of parameter optimization methods

for quantitative susceptibility mapping,” Magn. Reson. Med., vol.

85, no. 1, pp. 480–494, Jan. 2021, doi: 10.1002/mrm.28435.
[10] M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam

algorithm for deep neural network optimization,” Neural Comput.

Appl., vol. 35, no. 23, pp. 17095–17112, 2023, doi: 10.1007/s00521-
023-08568-z.

[11] I. K. M. Jais, A. R. Ismail, and S. Q. Nisa, “Adam Optimization

Algorithm for Wide and Deep Neural Network,” Knowl. Eng. Data
Sci., vol. 2, no. 1, p. 41, 2019, doi: 10.17977/um018v2i12019p41-

46.

[12] B. Cortiñas-Lorenzo and F. Pérez-González, “Adam and the Ants:
On the Influence of the Optimization Algorithm on the Detectability

of DNN Watermarks,” Entropy, vol. 22, no. 12, p. 1379, Dec. 2020,
doi: 10.3390/e22121379.

[13] P. Ramachandran, T. Eswarlal, M. Lehman, and Z. Colbert,

“Assessment of optimizers and their performance in autosegmenting
lung tumors,” J. Med. Phys., vol. 48, no. 2, pp. 129–135, 2023, doi:

10.4103/jmp.jmp_54_23.

[14] P. Podder et al., “LDDNet: A Deep Learning Framework for the
Diagnosis of Infectious Lung Diseases,” Sensors, vol. 23, no. 1,

2023, doi: 10.3390/s23010480.

[15] C. Annamalai, C. Vijayakumaran, V. Ponnusamy, and H. Kim,
“Optimal ElGamal Encryption with Hybrid Deep-Learning-Based

Classification on Secure Internet of Things Environment,” Sensors,

vol. 23, no. 12, p. 5596, Jun. 2023, doi: 10.3390/s23125596.
[16] R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy,

“Improving the efficiency of RMSProp optimizer by utilizing

Nestrove in deep learning,” Sci. Rep., vol. 13, no. 1, p. 8814, May
2023, doi: 10.1038/s41598-023-35663-x.

[17] X. Jiang, B. Hu, S. Chandra Satapathy, S. H. Wang, and Y. D.

Zhang, “Fingerspelling Identification for Chinese Sign Language
via AlexNet-Based Transfer Learning and Adam Optimizer,” Sci.

Program., vol. 2020, 2020, doi: 10.1155/2020/3291426.

[18] A. Daneshvar, M. Ebrahimi, F. Salahi, M. Rahmaty, and M.
Homayounfar, “Brent Crude Oil Price Forecast Utilizing Deep

Neural Network Architectures,” Comput. Intell. Neurosci., vol.

2022, pp. 1–13, May 2022, doi: 10.1155/2022/6140796.
[19] V. Ojha and G. Nicosia, “Backpropagation Neural Tree,” Neural

International Journal of Multidisciplinary Studies and Innovative Technologies, 2024, 8(2): 52 – 58

58

Networks, vol. 149, pp. 66–83, May 2022, doi:
10.1016/j.neunet.2022.02.003.

[20] B. Zhu, Y. Shi, J. Hao, and G. Fu, “Prediction of Coal Mine Pressure

Hazard Based on Logistic Regression and Adagrad Algorithm—A
Case Study of C Coal Mine,” Appl. Sci., vol. 13, no. 22, 2023, doi:

10.3390/app132212227.

[21] F. Aamir, I. Aslam, M. Arshad, and H. Omer, “Accelerated
Diffusion-Weighted MR Image Reconstruction Using Deep Neural

Networks,” J. Digit. Imaging, vol. 36, no. 1, pp. 276–288, Nov.

2022, doi: 10.1007/s10278-022-00709-5.
[22] G. Ayana, J. Park, J.-W. Jeong, and S. Choe, “A Novel Multistage

Transfer Learning for Ultrasound Breast Cancer Image

Classification,” Diagnostics, vol. 12, no. 1, p. 135, Jan. 2022, doi:
10.3390/diagnostics12010135.

[23] R. Sirisha, N. Anjum, and K. Vaidehi, “INDIAN JOURNAL OF

SCIENCE AND TECHNOLOGY Implementation of CNN and
ANN for Fashion-MNIST-Dataset using Different Optimizers,”

Indian J. Sci. Technol., vol. 15, no. 47, pp. 2639–2645, 2022,

[Online]. Available: https://www.indjst.org/
[24] A. S. Henrique et al., “Classifying Garments from Fashion-MNIST

Dataset Through CNNs,” Adv. Sci. Technol. Eng. Syst. J., vol. 6, no.

1, pp. 989–994, 2021, doi: 10.25046/aj0601109.
[25] O. M. Khanday, S. Dadvandipour, and M. A. Lone, “Effect of filter

sizes on image classification in CNN: A case study on CFIR10 and

fashion-MNIST datasets,” IAES Int. J. Artif. Intell., vol. 10, no. 4,
pp. 872–878, 2021, doi: 10.11591/ijai.v10.i4.pp872-878.

[26] Y. Tang, H. Cui, and S. Liu, “Optimal Design of Deep Residual

Network Based on Image Classification of Fashion-MNIST
Dataset,” J. Phys. Conf. Ser., vol. 1624, no. 5, pp. 0–7, 2020, doi:

10.1088/1742-6596/1624/5/052011.

[27] M. Kayed, A. Anter, and H. Mohamed, “Classification of Garments
from Fashion MNIST Dataset Using CNN LeNet-5 Architecture,”

Proc. 2020 Int. Conf. Innov. Trends Commun. Comput. Eng. ITCE

2020, no. June, pp. 238–243, 2020, doi:
10.1109/ITCE48509.2020.9047776.

[28] H. H. Zhu et al., “Space-efficient optical computing with an

integrated chip diffractive neural network,” Nat. Commun., vol. 13,
no. 1, pp. 1–9, 2022, doi: 10.1038/s41467-022-28702-0.

[29] T. Hur, L. Kim, and D. K. Park, “Quantum convolutional neural
network for classical data classification,” Quantum Mach. Intell.,

vol. 4, no. 1, pp. 1–18, 2022, doi: 10.1007/s42484-021-00061-x.

[30] O. Nocentini, J. Kim, M. Z. Bashir, and F. Cavallo, “Image
Classification Using Multiple Convolutional Neural Networks on

the Fashion-MNIST Dataset,” Sensors, vol. 22, no. 23, p. 9544, Dec.

2022, doi: 10.3390/s22239544.
[31] S. Yang, S. Hoque, and F. Deravi, “Adaptive Template

Reconstruction for Effective Pattern Classification,” Sensors, vol.

23, no. 15, p. 6707, Jul. 2023, doi: 10.3390/s23156707.
[32] S. Coleman, D. Kerr, and Y. Zhang, “Image Sensing and Processing

with Convolutional Neural Networks,” Sensors, vol. 22, no. 10, p.

3612, May 2022, doi: 10.3390/s22103612.
[33] V. Terziyan, D. Malyk, M. Golovianko, and V. Branytskyi, “Hyper-

flexible Convolutional Neural Networks based on Generalized

Lehmer and Power Means,” Neural Networks, vol. 155, pp. 177–
203, Nov. 2022, doi: 10.1016/j.neunet.2022.08.017.

[34] K. Wang, C. Xu, G. Li, Y. Zhang, Y. Zheng, and C. Sun,

“Combining convolutional neural networks and self-attention for
fundus diseases identification,” Sci. Rep., vol. 13, no. 1, p. 76, Jan.

2023, doi: 10.1038/s41598-022-27358-6.

[35] E. Chu, D. Li, and Y. Tong, “Optimized federated learning based on
Adagrad algorithm and algorithm optimization,” Appl. Comput.

Eng., vol. 19, no. 1, pp. 9–17, Oct. 2023, doi: 10.54254/2755-

2721/19/20231000.
[36] I. Naseer, S. Akram, T. Masood, A. Jaffar, M. A. Khan, and A.

Mosavi, “Performance Analysis of State-of-the-Art CNN

Architectures for LUNA16,” Sensors, vol. 22, no. 12, p. 4426, Jun.
2022, doi: 10.3390/s22124426.

[37] Y. S. Saboo, S. Kapse, and P. Prasanna, “Convolutional Neural

Networks (CNNs) for Pneumonia Classification on Pediatric Chest
Radiographs,” Cureus, Aug. 2023, doi: 10.7759/cureus.44130.

[38] M. Uppal et al., “Enhancing accuracy in brain stroke detection:

Multi-layer perceptron with Adadelta, RMSProp and AdaMax
optimizers,” Front. Bioeng. Biotechnol., vol. 11, Sep. 2023, doi:

10.3389/fbioe.2023.1257591.

[39] R. Liang, X. Chang, P. Jia, and C. Xu, “Mine Gas Concentration
Forecasting Model Based on an Optimized BiGRU Network,” ACS

Omega, vol. 5, no. 44, pp. 28579–28586, Nov. 2020, doi:

10.1021/acsomega.0c03417.

[40] S. B. ud din Tahir, A. Jalal, and K. Kim, “Wearable Inertial Sensors
for Daily Activity Analysis Based on Adam Optimization and the

Maximum Entropy Markov Model,” Entropy, vol. 22, no. 5, p. 579,

May 2020, doi: 10.3390/e22050579.

