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Abstract – This study examines the effects of various optimization algorithms used in deep learning models to classify fashion-

oriented clothing items. The Fashion MNIST dataset has been chosen as a rich data source. Models developed using 

Convolutional Neural Networks (CNN) have been trained with various optimization algorithms such as Nadam, Adadelta, 

Adamax, Adam, Adagrad, SGD, and RMSprop. Understanding the impact of these algorithms on the model's performance during 

the training process forms the basis of the study. The findings of the research reveal that optimization algorithms have a 

significant effect on the accuracy rates of the model. While the Nadam and Adadelta algorithms achieved the highest accuracy 

rates, the RMSprop algorithm displayed relatively lower performance. These results indicate that different optimization 

techniques can significantly influence the performance of deep learning-based classification systems. 
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I. INTRODUCTION 

Deep learning has become one of the most attractive areas 

in artificial intelligence and machine learning over the past 

decade, undergoing significant evolution. This method offers 

the ability to learn from comprehensive and voluminous 

datasets through models composed of multi-layered neural 

networks. Particularly, revolutionary results have been 

achieved in fields such as visual and auditory recognition, 

forecasting apps, natural language processing, and various 

pattern recognitions [1],[2]-[5]. 

Optimization algorithms play an indispensable role in the 

training process of these models [6]. The success of a deep 

learning model is largely dependent on the effectiveness of the 

chosen optimization algorithm. Stochastic Gradient Descent 

(SGD) [7-8]  and its variants enable the model to demonstrate 

superior performance on the dataset by adjusting its weights 

and bias values. In literature, comparing different optimization 

algorithms and the identification of the most suitable one have 

become important research topics, especially for models 

operating on large and complex datasets [9]. 

Recent studies on deep learning and optimization algorithms 

have examined the performance of various algorithms on 

different datasets. For instance, Ö. Dolma [1] classified 

COVID-19 and non-COVID-19 lung CT scan images using 

deep convolutional neural networks. E. Avuçlu [2-3] evaluated 

the classification performance of COVID-19 images using 

deep learning methods. In another study, M. C. Bingöl and G. 

Bilgin [4] investigated the prediction of chicken diseases using 

transfer learning methods. Comparing optimization 

algorithms, especially for large and complex datasets, is 

crucial to determining which algorithm is more suitable. 

Stochastic Gradient Descent (SGD) and its variants enable the 

model to adjust its weights and biases to perform optimally on 

the dataset [6], [7-8]. Algorithms with adaptive learning rates, 

such as Adam [9], [10-11], Nadam [12], [13-14], RMSprop 

[15], [16-17], and Adagrad [18], [19-20], are widely used to 

achieve strong results in the training process of deep learning 

models. In this context, the Fashion MNIST dataset is 

frequently preferred as a rich data source for classifying 

fashion-oriented clothing items. For example, R. Sirisha and 

colleagues [23] compared the performance of different 

optimization algorithms on the Fashion MNIST dataset; A. S. 

Henrique and his team [24] developed CNN models using this 

dataset. Khanday and colleagues [25] examined the effect of 

filter sizes on classification accuracy. Other studies include 

those by Tang et al. [26], Kayed et al. [27], Zhu et al. [28], and 

Hur et al. [29], who have all utilized the Fashion MNIST 

dataset for various purposes, such as optimizing deep residual 

networks, using CNN LeNet-5 architecture, space-efficient 

optical computing, and quantum convolutional neural 

networks, respectively. These studies examined the impact of 

different optimization algorithms on the accuracy rates of deep 

learning-based classification models and identified the most 

effective algorithms [21], [22-29]. 

Researchers and practitioners have closely examined the 

algorithms used in optimizing deep learning models in recent 

years. Among these algorithms, methods with adaptive 

learning rates such as Adam, Nadam, RMSprop, and Adagrad 

have become popular for achieving strong results in the 

training process of deep learning models [21].  

https://dergipark.org.tr/en/pub/ijmsit
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This study aims to examine the effects of these algorithms 

on the Fashion MNIST dataset [22], [23-29], a widely used 

dataset for training and testing contemporary artificial 

intelligence and machine learning systems. This dataset 

contains grayscale images of various clothing items and offers 

an excellent test ground for algorithmic classification [30]. 

The purpose of this research is to understand the impact of 

different optimization algorithms on the accuracy rates of deep 

learning-based classification models and to use this knowledge 

to enhance the effectiveness of classification systems. The 

findings highlight the importance of selecting optimization 

strategies in AI applications and guide future research in this 

direction. 

II. MATERIALS AND METHOD 

Convolutional Neural Networks (CNNs)[31] are frequently 

utilized in image processing and visual recognition tasks. 

Essentially, they employ convolutional layers to detect local 

features in an image, such as edges, textures, and shapes. 

These layers, through a specific learning process, 

automatically learn to extract useful features from different 

parts of the image. CNNs are capable of recognizing complex 

visual patterns by combining and interpreting these features in 

subsequent layers. 

The fundamental components of CNNs include 

convolutional layers, activation functions, pooling layers, and 

fully connected layers. Convolutional layers apply filters to the 

input image to create feature maps, effectively extracting 

information from different sections of the image to identify 

important features. 

Activation functions enhance the network's non-linear 

learning capability. One of the most commonly used activation 

functions is ReLU, which speeds up the model's training 

process by setting negative values to zero and helping to 

address the gradient vanishing problem. 

Pooling layers reduce the dimensionality of feature maps, 

lightening the network's computational load. This is achieved 

by taking the maximum or average value of certain sections of 

the image. Pooling ensures the network's robustness against 

translational variances, such as changes in the position of an 

object within the image [32]. 

Fully connected layers are located at the end of the network 

and use the learned features to perform tasks such as 

classification or regression, producing the final output. These 

layers associate each input with probabilities for each class in 

the output. 

Due to their ability to successfully recognize complex visual 

patterns, CNNs are effectively used in various application 

areas such as face recognition, vehicle license plate 

recognition, medical image analysis, and object detection from 

satellite images. Recent advancements in deep learning have 

further improved the performance and applicability of CNNs, 

making them an indispensable component of artificial 

intelligence applications [33]. 

In this study, Convolutional Neural Networks (CNNs) were 

used. Various optimization algorithms within the CNN have 

been compared for their success rates on the MNIST dataset. 

The optimization algorithms used are explained in sequence. 

The algorithms employed include Stochastic Gradient Descent 

(SGD), Adagrad, RMSprop, Adadelta, Adamax, Nadam, and 

Adam. 

 

A. Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent (SGD) is a method that 

calculates the gradient using a single training example at each 

step to update the model parameters. This approach enables 

quick parameter updates based on randomly selected samples, 

eliminating the need to process the entire dataset in each 

iteration. This efficiency makes SGD particularly effective for 

large datasets. However, the optimization path of SGD can be 

somewhat erratic, leading towards the target through a 

fluctuating route, which necessitates precise hyperparameter 

tuning for optimal performance. 

The core of SGD's methodology is encapsulated in its 

update rule, where the parameter θ at any given iteration  

t+1 is adjusted according to the formula: 

𝜃𝑡+1 =  𝜃𝑡 −  𝜂 ∇𝜃 𝐿 ( 𝜃𝑡;  𝑥𝑖 , 𝑦𝑖 )   (1) 

In this equation, 𝜃𝑡    represents the parameter vector at 

iteration t, η denotes the learning rate, and  

 ∇𝜃 𝐿 ( 𝜃𝑡;  𝑥𝑖 , 𝑦𝑖 ) signifies the gradient of the loss function L 

with respect to θ, evaluated for the i th training example at the  

t th iteration. This process underscores the iterative nature of 

SGD, where each step is calculated to steer the parameters 

closer to the optimum by leveraging the gradient information 

from a single, randomly selected training example [7-8]. 

B.  Adagrad 

Adagrad is an optimization algorithm that adaptively 

adjusts the learning rate for each parameter, making it 

particularly well-suited for dealing with sparse datasets. 

Unlike conventional methods that use a single learning rate for 

all parameters throughout the training process, Adagrad 

modifies the learning rate individually for each parameter 

based on the historical gradient information. This approach 

lowers the learning rate for parameters corresponding to 

frequently occurring features, while ensuring a higher learning 

rate for rare features. As a result, Adagrad can significantly 

improve the efficiency of model training, especially in 

scenarios where the data is sparse.The key to Adagrad's 

adaptive learning rate adjustment lies in its update rule, which 

is mathematically formulated as follows:  

For each parameter 𝜃𝑡, the update at iteration t is given by;  

𝜃𝑖,𝑡+1 =  𝜃𝑖,𝑡 −   
𝜂

√𝐺𝑖,𝑡+∈
 . 𝑔𝑖,𝑡   (2) 

Here 𝑔𝑖,𝑡 , represents the gradient of the loss with respect to 

the parameter 𝜃𝑖 at iteration t, 𝐺𝑖,𝑡 is the sum of the squares of 

the past gradients with respect to 𝜃𝑖  up to time t, η is a global 

learning rate, and ϵ is a smoothing term added to improve 

numerical stability (often set to a small constant like 1e−8), 

preventing division by zero. 

This formula ensures that parameters with large gradients 

have their learning rate decreased over time, which helps in 

honing in on the minimum more efficiently. However, a 

notable downside of Adagrad is its tendency for the learning 

rate to decrease continually throughout training, potentially 

leading to premature convergence and the model stopping 

early in long training processes. Despite this limitation, 

Adagrad's ability to adapt the learning rate to the parameters 

has made it a foundational algorithm for further developments 

in adaptive learning rate techniques[18], [34-35]. 
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C.  RMSprop 

RMSprop, short for Root Mean Square Propagation, is an 

optimization algorithm designed to overcome the challenge of 

the excessively decreasing learning rate that Adagrad faces. By 

focusing on the magnitude of gradients in only the most recent 

iterations, RMSprop dynamically adjusts the learning rate. 

This method ensures that the learning rate does not diminish 

too quickly, maintaining a level that is conducive to continued 

learning and optimization over time. RMSprop is particularly 

effective in scenarios involving recurrent neural networks and 

non-stationary targets, where the landscape of the optimization 

problem changes over time. 

The mathematical foundation of RMSprop is expressed 

through its update rule, which modifies the learning rate for 

each parameter based on the recent gradients. The update for a 

parameter θ at iteration t is given by: 

𝜃 𝑡+1 =  𝜃𝑡 −   
𝜂

√𝑣𝑡+∈
 . 𝑔𝑡    (3) 

In this equation, 𝑔𝑡 is the gradient of the loss with respect to 

the parameter θ at iteration t, η is the initial learning rate, and 

ϵ is a small constant (like 1e−8) to prevent division by zero. The 

term 𝑣𝑡 represents the exponentially weighted moving average 

of the squares of the gradients, calculated as: 

𝑣𝑡 =  𝛽𝑣𝑡−1 + (1 +  𝛽) 𝑔𝑡
2   (4) 

Here, β is a decay rate that determines the extent to which 

the moving average considers the most recent gradient 

magnitudes, typically set to a value like 0.9. This mechanism 

of adjusting 𝑣𝑡ensures that RMSprop considers the magnitude 

of recent gradients, enabling adaptive learning rates that 

respond to the current state of the optimization process.  

By employing this strategy, RMSprop effectively prevents 

the learning rate from dropping too low, a significant 

improvement over Adagrad's approach. This adaptability 

makes RMSprop a robust choice for training deep neural 

networks, particularly in the challenging environments 

presented by recurrent neural networks and tasks with non-

stationary objectives. [36],[18]. 

D.  Adadelta 

Adadelta is an optimization algorithm that extends the 

principles of RMSprop to enhance stability in the learning rate 

throughout the training process. It achieves this by employing 

a unit measure for weight updates, which allows for 

continuous model improvement without the explicit need to 

adjust the learning rate manually. This approach addresses one 

of the key challenges in optimization algorithms - the 

sensitivity to the choice of learning rate. By eliminating the 

dependence on a global learning rate, Adadelta simplifies the 

optimization process, making it more robust and easier to use, 

especially in environments where parameter tuning can be 

laborious. 

The foundation of Adadelta is grounded in the modification 

of the RMSprop update rule, incorporating the use of the 

moving average of squared gradients to adjust the learning rate 

dynamically, but it also introduces the concept of 

accumulating updates over time to determine the step size. The 

update rule in Adadelta for a parameter θ at iteration t can be 

expressed as follows: 

∆𝜃 𝑡+1 = −
√∑ ∆𝜃𝑖−1

2 +∈ 𝑡−1
𝑖=1

√𝐸[𝑔2]𝑡 +∈
  . 𝑔𝑡    (5) 

Here, 𝑔𝑡 represents the gradient of the loss with respect to 

the parameter θ at iteration t, 𝐸[𝑔2]𝑡  is the exponentially 

decaying average of squared gradients up to time t, and ϵ is a 

small constant (similar to RMSprop) added for numerical 

stability. The term ∆𝜃𝑡denotes the change in θ at iteration t, 

and the numerator √∑ ∆𝜃𝑖−1
2 +∈ 𝑡−1

𝑖=1  represents the root mean 

square of previous parameter updates, which serves to scale 

the gradient in proportion to the historical update magnitudes. 

The key innovation of Adadelta is that it does not require an 

explicit learning rate. Instead, it adapts the parameter updates 

based on the moving averages of the squared gradients and the 

squared updates, thus regulating the step size based on the 

history of changes. This self-adjusting mechanism ensures 

more stable and consistent learning progress, mitigating the 

risk of drastic updates that could potentially derail the 

optimization process. 

By combining the adaptive gradient approach of RMSprop 

with the innovative update adjustment mechanism, Adadelta 

offers a sophisticated solution to the challenge of learning rate 

selection and stability, making it an attractive choice for 

training deep neural networks where tuning hyperparameters 

can be particularly challenging [36-37]. 

E. Adamax 

Adamax is a variation of the Adam optimization algorithm, 

designed to enhance stability in scenarios characterized by 

extreme gradient values. While Adam employs adaptive 

moment estimation to adjust learning rates based on the first 

and second moments of gradients (mean and uncentered 

variance), Adamax introduces an alternative approach by 

utilizing a different norm, making it potentially more robust in 

the face of extreme updates. This characteristic of Adamax 

stems from its adaptation of the ∞-norm, which provides a 

theoretical upper bound on the updates, hence its name. The 

update rules for Adamax at iteration t for a parameter θ can be 

summarized as follows:  

Update the first moment (the mean) of the gradient: 

𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 − 𝛽1) 𝑔𝑡   (6) 

where 𝑔𝑡is the gradient of the loss with respect to θ at 

iteration t, and 𝑚𝑡 is the first moment vector. 

Update the ∞-norm of the gradients rather than the second 

moment: 

𝑢𝑡 = max (𝛽2 𝑢𝑡−1, |𝑔𝑡|)   (7) 

Here, 𝑢𝑡 represents the ∞-norm of the gradients, which is 

updated to be the maximum of the previous ∞-norm scaled by 

𝛽2 and the absolute value of the current gradient. This replaces 

the second moment estimation used in the original Adam. 

Compute the parameter update using the first moment and 

the ∞-norm: 

𝜃 𝑡+1 =  𝜃 𝑡 −  
𝜂

𝑢𝑡+ ∈ 
 𝑚 𝑡   (8) 

In this equation, η is the step size (learning rate), and ϵ is a 

small constant added for numerical stability.The introduction 

of the ∞-norm in Adamax, as opposed to the squared gradients 

norm in Adam, aims to provide a more stable and less 

aggressive adaptation of the learning rates, especially in the 

presence of large gradients. This makes Adamax an appealing 

alternative for optimization in machine learning tasks where 

gradients can vary significantly in magnitude, potentially 
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leading to more consistent and reliable convergence over the 

course of training [38-39]. 

F.  Nadam 

Nadam, short for Nesterov-accelerated Adaptive Moment 

Estimation, merges the Adam optimization algorithm with 

Nesterov momentum, harnessing the strengths of both 

methodologies to achieve more efficient optimization. By 

integrating Adam's adaptive learning rate features with the 

anticipatory updates of Nesterov momentum, Nadam 

facilitates faster convergence and improved performance, 

particularly in the context of deep learning and complex 

optimization tasks. This combination allows Nadam to 

navigate the optimization landscape more effectively, making 

it a powerful tool for training neural networks. 

The mathematical formulation of Nadam incorporates 

elements from both Adam and Nesterov momentum, resulting 

in an update rule that looks as follows: 

Update the first moment (mean) and the second moment 

(uncentered variance) of the gradients, similar to Adam: 

𝑚 𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡   , 𝑣𝑡 =  𝛽𝑣𝑡−1 + (1 +  𝛽) 𝑔𝑡
2  (9) 

where 𝑔𝑡    is the gradient of the loss with respect to the 

parameter θ at iteration t, 𝑚𝑡 is the first moment vector, and 

𝑣𝑡  is the second moment vector. 

Incorporate Nesterov momentum into the moment update 

by adjusting the first moment before the parameter update: 

𝑚̂𝑡 =   
𝑚𝑡

1−𝛽1
𝑡 
 + 

(1− 𝛽1)𝑔𝑡   

(1−𝛽1
𝑡)(1− 𝛽1)

   (10) 

𝑣̂𝑡 = 
𝑣𝑡

(1−𝛽2
𝑡)

     (11) 

Compute the parameter update using the adjusted first 

moment and the second moment: 

𝜃 𝑡+1 =  𝜃 𝑡 −  
𝜂

√𝑣̂𝑡+ ∈ 
 𝑚̂𝑡   (12) 

In this equation, η is the learning rate, and ϵ is a small 

constant added for numerical stability. 

By leveraging the lookahead nature of Nesterov 

momentum, which essentially incorporates information about 

the future gradient, Nadam ensures that each update is more 

informed and precise. This results in a more aggressive and 

effective approach to finding the minimum of the loss 

function, reducing the number of iterations needed to achieve 

convergence. Nadam’s unique blend of Adam’s adaptiveness 

and Nesterov’s accelerated updates provides a significant 

advantage in training deep learning models, offering a balance 

between speed and accuracy in the optimization process [38-

39]. 

G. Adam 

The Adam optimization algorithm, standing for Adaptive 

Moment Estimation, is widely recognized for its ability to 

adaptively adjust both the learning rate and momentum for 

each parameter, making it a popular and effective method for 

deep learning tasks. By calculating exponential moving 

averages of both the gradients and the squared gradients, 

Adam maintains separate learning rates for each parameter, 

which are adjusted as learning progresses. This adaptability 

allows Adam to perform well across a wide range of deep-

learning tasks, from simple to complex models. The 

mathematical formulation of Adam involves several key steps, 

as outlined below: 

First and Second Moment Estimation: For each parameter 

θ, Adam computes the first moment (the mean) and the second 

moment (the uncentered variance) of the gradients: 

𝑚 𝑡 = 𝛽1𝑚𝑡−1 + (1 −  𝛽1)𝑔𝑡   , 𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 +  𝛽2) 𝑔𝑡
2 

(13) 

Here, 𝑔𝑡    represents the gradient of the loss with respect to 

θ at iteration t, 𝑚 𝑡 and 𝑣𝑡 are the estimates of the first and 

second moments respectively, and 𝛽1 and 𝛽2 are the decay 

rates for these moments. 

Bias Correction: To counteract the biases introduced by 

initializing the moments as zeros, Adam applies bias 

corrections: 

𝑚̂𝑡 =   
𝑚𝑡

1−𝛽1
𝑡 
  ,  𝑣̂𝑡 = 

𝑣𝑡

(1−𝛽2
𝑡)

   (14) 

This step ensures that the moment estimates are unbiased 

towards zero at the start of optimization. 

Parameter Update: The parameters are updated using the 

bias-corrected moments: 

𝜃 𝑡+1 =  𝜃 𝑡 −  
𝜂

√𝑣̂𝑡+ ∈ 
 𝑚̂𝑡   (15) 

In this equation, 𝜂 is the step size (learning rate), and ∈ is a 

small constant added for numerical stability. Adam’s approach 

to adjusting the learning rate based on the first and second 

moments of the gradients allows for more effective and 

efficient optimization, especially in the context of deep 

learning. This adaptability, combined with its straightforward 

implementation and robust performance across various tasks, 

has cemented Adam’s status as a go-to optimization algorithm 

for many deep learning practitioners.[9],[40]. 

III. IMPLEMENTATION 

Dataset and Preprocessing; The Fashion MNIST dataset 

consists of 60,000 training and 10,000 test images. Each image 

is a grayscale image of a garment with a resolution of 28x28 

pixels. 

In terms of data preprocessing steps, the images have been 

normalized between 0 and 1 and reshaped to the appropriate 

input size for the model (28x28x1), facilitating more effective 

learning by the model. 

Model Architecture; First Convolutional Layer: Equipped 

with 32 filters, each having a kernel size of (3,3), and utilizes 

the ReLU activation function. This layer accepts input data of 

28x28 pixel resolution with 1 color channel (grayscale 

images). 

First Max Pooling Layer: Has a pool size of 2x2, aiming to 

halve the spatial dimensions. 

Second Convolutional Layer: Contains 64 filters, also using 

the ReLU activation function, with each filter having a kernel 

size of (3,3). 

Second Max Pooling Layer: Applies a 2x2 pooling operation 

again to further reduce spatial dimensions. 

Flatten Layer: Transforms the outputs from the 

convolutional and pooling layers into a single, long feature 

vector. 

First Dense Layer: Comprises 128 neurons and employs the 

ReLU activation function. 

Output Dense Layer: Contains 10 neurons corresponding to 

the ten different garment classes in the dataset, using the 
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softmax activation function to output probability distributions 

for classification. 

This study aims to compare the performance of different 

optimization algorithms: SGD, Adagrad, RMSprop, Adadelta, 

Adamax, Nadam, and Adam. Each algorithm is evaluated 

separately using the same model architecture. 

The models are trained over twenty epochs, and the accuracy 

rates of each optimization algorithm are assessed on the test 

set. Performance evaluations are conducted using loss and 

accuracy metrics on the test set. This methodology allows the 

research to be conducted within a concrete and reproducible 

framework, contributing to the reliability of the results 

obtained. 

IV. RESULTS 

This research has yielded significant findings by examining 

the impact of different optimization algorithms on the Fashion 

MNIST dataset. The study reveals that optimization 

algorithms have substantial effects on the training process and 

accuracy rates of the model. 

The graphs depicted in the figures demonstrate the variations 

in loss and accuracy values during the training process for 

different optimization algorithms. Figure 1 presents the 

comparative training and validation loss across training 

epochs, while Figure 2 illustrates the training and validation 

accuracy throughout the training iterations for various 

optimization algorithms on the Fashion MNIST dataset. 

 

 

Figure 1. Optimization Algorithm Comparison: Training and Validation Loss 

Across Epochs for Fashion MNIST Dataset 

 

Figure 2. Comparative Analysis of Training and Validation Accuracy Over 
Epochs Among Various Optimization Algorithms on Fashion MNIST 

Dataset 

Overall, all algorithms manage to reduce training loss, but 

some are notably more effective in reducing validation loss. 

The Nadam and Adam algorithms, in particular, maintain low 

and stable validation losses, indicating their strong 

generalization capabilities. On the other hand, the Adadelta 

algorithm, despite rapidly decreasing high initial loss values, 

appears to be less effective than other algorithms. The 

validation losses for SGD and Adagrad are also observed to be 

higher, which could suggest inferior generalization 

performance. 

As seen in Figure 2, Nadam and Adam algorithms also 

display high validation accuracy, signifying robust 

performance. This high accuracy suggests that the model is 

well-generalized to new data. In contrast, SGD and Adagrad 

have lower validation accuracy, hinting that they may be less 

effective for training the model on this dataset. RMSprop, 

although exhibiting high training accuracy, has a validation 

accuracy that falls short of expectations, a possible indication 

of overfitting. 

These insights reveal that the efficacy of an algorithm can 

vary significantly based on the dataset and specific problem at 

hand. They also highlight the critical role of model selection 

and hyperparameter tuning in machine learning. When 

selecting the best model, the performance on the validation set 

should be carefully considered. 

Table.1. Performance Metrics of Different Optimization Algorithms on 

Fashion MNIST Dataset 

Optimization 

Algorithm 

Final 

Training 

Accuracy 

Final 

Training 

Loss 

Final 

Validation 

Accuracy 

Final 

Validati

on Loss 

SGD 0.9019 0.2651 0.8765 0.3398 

Adagrad 0.8325 0.4681 0.8352 0.4603 

RMSprop 0.9751 0.0678 0.8998 0.5287 

Adadelta 0.7214 0.8193 0.7305 0.8004 

Adamax 0.9557 0.1269 0.9115 0.2569 

Nadam 0.9876 0.0331 0.9040 0.4831 

Adam 0.9839 0.0436 0.9098 0.4788 

 

According to Table 1; SGD has shown lower training 

accuracy and higher training loss compared to other 

algorithms. These findings suggest that SGD is less applicable 

to this particular problem than other alternatives. 
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Adagrad Optimization Algorithm: Adagrad has shown a 

moderate performance similar to SGD. Its accuracy and loss 

values were found to be at an average level. While Adagrad's 

dynamic adjustment of the learning rate can be advantageous 

in some problems, it has not achieved the best performance in 

this study. 

RMSprop Optimization Algorithm: The RMSprop 

algorithm achieved high training accuracy and low training 

loss but maintained a high validation loss. This could indicate 

that the model did not generalize well to the validation data 

and might be an indication of overfitting. 

Adadelta Optimization Algorithm: Adadelta’s performance 

was lower compared to other algorithms. Both its training and 

validation accuracy, as well as loss values, were found to be 

high, indicating that Adadelta's generalization capability and 

training performance are lower than other alternatives. 

Adamax Optimization Algorithm: Adamax exhibited good 

performance with high training and validation accuracy. Its 

low validation loss indicates that the model generalizes well to 

new data. 

Nadam Optimization Algorithm: Nadam overall showed the 

best performance with the highest validation accuracy and the 

lowest validation loss. This indicates that the model 

generalizes very well to new data and that this optimization 

algorithm is effective for the chosen dataset. 

Adam Optimization Algorithm: Adam showed a 

performance very close to Nadam. Its high training and 

validation accuracy and low validation loss indicate that this 

algorithm generalizes effectively. 

V. DISCUSSION 

This study evaluates the effectiveness of various 

optimization algorithms on the Fashion MNIST dataset, 

revealing significant differences in overall model 

performance. Specifically, the Nadam and Adam algorithms 

demonstrate superior generalization capabilities with their low 

validation losses and high validation accuracies, indicating 

their resilience against overfitting due to adaptive learning 

rates. On the other hand, the weaker performance exhibited by 

algorithms such as SGD and Adagrad, particularly in terms of 

high training and validation losses, highlights their limitations 

in developing effective learning strategies for high-

dimensional datasets. These findings emphasize the critical 

importance of selecting and tuning optimization algorithms in 

machine learning projects and underscore the significance of 

further research to improve these algorithms. Additionally, a 

better understanding of performance variations among 

algorithms can enhance the applicability of models across 

broader datasets and ensure more successful implementations 

in practical applications. 

VI. CONCLUSION 

This study has demonstrated that the most effective 

optimization algorithms for the Fashion MNIST dataset are 

Nadam and Adam. The performance of other alternatives was 

found to be lower compared to these two algorithms. However, 

since the performance of each algorithm can vary depending 

on the dataset and the problem, conducting more 

comprehensive tests such as cross-validation is recommended 

to select the most suitable algorithm. 
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