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ABSTRACT This study aims to find exact solutions for a mathematical problem known as the (4+1)-dimensional
Boiti Leon Manna Pempinelli (BLMP) equation. In order to convert the governing equation into an ordinary
differential equation, we make use of an appropriate wave transformation. This transformation enables the
investigation of mathematical solutions, exaggerated outcomes, and normal solutions. Furthermore, in order
to accurately determine the solution to this wave, we make use of the modified Khater method. We apply the
given approach to find rational, the trigonometric, and hyperbolic solutions. The selected solutions provide
graphic representations that accurately depict the physical behavior of the model. Using their visualization, we
are able to demonstrate how their behavior changes over time in a four-dimensional space. The use of a visual
representation, which involves selecting suitable values for arbitrary components, improves the understanding
of the dynamical system. Furthermore, we conduct a sensitivity analysis of the dynamical system to determine
the stability of the solution. The dynamical system engages in a discussion about the existence of chaotic
dynamics within the Boiti Leon Manna Pempinelli equation. It is possible to depict these chaotic phenomena
using two-dimensional and three-dimensional phase portraits.
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INTRODUCTION

For the purpose of expressing the issues that arise in nonlinear phe-
nomena, we use the nonlinear partial differential equation (PDE).
These phenomena include hydrodynamics, plasma physics, chemi-
cal dynamics, photobiology, solid physics, marine and atmospheric
phenomena, and many more. As a result of these disciplines, it is
clear that the traveling wave solutions of nonlinear evolution equa-
tions play a significant part in the investigation. For the purpose of
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finding exact solutions to nonlinear partial differential equations
(PDEs), explorers provided the following of these methods, such
as the first integral method (Feng 2002), Jacobi elliptic function
expansion method (Liu et al. 2001), F- expansion method (Sheng
2006), exp-function method (He and Zhang 2008), the Kudryashov

method (Kim et al. 2014), the improved(G′

G )-expansion method
(Wu et al. 2023), the tanh-coth method(Wazwaz 2007), tanh-sech
method (Ma 1993), projective Riccati equation method(Conte and
Musette 1992), Kudryashov method (Kudryashov 1991), sine-
cosine method (Wazwaz 2004), Hirota bilinear method (Wang
2009), bifurcation theory method of dynamic systems(Li et al. 2015).
Valdés et al present a historical-problemic focus of a course of
ordinary differential equations (Valdés 2003).

In recent times, the nonlinear evolution equations have been
making significant contributions to the accomplishment of sev-
eral scientific goals in a variety of domains(Khater 2021b). It was
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John Scott Russell’s discovery of the soliton wave that marked the
beginning of this progression (Tchaho et al. 2021). The character-
istics of this particular form of wave have piqued the interest of
several scientists from various fields, leading to the discovery of
some of these characteristics (Khater 2021a). In 1965, Zabusky and
Kruskal discovered the soliton wave language, which followed the
photon, proton, and other particles. After an interaction, Soliton
is a restricted framework that maintains control over its identity
(Al-Smadi et al. 2021). Solitary waves are used to describe the prop-
agation of undulation pulses or packets in nonlinear dispersive
media(Kruglov and Triki 2021). It is because of the dynamical bal-
ance between the nonlinear effects and the dispersive effects that
these undulations keep their stable structure(Nikan et al. 2021).

A soliton is an uncommon individual undulation that main-
tains its soliton structure regardless of whether or not it comes into
contact with other solitons (Al-Smadi 2018). That seemingly in-
significant factor exerts a substantial influence on scientific thought
(Khater et al. 2021c). All of these findings have led a significant
number of mathematicians to perceive themselves as important
contributors to development. This is not limited to mathematics
or any one field of study, rather it encompasses their participation
in the development of all scientific breakthroughs, as well as the
expansion of society and mankind(Akinyemi et al. 2021).

Researchers from all around the world have been interested in
higher-dimensional NLEEs. Researchers have discovered a broad
variety of solutions for NLEEs in higher dimensions, including
quasiperiodic, rogue wave, and lump wave solutions (Fokas 2016).
Recent research has hypothesized the existence of integrable NLEE
models that have three or more spatial dimensions (Xu and Huang
2013). The Lax Pair extension allows for the derivation of the
(4 + 1)-dimensional Fokas equation (Zheng-Zheng and Zhen-Ya
2009) from the Kadomtsev-Petviashvili (KP) equation in the (2 +
1)-dimensional space. This equation has been a part of extensive
research, which has included findings on issues such as point sym-
metry, potential symmetry, rogue waves, multisolitons, and a great
deal more (Lee et al. 2010). The fact that there exist a substantial
number of higher-dimensional models, such as those suggested by
(Xu and Wazwaz 2019), offers us a source of inspiration.

One of the most efficient methods for finding the exact solution
of NLEEs is the modified Khater technique (Biswas et al. 2016)
were the ones who first developed it, and many publications in the
past considered it to be a modified auxiliary equation approach.
Due to its simplicity and consistency, it can reduce computing
labor, indicating its wide range of use. This technique, which
relies on the auxiliary equation, benefits from seven strategies.
This strategy is beneficial as it eliminates the need for precise
solutions to numerous integer and fractional-order nonlinear PDEs.
One further use of it is to provide evidence that a set of solutions
does in fact exist (Singh et al. 2018). A lot of people have used
this method to find single-wave solutions to nonlinear partial
differential equations (PDEs). Some examples are the fractional
order Sharma Tasso-Olever (STO) equation(Bibi et al. 2017), the
Bogoyavlenskii equations system (Khater et al. 2017), the fractional
emerging telecommunication model (Park et al. 2020), and the
nonlinear Schrodinger equation (Khater et al. 2021a).

Khater et al. (2021a), recently conducted an analysis of a variety
of physical phenomena obtained numerical and analytical solu-
tions. Some of these answers were the Gilson Pickering equation,
nonlinear wave packets, ultrashort optical solitons, the Caudrey-
Dodd Gibbon equation, ultra-short pulse phase shifts, and the
Chen Lee Liu equation that has been changed. In this article,
we use the modified Khater technique to examine the Boiti-Leon-

Manna Pempinelli Equation, which is a four-dimensional equation,
in order to find closed form solitary wave solutions and solitons.
This investigation was motivated by prior research studies.

The use of bifurcation analysis to differential equations has
emerged as an intriguing topic of study in recent years (Liu et al.
2022). Using a cascaded system, Raza et al. (2024) investigated
wave phenomena that were quasiperiodic, periodic, and super
nonlinear. Saha (2017) find the bifurcation, periodic and chaotic
motions of the modified equal width-Burgers (MEW-Burgers) equa-
tion with external periodic perturbation in nonlinear dynamics.
Many researchers have used bifurcation analysis to investigate
both the disturbed and unperturbed nature of dynamical systems.
Jamal and others established soliton solutions of the nerve impulse
model (Jamal et al. 2023). They utilized the theory of bifurcation
and chaos to understand the multistability, sensitivity analysis,
chaos, and bifurcation of the nerve impulse model, as well as the
concept of external disturbance. They use bifurcation to determine
equilibrium points and calculate all phase portraits of a dynamical
system. To clarify whether the model under discussion is chaotic
or not, chaos theory provides the answer. Specifically, it suggests
that when we apply an external force to the solutions to physical
events that occur in nonlinear media, the solutions either remain
stable or become chaotic.

The beginning circumstances solely determine the behavior of
autonomous dynamical systems at the asymptotic level. In the
realm of equilibrium behaviors, there are four distinct types: a
limit circle, a tour, an equilibrium point, and chaos. This study
centers on chaos theory to investigate the dynamical system un-
der discussion. There are many different approaches to assessing
whether or not chaos exists. This current research highlights the
most advantageous ones. Lyapounov exponents, phase portraits,
time series, Poincaré maps, bifurcation diagrams, and power spec-
trums are some of the most prominent approaches, as stated by
(Özer and Akın 2005). Various techniques, such as the Lyapunov
dimension, the correlation dimension, and entropy, can identify
chaos. However, the difficulty of identifying chaos in real-world
systems often discourages the use of these techniques.

This article is organized into the following sections: In Section
2, the equation that governs the system is given, along with a
review of the modified Khater method that was used. In Section 3,
a graphical depiction of the solutions that were achieved is shown.
The investigation of bifurcation analysis is encompassed within
the section denoted by 4. A demonstration of chaos theory and
sensitivity analysis is present in section 5. In the section referred to
as 6, an explanation of the conclusion is provided.

GOVERNING EQUATION

This study uses the Boiti Leon Manna Pempinelli (BLMP) equation
with(4+1)-dimensions (Raza et al. 2022) to discuss the movement
of a compressible fluid in a structure.

hyt + hzt + hst + a1hxxxy + a1hxxxz + a1hxxxs+

a2hx(hxy + hxz + hxs) + a2hxx(hy + hz + hs) = 0.
(1)

Here, t represents time, whereas x, y, z, and s represent the
dimensions of space. Furthermore, we use the symbols a1 and a2
to represent real constants that are not zero and have an arbitrary
nature. Eq.(2) is derived from the Boiti-Leon-Manna-Pempinelli
(BLMP) equation, which has four dimensions. To investigate the
system summarized by Eq. (1), using specific wave transformation
that is,

h(x, y, z, s, t) = f (ξ).
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Where, ξ = k1x + k2y + k3z + k4s − ct, k denotes the wave width
and c represents the wave speed. By utilizing wave transformation
we finally have,

δ0 f
′′
+ δ1 f

′′′′
+ δ2 f

′
f
′′
= 0. (2)

Integrating Eq. (2), we have the equation

δ0 f
′
+ δ1 f

′′′
+ δ2

( f
′
)2

2
= 0. (3)

Let δ2
2 = δ∗2 , we have

δ0 f
′
+ δ1 f

′′′
+ δ∗2 ( f

′
)2 = 0. (4)

Execution of Modified Khater Method

In this part of article, the method provided by (Khater et al. 2021b)
is used to extract the solitary wave solutions of the equation that is
being discussed. We can view the plots of the discussed results by
selecting proper values for the parameters.
Step(1): Following is a statement that illustrates the general struc-
ture of a nonlinear partial differential equation.

G(h, hx, hxx, ..., hy, hyy, ..., hz, hzz, ..., hs, hss, ..., ht, htt, ...) = 0. (5)

In this context, the expression h = h(x, y, z, s, t) is not familiar, and
G is a representation of a polynomial function with regard to
certain variables ξ.

Step(2):The transformation has been used in the following way:

h(x, y, z, s, t) = f (ξ), ξ = k1x + k2y + k3z + k4s − ct,

by converting this into simple form as:

G( f , f
′
, f

′′
, f

′′′
, ...) = 0,

the prime number f denotes the derivative with respect to ξ.
Step (3): A possible initial solution to the above equation is as
follows

f (ξ) =
n

∑
j=0

ΛjΩ
j(ξ). (6)

For each Λj(0 ≤ j ≤ n), the constants are chosen at random, and
Ω(ξ) represents the solution to the equation that is required.

f (ξ) = Λ0 + Λ1Ω(ξ). (7)

The general solution to nonlinear ordinary differential equa-
tions may be written as:

Ω′(ξ) = a1ln(v) + a2 Ω(ξ) ln(v) + a3 Ω2(ξ) ln(v). (8)

Here, a1, a2 and a3 are real constants.
Step(4): The highest order derivative f

′′′
and the highest order

nonlinear term ( f
′
)2 in Eq.5 are balanced to get n=1 in accordance

with the homogeneous balance principle.
Step(5):The following set of algebraic equations is constructed
using Eq.8 and Eq.9 in Eq.7,and they are balanced to zero by the
coefficients of each power of Ω.



Ω0J(ξ) : Λ2
1 a2

1 ln(v)2µ + Λ1 a1 ln(v) λ + Λ1(2∆a2
1 ln(v)3

+a ln(v)3 a2
2) = 0,

Ω1J(ξ) : 2Λ2
1 a1 ln(v)2 a2 µ + Λ1 ln(v) a2λ + Λ1(a2(2a1 ln(v)2∆

+ln(v)2a2
2)ln(v) + 6∆ a2 ln(v)3)a1 = 0,

Ω2J(ξ) : Λ2
1(2a1 ln(v)2 ∆ + ln(v)2 a2

2)µ + Λ1 ∆ ln(v) λ+

Λ1(3a2
2 ln(v)3 ∆ + (4∆(2a1 ln(v)2 ∆ + ln(v)2 a2

2)ln(v))σ = 0,

Ω3J(ξ) : 12Λ1 a2 ∆2 ln(v)3 σ + 2Λ2
1 ln(v)2 a2 ∆ µ = 0,

Ω4J(ξ) : 6Λ1 ∆3 ln(v)3 σ + Λ2
1 ∆2 ln(v)2 µ = 0.

Solving the system of algebraic equations with the assistance of
Maple allows for the acquisition of distinct solution sets. With
the help of the Eq.5, we are able to get the following exact solutions.

Λ0 = Λ0, Λ1 = − 6a3λ

ln(v)(4a3a1 − a2
2)µ

.

We used the obtained values of the parameters to determine the
solitary wave of Eq.(1), which led to the following results as:
Case1: If ∆ = a2

2 − 4a1a3 < 0 and a3 ̸= 0,

h1(x, y, z, s, t) =
(ln(v)µ)(4 a1a3−a2

2)+3
√
−∆ tanv(

1
2

√
−∆ξ)λ−3λa2

µln(v)(4a1a3−a2
2)

,

h2(x, y, z, s, t) = − (ln(v)µ)(4 a1a3−a2
2)+3

√
−∆ cotv(

1
2

√
−∆ξ)λ

µln(v)(4a1a3−a2
2)

+ 3λa2
µln(v)(4a1a3−a2

2)
,

h3(x, y, z, s, t) =
(ln(v)µ)(4 a1a3−a2

2)−3
√
−∆

√
rs secv(

√
−∆ξ)λ

µ ln(v)(4 a1a3−a2
2)

− 3
√
−∆ tanv(

√
−∆ξ)λ+3 λ a2

µ ln(v)(4 a1a3−a2
2)

,

h4(x, y, z, s, t) =
(ln(v)µ)(4 a1a3−a2

2)−3
√
−∆ cscv(

√
−∆ξ)

√
rsλ

µ ln(v)(4 a1a3−a2
2)

− 3
√
−∆ cotv(

√
−∆ξ)λ+3 λ a2

µ ln(v)(4 a1a3−a2
2)

,

h5(x, y, z, s, t) =
(2 ln(v)µ)(4 a1a3−a2

2)−3
√
−∆ tanv( 1

4

√
−∆ξ)λ

2µ ln(v)(4 a1a3−a2
2)

+
3
√
−∆ cotv( 1

4

√
−∆ξ)λ+6 λ a2

2µ ln(v)(4 a1a3−a2
2)

.
(9)

Case 2: If ∆ = a2
2 − 4a1a3 > 0 and a3 ̸= 0,

h6(x, y, z, s, t) =
(ln(v)µ)(4 a1a3−a2

2)+3 tanhv( 1
2

√
∆ξ)

√
∆λ

µ ln(v)(4 a1a3−a2
2)

+ 3 λ a2
µ ln(v)(4 a1a3−a2

2)
,

h7(x, y, z, s, t) =
(ln(v)µ)(4 a1a3−a2

2)+3 cothv( 1
2

√
∆ξ)

√
∆λ

µ ln(v)(4 a1a3−a2
2)

+ 3 λ a2
µ ln(v)(4 a1a3−a2

2)
,

h8(x, y, z, s, t) =
(ln(v)µ)(4 a1a3−a2

2)+3
√

∆
√

rs sec hv(
√

∆ξ)ιλ

µ ln(v)(4 a1a3−a2
2)

+
3
√

∆ tanhv(
√

∆ξ)λ+3 λ a2

µ ln(v)(4 a1a3−a2
2)

,

h9(x, y, z, s, t) =
(ln(v)µ)(4 a1a3−a2

2)+3
√

∆ cosechv(
√

∆ξ)
√

rsλ

µ ln(v)(4 a1a3−a2
2)

+
3
√

∆ cothv(
√

∆ξ)λ+3 λ a2

µ ln(v)(4 a1a3−a2
2)

,

h10(x, y, z, s, t) =
(2 ln(v)µ)(4 a1a3−a2

2)+3 tanhv( 1
4

√
∆ξ)

√
∆λ

2µ ln(v)(4 a1a3−a2
2)

+
3 cothv( 1

4

√
∆ξ)

√
∆λ+6 λ a2

2µ ln(v)(4 a1a3−a2
2)

.
(10)
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Case 3: If a3a1 > 0 and a2 = 0,

h11(x, y, z, s, t) =
(4 ln(v)µ a1a3−ln(v)µ a2

2)
µ ln(v)(4 a1a3−a2

2)

−
(

6 a3λ
√

a1
a3

tanv(
√

a1a3ξ)
)

µ ln(v)(4 a1a3−a2
2)

,

h12(x, y, z, s, t) =

(
6 a3λ

√
a1
a3

cotv(
√

a1a3ξ)+4 ln(v)µ a1a3

)
µ ln(v)(4 a1a3−a2

2)

− (ln(v)µ a2
2)

µ ln(v)(4 a1a3−a2
2)

,

h13(x, y, z, s, t) =

(
6
√

rs secv(2
√

a1a3ξ)
√

a1
a3

λ a3

)
µ ln(v)(4 a1a3−a2

2)

+

(
6 tanv(2

√
a1a3ξ)

√
a1
a3

λ a3

)
µ ln(v)(4 a1a3−a2

2)

+
(4 ln(v)µ a1a3−ln(v)µ a2

2)
µ ln(v)(4 a1a3−a2

2)
,

h14(x, y, z, s, t) =

(
−6

√
rs cosecv(2

√
a1a3ξ)

√
a1
a3

λ a3

)
µ ln(v)(4 a1a3−a2

2)

+

(
6 cotv(2

√
a1a3ξ)

√
a1
a3

λ a3

)
µ ln(v)(4 a1a3−a2

2)

+
(4 ln(v)µ a1a3−ln(v)µ a2

2)
µ ln(v)(4 a1a3−a2

2)
,

h15(x, y, z, s, t) =

(
−3

√
a1
a3

λ a3)(tan( 1
2
√

a1a3ξ)−cot( 1
2
√

a1a3ξ)
)

µ ln(v)(4 a1a3−a2
2)

+
(4 ln(v)µ a1a3−ln(v)µ a2

2)
µ ln(v)(4 a1a3−a2

2)
.

(11)
Case 4: If a3a1 < 0 and a2 = 0,

h16(x, y, z, s, t) =
(4 ln(v)µ a1a3−ln(v)µ a2

2)
µ ln(v)(4 a1a3−a2

2)

+

(
6 a3λ

√
− a1

a3
tanh(

√
−a1a3ξ)

)
µ ln(v)(4 a1a3−a2

2)
,

h17(x, y, z, s, t) =

(
6 a3λ

√
− a1

a3
coth(

√
−a1a3ξ)+4 ln(v)µ a1a3

)
µ ln(v)(4 a1a3−a2

2)

− (ln(v)µ a2
2)

µ ln(v)(4 a1a3−a2
2)

,

h18(x, y, z, s, t) =
(6
√

rs sechν(2
√
−a1a3ξ)

√
− a1

a3
ιλa3)

µ ln(v)(4a1a3−a2
2)

+
(6 tanhv(2

√
−a1a3ξ)

√
− a1

a3
λa3+4ln(v)µa2

2)

µ ln(v)(4a1a3−a2
2)

,

h19(x, y, z, s, t) =
(6
√

rs cosechν(2
√
−a1a3ξ)

√
− a1

a3
λa3)

µ ln(v)(4a1a3−a2
2)

+
(6 cothv(2

√
−a1a3ξ)

√
− a1

a3
λa3+4ln(v)µa2

2)

µ ln(v)(4a1a3−a2
2)

,

h20(x, y, z, s, t) =

(
3
√
− a1

a3
λ a3

)
(tanhv( 1

2
√
−a1a3ξ)+cothv( 1

2
√
−a1a3ξ))

µ ln(v)(4 a1a3−a2
2)

+
(4 ln(v)µ a1a3−ln(v)µ a2

2)
µ ln(v)(4 a1a3−a2

2)
.

(12)
Case 5: If a2 = 0 and a3 = a1,

h21(x, y, z, s, t) =
−6 a3λ tanv(a1ξ)

µ ln(v)(4 a1a3−a2
2)
+ 1,

h22(x, y, z, s, t) =
6 a3λ cot(a1ξ)

µ ln(v)(4 a1a3−a2
2)
+ 1,

h23(x, y, z, s, t) =
−6

√
rs secv(2 a1ξ)λ a3+4 ln(v)µ a1a3−ln(v)µ a2

2

µ ln(v)(4 a1a3−a2
2)

− 6 tanv(2 a1ξ)λ a3
µ ln(v)(4 a1a3−a2

2)
,

h24(x, y, z, s, t) =
−6

√
rs cosecv(2 a1ξ)λ a3+4 ln(v)µ a1a3−ln(v)µ a2

2

µ ln(v)(4 a1a3−a2
2)

+
6 cotv(2 a1ξ)λ a3

µ ln(v)(4 a1a3−a2
2)

,

h25(x, y, z, s, t) =
−6 a3λ ( 1

2 tanv( 1
2 a1ξ)− 1

2 cotv( 1
2 a1ξ))

µ ln(v)(4 a1a3−a2
2)

+ 1.
(13)

Case 6: If a2 = 0 and a3 = −a1,



h26(x, y, z, s, t) =
6 a3λ tanhv(a1ξ)

µ ln(v)(4 a1a3−a2
2)
+ 1,

h27(x, y, z, s, t) =
6 a3λ cothv(a1ξ)

µ ln(v)(4 a1a3−a2
2)
+ 1,

h28(x, y, z, s, t) =
−6

√
rs sec hv(2 a1ξ)ιλ a3+4 ln(v)µ a1a3−ln(v)µ a2

2

µ ln(v)(4 a1a3−a2
2)

+
6 tanhv(2 a1ξ)λ a3

µ ln(v)(4 a1a3−a2
2)

,

h29(x, y, z, s, t) =
−6

√
rs cosechv(2 a1ξ)λ a3+4 ln(v)µ a1a3−ln(v)µ a2

2

µ ln(v)(4 a1a3−a2
2)

+
6 cot hv(2 a1ξ)λ a3

µ ln(v)(4 a1a3−a2
2)

,

h30(x, y, z, s, t) =
−6 ( −1

2 tanhv( 1
2 a1ξ) −1

2 cothv( 1
2 a1ξ))a3λ

µ ln(v)(4 a1a3−a2
2)

+ 1.
(14)

Case 7: If a2
2 = 4a3a1,

h31(x, y, z, s, t) =
12 a3λ a1 (a2ξ ln (v) + 2)

µ (ln (v))2 (4 a1a3 − a22) a22ξ
+ 1. (15)

Case 8: If a2 = λ, a1 = pλ(p ̸= 0) and a3 = 0,

h32(x, y, z, s, t) =
−6 a3λ

(
vλξ − p

)
µ ln (v) (4 a1a3 − a22)

+ 1. (16)

Case 9: If a2 = a3 = 0,

h33(x, y, z, s, t) = −6 a3λ a1ξ − 4 µ a1a3 + µ a2
2

µ (4 a1a3 − a22)
. (17)

Case 10: If a2 = a1 = 0,

h34(x, y, z, s, t) =
6 λ

µ (ln (v))2 (4 a1a3 − a22) ξ
+ 1. (18)

Case 11: If a1 = 0 and a2 ̸= 0,h35(x, y, z, s, t) = 6 λ ra2
µ ln(v)(4 a1a3−a2

2)(coshv(ξ a2)−sin h(ξ a2)+r) + 1,

h36(x, y, z, s, t) =
6 λ a2(sinh(ξ a2)+cosh(ξ a2))

µ ln(v)(4 a1a3−a2
2)(sinh(ξ a2)+cosh(ξ a2)+s) + 1.

(19)
Case 12: If a2 = λ, a3 = pλ and a1 = 0,

h37(x, y, z, s, t) = − 6a3λvλξ

µ ln(v)(4a1a3 − a2
2)(s − prvλξ)

+ 1. (20)

GRAPHICAL BEHAVIOUR OF WAVE PATTERNS

The main goal of this section is to present the dynamics of the
accurate soliton solutions to the BLMP equation. We select values
for arbitrary constants and parameters to accurately describe the
behavior of the presented solutions. We are able to obtain a variety
of well-known and standard Soliton solutions by applying the
modified Khater technique to the Boiti Leon Manna Pempinelli
equation. These solutions include the solitary wave solutions,
sine-functio, cosine-function, tangent-function, cosecant-function,
secant-function, cotangent hyperbolic-function, sine hyperbolic-
function, secant hyperbolic-function, tangent hyperbolic-function,
exponential functions solutions, and a suitable selection of ar-
bitrary constants and parameters that fall within the acceptable
range.

We accomplish this by using the symbolic computation tools
Mathematica and Matlab. Here is a graphical depiction of the
BLMP equation, along with all of the appropriate parametric pa-
rameters. Figure 1 illustrates the single-wave behavior of the
solution. In the first subfigure (a), we create the three-dimensional
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phase plane of the solitary wave solution. In the second subfig-
ure (b), we draw a two-dimensional graph of the solitary wave
solution. The third subfigure (c) displays a contour representa-
tion of the solitary wave solution. Figure 2 displays the periodic
wave solution that we obtained from the Soliton wave equation.
We construct the three-dimensional visualization in subfigure (a),
we draw the two-dimensional behavior in subfigure (b), and we
depict the contour graph in subfigure (c). Figure 3 illustrates the
soliton solution’s kink behavior for the wave equation. Subfigure
(a) displays the 3D visualization, subfigure (b) displays the 2D
behavior, and subfigure (c) displays the contour behavior of the
solution.

Figure 4 depicts the solution’s behavior as a single wave. Sub-
figure (a) depicts the three-dimensional presentation, whereas sub-
figure (b) illustrates the two-dimensional visualization, and sub-
section (c) illustrates the contour behavior of the solution. Figure 5
illustrates the periodic behavior of a soliton solution in relation to
the wave equation. Subfigure (a) displays the three-dimensional
appearance, subfigure (b) displays the two-dimensional behavior,
and subfigure (c) illustrates the contour behavior of the solution.

In addition to these static figures, we uploaded video files vi-
sualising the 4D representation of h1(x, t, y) and h6(x, t, y) with
the rest of the parameters same as in the figure 1 and figure 3.
These videos allow us to study the effect of change in one more di-
mension compared to the static visualisations. The plots for these
videos were made using the R statistical software (Team 2020). The
files are published in the Zenodo repository. In addition, there
are two more videos that contain 2D plots with changes in y (
Martinovič et al.2024). These are h1(x, y) and h6(x, y) with t = 1
and the rest of the parameters set as above.

Figure 1 Illustrates solitary wave behavior of the solution for
h1(x, y, z, s, t) with the selected parameter values k1 = 2, k2 = 1,
k3 = 3, k4 = 5, a1 = 1, a2 = 1, a3 = 3, λ = 9, r = 1, s1 = 2,
y = z = s = 0, through 3D, 2D and contour graphs in the
suitable ranges.

PHASE PORTRAIT ANALYSIS

In this section of the article, we will use bifurcation analysis to
investigate Eq.1. We can use a Galilean transformation to convert
Eq.5 into a set of ordinary differential equations, as follows by
letting f

′
= h.

δ0h + δ1h
′′
+ δ2h2 = 0 (21)

Figure 2 Shows periodic soliton solution for h4(x, y, z, s, t) with
the parameters values k1 = 2, k2 = 1, k3 = 3, k4 = 5, a1 = 1,
a2 = 1, a3 = 3, λ = 9, r = 1, s1 = 2, y = z = s = 0, by utilizing
3D, 2D and contour graphs respectively in suitable boundary
values.

Figure 3 Displays combined dark and bright cubic soliton solu-
tion for h6(x, y, z, s, t) with the help of suitable parameters value
k1 = 2, k2 = 1, k3 = 3, k4 = 5, a1 = 1, a2 = 3, a3 = 1, λ = 9, r = 1,
s1 = 2, y = z = s = 0, through 3D, 2D and contour graphs with
appropriate boundary.

Let h
′
= y and h

′′
= y

′
, so, we finally have Planner dynamical

system as:  dh
dξ = y,
dy
dξ = σ1h − σ2h2

(22)

Where, σ1 = − δ0
δ1

and σ2 = − δ2
δ1

. This system expresses Hamil-
tonian features and possesses the following integral:

G(h, y) =
y2

2
− σ1h2

2
+

σ2h3

3
= g. (23)

Where, g is a Hamiltonian constant, we analyze the equilibrium
points of the phase portraits within the parameter defined by σ1
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Figure 4 Shows rational soliton solution for h9(x, y, z, s, t) with
the suitable parameters k1 = 2, k2 = 1, k3 = 3, k4 = 4, a1 = 1,
a2 = 3, a3 = 1, λ = 9, r = 1, s1 = 2, y = z = s = 0, by 3D, 2D and
contour graphs in the proper range.

Figure 5 Presents periodic soliton solution for h13(x, y, z, s, t)
with the suitable parameters values k1 = 2, k2 = 1, k3 = 3,
k4 = 4, a1 = 1, a2 = 0, a3 = 1, λ = 9, r = 1, s1 = 2,y = z = s = 0,
through 3D, 2D and contour graphs in proper range.

and σ2 for the system. By utilizing qualitative analysis, the two
equilibrium points for the differential equation system described
above are M1(

σ1
σ2

, 0) and M2(0, 0). Therefore, the Jacobian of the
system will be:

det(J(h, y)) =

∣∣∣∣∣∣∣∣∣∣∣
0 1

σ1 − 2σ2h 0

∣∣∣∣∣∣∣∣∣∣∣
= 2σ2h − σ1. (24)

Thus, the point (h, y) is a centre point for the det J(h, y) > 0,
it is a saddle for the det J(h, y) < 0, and it is a cuspidal point for
the det J(h, y) = 0. By assigning different values to the parameters
that are involved, it is possible to get a wide variety of results.

Case 1: For σ1 > 0 and σ2 > 0, we get two equilibrium points
by using δ0 = −4, δ1 = −2, and δ2 = −6. These values allow us to

obtain M1 = ( 2
3 , 0) and M2 = (0, 0). In Figure 6(a), the term M1,

representing the center point, denotes the equilibrium point, while
the term M2 represents the saddle point.

Case 2: Using the values δ0 = 4, δ1 = 2, and δ2 = 6, we have
two equilibrium points M1 = ( 2

3 , 0), and M2= (0, 0) for σ1 < 0
and σ2 < 0. M1 is the saddle point, and M2 is the center point, as
shown to Fig. 6(b).

Case 3: With σ1 > 0 and σ2 < 0, it is possible to get two
equilibrium points by applying δ0 = −4, δ1 = 2, and δ2 = −6.
These two equilibrium points are denoted as M1 = (− 2

3 , 0) and
M2 = (0, 0) respectively. The point M1 represents the center of the
curve, and the point M2 represents the saddle point in Figure 6(c).

Case 4: For σ1 < 0 and σ2 > 0, using δ0 = 4, δ1 = 2 and δ2 = −6
there are two equilibrium points obtained. M1 = (− 2

3 , 0) and
M2 = (0, 0). M1 denotes the saddle point and M2 shows the centre
point in Fig.6(d).

Figure 6 Phase portrait of system (22), Fig. 6(a) for σ1 > 0 and
σ2 > 0, Fig. 6(b) for σ1 < 0 and σ2 < 0., Fig. 6(c) for σ1 < 0 and
σ2 < 0., and Fig. 6(d) for σ1 < 0 and σ2 > 0 respectively.

CHAOTIC BEHAVIOR

In this part, we will examine the chaotic patterns exhibit by the
model that is under study. We propose to add an external force
θ0 cos(Λξ) to the system in order to investigate these patterns (22).
The amplitude of this perturbed term is θ0, and its frequency is Λ.
As a result, the transformed system has the following expression:

dh
dξ = y
dy
dξ = σ1h + σ2h2 + θ0 cos(F ),

dF
dξ = Λ,

(25)

where F = Λξ. The system’s quasi-periodic and chaotic features
have been investigated (25) using numerous kinds of techniques,
such as time plots and phase plots in 2D and 3D dimensions. In
order to identify the dynamical behaviors of the disturbed system,
a range of random values for physical parameters are examined.
Keeping the other parameters constant at σ1 = −3.5 and σ2 = −1,
we will investigate the effects of changing both θ0 and Λ.
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• Phase plots and time series graphs for θ0 = 0.6 and Λ = 0.5
are shown in Figure (7). Here, the system (25) exhibits periodic
behavior since the external force’s frequency and intensity are
both very low.
• The 3D plot, 2D plot, and time analysis graph are shown in
Figure (8) as the intensity is increased with θ0 = 1.6 and frequency
with Λ = 2.5. It has been noted that the altered disturbed system
(25) exhibits quasi-periodic behavior.
• We show both 2D and 3D phase images in Figure (9), together
with time analysis for the following parameter values: θ0 = 3.6
and Λ = 2π. According to the reported results, it can be concluded
that changes in these parameters cause the system to exhibit a
quasi-periodic chaotic pattern (25).
• The investigation of the amplitude and frequency varies when
θ0 = 5.6 and Λ = 2π, as shown in Figure (10). The final results
show that chaotic events are present in the modified system.

Figure 7 Detection of chaotic phenomena in the perturbed sys-
tem (25), θ0 = 0.6.
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Figure 8 Detection of chaotic phenomena in the perturbed sys-
tem (25), θ0 = 1.6.
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Figure 9 Detection of chaotic phenomena in the perturbed sys-
tem (25), θ0 = 3.6.
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Figure 10 Detection of chaotic phenomena in the perturbed sys-
tem (25), θ0 = 5.6.

Sensitivity Analysis
Here, we examine the system’s sensitivity to the perturbation sys-
tem (25). To achieve this goal, we took into account three dif-
ferent initial conditions: The green solid line illustrates (h, y) =

(0.02, 0.5), the blue dotted curve illustrates (h, y) = (0.05, 1), and
the red dashed curve illustrates (h, y) = (1.2, 1.2). Figure (11)
considers the values of the parameters (h, y) = (0.02, 0.5) and
(h, y) = (0.05, 1) to address two different solutions. While one
of these solution aims to get green, the other one aims to achieve
blue. In addition, Figure 12 presents two more solutions, namely
(h, y) = (0.02, 0.5) and (h, y) = (1.2, 1.2). One of these solutions
pertains to green, while the other pertains to blue. Additionally,
in Figure (13), two additional solutions are employed. These solu-
tions are as follows: (h, y) = (0.05, 1) and (h, y) = (1.2, 1.2). The
three solutions that are combined are shown in Figure (14) as the
green, blue, and red lines, respectively, as (0.02, 0.5), (0.05, 1), and
(1.2, 1.2). In a dynamic system, it is evident that even little changes
in the initial conditions may result in subtle adjustments in the
results the system provides. As a result, we are able to draw the
conclusion that the proposed system is sensitive, but not to an
extremely high degree.

Figure 11 Sensitivity analysis of the system (25), (h, y) =
(0.02, 0.5) and (h, y) = (0.05, 1).

Figure 12 Sensitivity analysis of the system (25), (h, y) =
(0.02, 0.5) and (h, y) = (1.2, 1.2).

Figure 13 Sensitivity analysis of the system (25), (h, y) = (0.05, 1)
and (h, y) = (1.2, 1.2).
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Figure 14 Sensitivity analysis of the system (25), (0.02, 0.5),
(0.05, 1), and (1.2, 1.2).

CONCLUSION

This work is unique because it generates soliton wave solutions
to the Boiti Leon Manna Pempinelli equation, which is a four-
dimensional equation. We use a modified version of the Khater
technique to compute the precise solutions to the solitary wave
equation. We have confirmed the correctness of our offered solu-
tions through the use and verification of numerous graphs. The
obtained solutions take various shapes, including trigonometric,
rational expressions and hyperbolic. We have explored a wide
range of parameter values for the established ordinary differential
equations, methodically generating a variety of soliton profiles.

We constructed 3D, 2D, and contour diagrams, as well as a 4D
visualization, by using the software programs Matlab, Mathemat-
ica, and R-language, with the parameter values carefully set. We
generate these graphs to underscore the physical importance of the
proposed model. These graphical and video representations are
significant because they reveal our research’s findings. In order to
have a more profound understanding of the dynamical behavior
of the governing system, the phase-portrait system and chaos theo-
ries are used. The graphs in figures illustrate the process by which
the chaotic solutions to the perturbed dynamical system are discov-
ered and shown in figures (7-10). Investigations into the model’s
sensitivity reveal that it is extremely sensitive, as shown in figures
(11–14). Based on the findings, it is clear that the suggested meth-
ods are efficient tools for analyzing nonlinear evolution equations,
and that they provide valuable insights into the model.
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