

https://dergipark.org.tr/tr/pub/akufemubid

e-ISSN: 2149-3367 AKÜ FEMÜBID 25 (2025) 015904 (215-222)

Araştırma Makalesi / Research Article DOI: https://doi.org/10.35414/akufemubid.1518434 AKU J. Sci. Eng. 25 (2025) 015904 (215-222)

Uzun Dönem Yaşlandırmanın S2 Cam/Epoksi Kompozitlerin Mekanik Özelliklerine Etkisi

Effect of Long-Term Aging on Mechanical Properties of S2 Glass/Epoxy Composites

Ersan KIRAR^{1*}, Gökhan DEMİRCAN², Murat KISA², Mustafa ÖZEN²

¹ Harran Üniversitesi, Şanlıurfa Teknik Bilimler MYO, Makine ve Metal Teknolojileri Bölümü, Şanlıurfa, Türkiye
² Harran Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, Şanlıurfa, Türkiye

© Afyon Kocatepe Üniversitesi

Öz

Kompozit malzemeler özgül mukavemetlerinin yüksek olması nedeniyle sıklıkla tercih edilmektedir. S2 cam elyaf takviyeli kompozit malzemelerde özgül mukavemeti oldukça yüksek olan takviye malzemelerinden biridir. Ancak kompozit malzemelerin kullanıldıkları ortamlarda zaman içinde yaşlanma kaynaklı olarak dayanımlarında düşüşler gerçekleşmektedir. Yaşlanma kaynaklı kompozitlerin dayanım düşüşlerinin belirlenmesi emniyet açısından önem arz etmektedir. Literatürde de kompozit malzemeleri çeşitli yaşlanma işlemleri sonrası inceleyen çalışmalara rastlanmaktadır. Ancak S2 cam/epoksi kompozitlerin 36 ay yapay deniz suyunda yaşlandırılması sonrası inceleme yapan çalışmaya rastlanmamıştır. Bu çalışmada S2 cam/epoksi kompozit malzemenin 36 ay yapay deniz suyu ortamında yaşlandırılması sonrası hem deneysel (düzlem içi çekme, basma ve losipesqu kayma testleri) hem de sonlu elemanlar analiziyle inceleme yapılmıştır. 36 ay yaşlandırma işlemi sonucunda; maksimum gerilme değerleri açısından kayma testinde %17,77, basma testinde %19,19 ve çekme testinde ise %24,39 düşüş olduğu tespit edilmiştir. Ayrıca testlerin sonlu elemanlar analizi sonuçlarıyla deneysel sonuçlar arasında maksimum hata oranı %6,97 olarak tesit edilmiş ve oldukça iyi bir uyum elde edilmiştir.

Anahtar Kelimeler: Kompozit; Cam Elyaf; Yaşlandırma; Mekanik Özellikler; Sonlu Elemanlar Analizi

1. Giriş

Cam/epoksi takviyeli polimerik kompozit malzemeler genellikle askeri, spor malzemeleri, otomobil ve denizcilik uygulamalarında güçlü ve hafif malzemeler olarak kullanılırlar (Bhuyan et al. 2012, Demircan 2024; Jose´-Trujillo et al. 2019). Bununla birlikte, bu tür malzemelerle yapılan yapılar genellikle nem, aşındırıcı ortamlar, sıcaklık, kimyasal maddelere maruz kalma gibi zorlu ortamlarda çalışmak zorundadır. Bu tür malzemelerin hizmete alınmadan önce farklı çevresel parametrelere karşı hassasiyetleri araştırılmalıdır (Demircan et al. 2023-a, Bhuyan et al. 2012, Fulginiti et al. 2023, Guen-Ge_roy et al. 2020). Ayrıca kompozit malzemeler deniz ortamı

© 2025 The Authors | Creative Commons Attribution-Noncommercial 4.0 (CC BY-NC) International License

Abstract

Composite materials are frequently preferred due to their high specific strength. S2 Glass fiber is one of the reinforcement materials with very high specific strength in glass fiber reinforced composite materials. However, in the environments where composite materials are used, their strength decreases over time due to aging. Determining the strength decreases of composites due to aging is important for safety. In the literature, there are studies examining composite materials after various aging processes. However, no study has been found that examined S2 glass/epoxy composites after aging in artificial seawater for 36 months. In this study, S2 glass/epoxy composite material was examined both experimentally (in-plane tensile, compression and losipesque shear tests) and finite element analysis after aging in an artificial seawater environment for 36 months. As a result of the 36-month aging process; In terms of maximum stress values, it was determined that there was a decrease of 17.77% in the shear test, 19.19% in the compression test and 24.39% in the tensile test. In addition, the maximum error rate between the finite element analysis results of the tests and the experimental results was determined as 6.97% and a very good agreement was obtained.

Keywords: Composite; Glass Fiber; Aging; Mechanical Properties; Finite Element Analysis

koşullarına (Örneğin deniz suyu ve sıcaklık) maruz kaldığında mekanik özelliklerinde ciddi bir bozulma meydana gelebilir (Demircan et al. 2023-b). Bu bozulma genellikle kompozit malzemelerde fiber/matris ara yüzey bağlarının ayrılması, matris mikro çatlaması ve delaminasyon gibi hasarlara neden olarak yapıların nihai hasarına neden olabilir (Jose´-Trujillo et al. 2019, Guven et al. 2024).

Literatür incelemesinde yaşlandırılan kompozit malzemelerin mekanik özelliklerinin araştırılması üzerine birçok çalışmaya rastlanmıştır. Bhuyan ve ark. (2012), çalışmalarında sıcaklık ve nem ortamında yaşlandırılan S2 cam/epoksi kompozit malzemenin çekme, basma, eğme ve kayma testlerini yapmışlardır. Çalışma sonucunda malzemenin yaşlandırılması kaynaklı dayanım düşüşleri tespit etmişlerdir. Wang ve ark. (2023), epoksi reçineyle üretilmiş kompozit malzemeleri hidrotermal ve tuzlu buhar ile yaşlandırarak yaşlandırmanın etkilerini incelemişlerdir. Balcıoğlu ve ark. (2021), çalışmalarında E cam/epoksi kompozit malzemeyi çeşitli kimyasalların bulunduğu ortamda yaşlandırmıştır. Çalışma sonucunda yaşlandırılan malzemeler eğme ve yorulma dayanımı açısından incelemiştir.

Ghabezi ve ark. (2022), çalışmalarında cam ve karbon epoksi kompozit malzemelerin yapay deniz suyu ortamında yaşlandırılmasının nano indentasyon testi sonuçlarına etkisini incelemişlerdir. Wood ve ark. (1997), deniz suyu ortamında yaşlandırılan E cam/epoksi kompozit malzemenin çekme yükü altındaki hasar incelemesini yapmışlardır. Jose'-Trujillo ve ark. (2019), çeşitli takviye malzemeleri ve reçinelerden ürettikleri kompozit plakaları yapay deniz suyu ortamında yaşlandırmışlardır. Yaşlandırılan numunelere uygulanan çekme, basma, eğme ve kayma testleri sonucunda en fazla düşüşün epoksi ve polyester reçine kullanılan kompozit malzemede olduğunu tespit etmişlerdir. Guen-Geroy ve ark. (2020), çalışmalarında yapay deniz suyu ortamında yaşlandırılan karbon fiber/epoksi kompozit malzemenin tabakalar arası ayrılma hasarını incelemişlerdir. Davies ve ark. (2001), karbon fiber/akrilik kompozit malzemenin yapay denizi suyu ortamında sonucundaki dayanım incelemesini yaşlandırılması yapmışlardır. Çalışma sonucunda kompozitlerin yaşlandırmadan çok etkilenmediği sonucuna varmışlardır.

Li ve ark. (2019), yapay deniz suyu ortamında yaşlandırılan karbon fiber/epoksi kompozit malzemenin mukavemet, elastisite modülü ve poisson oranı incelemesini yapmışlardır. Çalışma sonucunda malzemenin yaşlandırılması nedeniyle bu değerlerde düşüşler tespit etmişlerdir. Ghabezi ve ark. (2020), çalışmalarında yapay deniz suyu ortamında yaşlandırılan E cam ve karbon/epoksi kompozit malzemelerin dayanım ve elastisite modülü incelemesini yapmışlardır. Çalışma sonucunda elastisite modülü parametresinde az bir düşüş ve dayanımda daha fazla düşüş tespit etmişlerdir.

Kırar ve ark. (2023)-a, 12 ay yapay deniz suyu ortamında yaşlandırılan S2 cam/epoksi kompozit malzemenin kayma dayanımlarını incelemişlerdir. Çalışma sonucunda kayma dayanımlarında düşüşler tespit etmişlerdir. Kırar ve ark. (2023)-b, çalışmalarında 120 gün yapay deniz suyu ortamında yaşlandırılan S2 cam/epoksi kompozit malzemenin çekme ve basma testlerinin sonlu elemanlar modelleme çalışmasını yaparak test sonuçlarıyla doğrulamışlardır. Shillings ve ark. (2017), karbon fiber/epoksi kompozit malzemeyi yapay deniz suyu ortamında yaşlandırmışlardır. Yaşlandırılan kompozit malzemenin darbe incelemesini hem deneysel hem de Ls dyna yazılımında sonlu elemanlar analizini yapmışlardır. Çalışma sonucunda yaşlandırma işleminin malzemenin darbe dayanımını oldukça etkilediği sonucuna varmışlardır.

Literatür araştırmasında S2 örgü cam elyaf/epoksi kompozit malzemenin yapay deniz suyu ortamında 36 ay yaşlandırılması üzerine çalışmaya rastlanmamıştır. Bu nedenle mevcut çalışmada S2 cam/epoksi kompozit malzemeler 36 ay yapay deniz suyu ortamında yaşlandırılmıştır. Yaşlandırılmayan ve 36 ay yaşlandırılan numunelerin düzlem içi çekme, basma ve losipesqu kayma testleri yapılmıştır. Testlerden alınan sonuçlara göre mekanik testlerin Ls Dyna yazılımında MAT 22 malzeme modeli kullanılarak sonlu elemanlar analizi uygulanmıştır. Çalışmada mekanik test sonuçlarıyla kompozit malzemenin yaşlandırma kaynaklı dayanım düşüşleri ve deformasyon incelemesi hem deneysel hem de sonlu elemanlar analiziyle yapılmıştır. Yapılan çalışmayla literatürde S2 cam/epoksi kompozit malzemelerin uzun süreli yapay deniz suyu ortamından etkilenmesi incelenerek literatüre katkı sağlanmıştır.

2. Materyal ve Metot 2.1.Materyal

Çalışmada kompozit malzeme üretimi için reçine olarak MGS LR 285 ve sertleştirici olarak da MGS LH 285 kullanılmıştır. Kompozit malzemenin takviye malzemesi olarak ise S2 cam örgü elyaf (Çizelge 1) kullanılmıştır.

Çizelge 1. S2 cam örgü elyaf teknik özellikleri

S2 cam örgü elyaf			
Lif	S cam		
Kumaş metrekare ağırlığı	190 g/m ²		

2.2. Metot

2.2.1. Kompozit plakaların üretimi

Numunelerin kalınlıkları ASTM standartlarına uygun olacak şekilde 3,2 mm olarak belirlenmiştir. 3,2 mm kalınlığında plakalar için 20 kat elyaf tabakanın yeterli olacağı deneme üretiminden tespit edilmiştir. Belirlenen bilgilere göre elyaf tabaklar kesilmiştir. Kesilen elyaf takalar vakum reçine infüzyon tezgahında kullanılarak kompozit plakalar üretilmiştir (Şekil 1). Üretimde elyaf kütlesinin %40'ı kadar sertleştirici ve %60'ı kadar ise reçine kullanılmıştır. Şekil 1'deki üretilen kompozit plaka 80 C°'de 15 saat kürlenmeye bırakılmıştır.

Şekil 1. Kompozit plakanın üretimi

2.2.2. Kompozit plakalardan numunelerin kesilmesi ve yaşlandırma işlemi

Üretilen kompozit plakalar Çizelge 2'de belirtilen ölçülerde CNC freze tezgahında kesilmiştir. Kesilen test numunelerinin çapakları alınarak temizlenmiştir.

Çizelge 2. Mekanik testlerin numune ölçüleri ve test standartları

Test adı	Numune ölçüleri (mm)	Test standartları
Çekme testi	250x25x3,2	ASTM D3039
Basma testi	140x13x3,2	ASTM D6641
losipesqu kayma testi	76x20x3,2	ASTM D5379

Kesilen test numuneleri iki gruba (Yaşlandırılmayan ve 36 ay yaşlandırılan) ayrılmıştır. Gruplandırılan test numuneleri yapay deniz suyu ortamında yaşlandırma işlemine tabi tutulmuştur. Literatürde (Ghabezi et al. 2020) kullanılan kütlece %3,5 oranında kaya tuzu çeşme suyuna eklenerek çözelti hazırlanmıştır. Hazırlanan çözelti, grupların bulunduğu kaba eklenerek numuneler yaşlandırma işlemine bırakılmıştır.

2.2.3. Mekanik testler 2.2.3.1. Çekme testi

Çekme test ASTM D3039 standardına göre yapılmıştır. Çekme testi için kesilen numunelere kulakçık yapıştırılmıştır. Hazırlanan test numuneleri 2 mm/dk sabit hızda hareket eden iki çene arasında ve uzama ölçümü için de video ekstansometre kullanılarak çekme testi gerçekleştirilmiştir (Şekil 2).

2.2.3.2. Basma testi

Basma testi ASTM D6641 standardına göre yapılmıştır. Test numunesi standardın belirttiği özel aparatta yapılmıştır. Test numunesi, özel aparata bağlanarak 1,3 mm/dk sabit basma testine maruz bırakılmıştır (Şekil 2).

2.2.3.3. Iosipesqu kayma testi

Kayma testi ASTM D5379 standardına göre özel aparatta yapılmıştır. Kayma testi, standardın belirttiği şekilde 2 mm/dk sabit hızda gerçekleştirilmiştir (Şekil 2).

Şekil 2. A) Çekme testi B) Basma testi C) Iosipesqu kayma testi

2.2.4. Mekanik testlerin sonlu elemanlar analizi 2.2.4.1. Çekme, basma ve kayma testlerinin sonlu elemanlar modelleri

Test numunesi için öncelikle yüzey olarak mesh modeli oluşturulmuştur. Oluşturulan mesh modele kompozit plaka tanımlamasıyla tabaka sayısı ve tabaka kalınlığı bilgileri girilmiştir. Sonrasında MAT 22 malzeme modeli verileri yazılıma girilmiştir. Malzeme modeli verilerinde, yaşlandırılmayan kompozit için literatürden (Kırar 2024) ve 36 ay yaşlandırılan içinde uygulanan test sonuçlarından elde edilen bilgiler kullanılmıştır.

Çekme testinde, test numunesi kulakçıklardan test cihazının çenelerine bağlanmaktadır. Tutucu çenelerden biri sabittir ve diğeri ise sabit test hızında hareket etmektedir. Analiz çalışmasında da sınır şartları olarak test şartlarının aynısı uygulanmıştır (Şekil 3).

Basma testinde, test numunesi aparat içinde iki vurucu arasında sıkıştırılmaktadır. Test esnasında aparatın alt tarafı sabit ve üst tarafı ise test hızında hareket etmektedir. Analiz çalışmasında da aynı test koşulları kullanılarak modelleme yapılmıştır (Şekil 3). Kayma testinde, test aparatı içinde test numunesinin sol tarafı sabit ve sağ tarafı ise test hızında aşağı doğru hareket etmektedir. Sonlu elemanlar modellemesinde de bu test koşulları kullanılarak sınır şartları uygulanmıştır (Sekil 3).

Şekil 3. A) Çekme B) Basma C) Kayma testlerinin sonlu elemanlar modellemesi sınır şartları

Tüm testlerin sonlu elemanlar modellenmesinde son aşamada analiz süresi tanımlanmıştır. İstenilen zaman aralıkları için ayarlamalar yapılarak modellemeler tamamlanmıştır. Ayrıca analiz çalışmasında meshten bağımsızlık içinde çalışma yapılarak en uygun meshle doğru sonuçlar elde edilmiştir.

3. Bulgular

Çalışmadan elde edilen verilerin sunumunda kolaylık olması açısından test ve sonlu elemanlar analizi sonuçları birlikte incelenmiştir (Çizelge 3). İncelemelerde çekme ve basma testlerinde maksimum eksenel gerilme-gerinim verileri kullanılmıştır. Kayma testinin incelemesinde ise maksimum kayma gerilmesi ve ilerleme verileri tercih edilmiştir. Çizelge 3'teki testlerin gerilme sonuçları incelendiğinde 36 ay yaşlandırma işlemi sonucunda; kayma testinde %17,77, basma testinde %19,19 ve çekme testinde ise %24,39 düşüş olduğu belirlenmiştir. Çizelge 3'teki testlerin gerinim sonuçları incelendiğinde 36 ay yaşlandırma işlemi sonucunda; basma testinde %17,71 ve çekme testinde ise %26,82 düşüş olduğu belirlenmiştir. Literatürde Li ve ark. (2019) ve Ghabezi ve ark. (2020) çalışmalarında da mevcut çalışmadaki gibi çekme ve basma test sonuçlarına yakın sonuçlar elde etmişlerdir. Ayrıca kayma testinde 36 ay yaşlandırma işlemi sonucunda vurucu ilerleme verisinde %17,77 düşüş tespit edilmiştir. Elde edilen kayma dayanım düşüşleri, literatürde (Davies et al. 2001, Sawpan 2019) benzer sonuçların elde edilmesiyle desteklenmiştir. Ayrıca 36 ay sonucunda test numunelerindeki yaşlandırma kaynaklı bozunmalardan (Fiber-matris arayüzey ayrılması vb.) kaynaklı olarak gerilme ve gerinim parametrelerindeki düşüşlerin normal olduğu belirlenmiştir.

Çizelge 3. Test ve sonlu elemanlar analizi sonuçları						
Tost ismi	Değerlendirme	Test	FEM	Hata		
lestisilli	Kriteri	sonucu	sonucu	(%)		
Kayma testi-	Maksimum kayma gerilme (MPa)	128,17	132,26	3,19		
0 Gün	İlerleme (mm)	6,331	6,772	6,97		
Kayma testi-	Maksimum kayma gerilme (MPa)	105,40	102,22	3,02		
36 Ay	İlerleme (mm)	5,98	5,656	5,42		
Basma testi-	Maksimum eksenel gerilme (MPa)	360,15	344,74	4,28		
0 Guil	Gerinim	0,0175	0,0164	6,29		
Basma testi- 36 Ay	Maksimum eksenel gerilme (MPa)	291,05	275,70	5,27		
	Gerinim	0,0144	0,0136	5,56		
Çekme testi- 0 Gün	Maksimum eksenel gerilme (MPa)	448,05	432,05	3,57		
- Jun	Gerinim	0,022	0,0213	3,18		
Çekme testi- 36 Av	Maksimum eksenel gerilme (MPa)	338,78	333,36	1,60		
	Gerinim	0,0161	0,0167	3,73		

Şekil 4. Test ve analiz sonuç karşılaştırma grafikleri

Çizelge 3'deki test ve sonlu elemanlar analizi sonuçları karşılaştırıldığında kayma testinde en fazla %6,97 hata oranı belirlenmiştir. Basma testinin sonuçları ile testin sonlu elemanlar analizi sonuçları karşılaştırıldığında en fazla %6,29 hata oranı tespit edilmiştir. Çekme testinin sonuçlarıyla analiz sonuçlarının karşılaştırılmasında ise en fazla %3,73 hata oranı belirlenmiştir. Elde edilen düşük hata oranlarıyla sonlu elemanlar analizi çalışmalarının doğruluğu tespit edilmiştir.

Şekil 5. Basma testi analiz ve test sonucu karşılaştırma

Şekil 6. Çekme testi analiz ve test sonucu karşılaştırma

Şekil 5'de yaşlandırılmayan ve 36 ay yaşlandırılan numunelerin basma testi ve sonlu elemanlar analizi hasar durumu karşılaştırması sunulmuştur. Yaşlandırılmayan ve 36 ay yaşlandırılan testlerin sonlu elemanlar analizi sonuçlarında ilk görsel maksimum gerilmeye ulaştığı hasar öncesi halini ifade etmektedir. İkinci görsel ise maksimum gerilme sonrası analizde numune hasarını sunmaktadır. Üçüncü görselde ise test sonucu hasar görmüş numune verilmiştir. Analiz ve test sonucundaki numune hasarının benzer olduğu belirlenmiştir. Ayrıca analiz ve test sonucunda da numunenin ortasına yakın yerden hasara uğradığı belirlenmiştir.

Şekil 6'da çekme testi ve testin sonlu elemanlar analizi eksenel gerilme-hasar durumu karşılaştırması verilmiştir. Yaşlandırılmayan ve 36 ay yaşlandırılan testlerin analizine ait ilk görsel maksimum gerilme durumunu ve ikinci görselde maksimum gerilme sonrası numune hasarını göstermektedir. Her iki grubunda analiz ve test sonucunda çekme çenesine yakın yerden hasar oluştuğu yönünde sonuçlar elde edilmiştir. Analiz ve test sonuçları arasındaki hasar bölgesi ve şekli açısından her iki grupta da yeterince yakın sonuçlar tespit edilmiştir.

Şekil 7. Kayma testi analiz ve test sonucu karşılaştırma

Şekil 7'de her iki grubunda kayma testi ve sonlu elemanlar analizi hasar sonuçları verilmiştir. Her iki grubun analiz sonuçlarında ilk görsel maksimum kayma gerilmesinde numune durumunu ve ikinci görselde maksimum kayma gerilmesi sonrası numune hasarının başlangıç noktasını sunmaktadır. Her iki grubun test ve analiz sonuçlarında olması gerektiği gibi çentikli bölgeden hasar oluşması ve ilerlemesi durumu elde edilmiştir. Ancak analiz çalışmasında analiz süresini kısaltmak amaçlı tam numune kırılma durumuna kadar süre uzatılmamıştır.

4. Sonuçlar ve Tartışma

Bu çalışmada S2 cam/epoksi kompozit plakalar vakum reçine infüzyon yöntemiyle üretilmiştir. Üretilen plakalardan çekme, basma ve kayma test numuneleri kesilmiştir. Kesilen numuneler yaşlandırılmayan ve 36 ay yaşlandırılan olarak iki gruba ayrılmıştır. 36 ay yaşlandırılan numune grubu yapay deniz suyu ortamına bırakılmıştır. Yaşlandırılan ve yaşlandırılmayan numunelerin sırayla mekanik testleri yapılmıştır. Elde edilen verilere göre testlerin sonlu elemanlar analizi yapılmıştır. Çalışma sonuçları ve tartışma verileri;

-Kompozit malzemede sıvı emilimi sebebiyle tersinirtersinmez kimyasal ve/veya fiziksel değişiklikler olmakta (Örneğin matris-fiber ara yüzey bağlantısı zayıflaması) ve bu nedenle de kompozit malzemenin dayanımında düşüşler yaşandığını tespit etmişlerdir (Arhant et al. 2016). Ayrıca Li ve ark., (2019) kompozit malzemenin deniz suyu ortamında yaşlandırma işleminde, yaşlandırma süresinin artmasıyla malzeme dayanımında azalış hızının düştüğünü belirtmişlerdir. Malzemedeki bu durumun nedenin ise ileriki yaşlandırma sürelerinde şişen polimer zincirlerinin gevşemesi kaynaklı su emiliminin azalması olduğunu tespit etmişlerdir. Mevut çalışmadaki çekme ve basma testi numunelerinin 36 ay yaşlandırması sonucunda elde edilen dayanım düşüşlerinin literatüre uygun olduğu belirlenmiştir.

-36 ay yaşlandırılan kompozit malzemenin kayma dayanımı verilerinde literatüre (Davies et al. 2001, Sawpan 2019, Jose´-Trujillo et al. 2019) yakın oranlarda düşüşler elde edilmiştir.

-36 ay yaşlandırma işlemi sonucunda en fazla dayanım düşüşleri çekme testinde elde edilmiştir. Çekme gerilmesinde %24,39 ve gerinimde %26,82 düşüş olduğu tespit edilmiştir.

- Yaşlandırılmayan numunenin sonlu elemanlar analiziyle test sonucu karşılaştırmasında en fazla %6,97 hata oranı tespit edilmiştir.

-36 ay yaşlandırılan numunenin sonlu elemanlar analiziyle test sonucu karşılaştırmasında en fazla %5,56 hata oranı tespit edilmiştir.

-Elde edilen düşük hata oranlarıyla test ve sonlu elemanlar analiz sonuçları arasında iyi bir uyum elde edilmiştir. -Literatürde Kirar ve ark., (2024) ve Sridharan, (2017) çalışmalarında kompozit malzemenin mekanik testlerinin sonlu elemanlar analizi sonuçlarında mevcut çalışmadaki sonuçlara yakın hata oranlarında veriler elde etmiştir. Literatürdeki bilgilere göre çalışmadaki sonlu elemanlar analizi sonuçlarının doğruluğu teyit edilmiştir.

-Çekme, basma ve kayma testlerinin sonlu elemanlar analizi sonuçlarında deneysel olarak elde edilen hasar bölgesi ve şekline yakın hasar sonuçları belirlenmiştir.

Teşekkür

Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından (Proje No: 19353) desteklenmiştir. HÜBAP biriminin 19353 numaralı projesi kapsamındaki desteği için teşekkür ederiz.

Etik Standartlar Bildirgesi

Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur.

Yazarlık Katkı Beyanı

Yazar 1: Kaynaklar, Araştırma, Deney, Görselleştirme, Yazma – orijinal taslak Yazar 2: Metodoloji, Yazma – orijinal taslak Yazar 3: Biçimsel analiz, Doğrulama Yazar 4: Bicimsel analiz. Doğrulama

Çıkar Çatışması Beyanı

Yazarların bu makalenin içeriğiyle ilgili olarak beyan edecekleri hiçbir çıkar çatışması yoktur.

Verilerin Kullanılabilirliği

Bu çalışma sırasında oluşturulan veya analiz edilen tüm veriler, yayınlanan bu makaleye dahil edilmiştir.

5. Kaynaklar

Arhant, M., Le Gac, P., Le Gall, M., Burtin, C., Briançon, C. and Davies, P., 2016. Effect of Sea Water and Humidity on the Tensile and Compressive Properties of Carbon-Polyamide 6 Laminates. Composites: Part A, **91**, 250– 26.

https://doi.org/10.1016/j.compositesa.2016.10.012

- ASTM D3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials.
- ASTM D5379, Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method.
- ASTM D6641, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
- Balcioğlu, H.E., Sakin, R. and Gün, H., 2021. The Effect of Different Environmental Condition on Flexural Strength and Fatigue Behavior of E-Glass/Epoxy Composites. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 45:165–180.

https://doi.org/10.1007/s40997-020-00397-y

- Bhuyan, M. K, Bhuyan, M.S., Rodri´guez-De´vora, J.I. and Yanez, M., 2012. Delamination behavior of bidirectional S2 glass epoxy laminated composite due to combined moisture and temperature cyclic loading. Journal of Composite Materials ,47(27) 3421–3432. https://doi.org/10.1177/0021998312466120
- Davies, P., Mazéas, F. and Casari, P., 2001. Sea Water Aging of Glass Reinforced Composites: Shear Behaviour and Damage Modelling. Journal of Composite Materials, SAGE Publications, **35** (15), 1343-1372. https://doi.org/10.1106/MNBC-81UB-NF5H-P3ML
- Demircan, G. 2024. Structural integrity of glass fiber reinforced nanocomposites under hydrothermal aging for offshore structure applications. Applied Ocean Research, **146**, 103959. https://doi.org/10.1016/j.apor.2024.103959
- Demircan, G., Kisa, M., Ozen, M., Acikgoz, A., Işıker, Y., and Aytar, E., 2023-a. Nano-gelcoat application of glass fiber reinforced polymer composites for marine application: Structural, mechanical, and thermal analysis. Marine Pollution Bulletin, 194, 115412. https://doi.org/10.1016/j.marpolbul.2023.115412
- Demircan, G., Ozen, M., Kisa, M., Acikgoz, A. and Işıker, Y., 2023-b. The effect of nano-gelcoat on freeze-thaw resistance of glass fiber-reinforced polymer composite for marine applications. Ocean Engineering, **269**, 113589. https://doi.org/10.1016/j.oceaneng.2022.113589
- Fulginiti, F., Rezasefat, M., Xavier da Silva, A., Amico S. C., Giglio, M. and Manes, A., 2023. Experimental and numerical studies on the repeated low-velocity impact response and damage accumulation in woven S2-glass fibre/epoxy composites. Advanced Composite Materials, **32**:6, 916-941. https://doi.org/10.1080/09243046.2023.2178272
- Ghabezi, P. and Harrison, N.M., 2020. Mechanical Behavior and Long-Term Life Prediction of Carbon/Epoxy and Glass/Epoxy Composite Laminates under Artificial Seawater Environment. Materials Letters, **261**, 127091. https://doi.org/10.1016/j.matlet.2019.127091
- Ghabezi, P. and Harrison, N.M., 2022. Indentation characterization of glass/epoxy and carbon/epoxy composite samples aged in artificial salt water at elevated temperature. Polymer Testing, **110**, 107588. https://doi.org/10.1016/j.polymertesting.2022.10758 8

- Guen-Ge_roy A.L., Davies, P., Le Gac P. and Habert B., 2020. Influence of Seawater Ageing on Fracture of Carbon Fiber Reinforced Epoxy Composites for Ocean Engineering. Oceans 2020, **1**, 198–214. https://doi.org/10.3390/oceans1040015
- Guven, C., Kisa, M., Demircan, G., Ozen, M., and Kirar, E.,
 2024. Effect of seawater aging on mechanical,
 buckling, structural, and thermal properties of nano
 Al2O3 and TiO2-doped glass-epoxy nanocomposites.
 Polymer Composites, 45(8), 7376-7390.
 https://doi.org/10.1002/pc.28273
- Jose'-Trujillo, E., Rubio-Gonza'lez, C. and Rodri'guez-Gonza'lez, J., 2019. Seawater ageing effect on the mechanical properties of composites with different fiber and matrix types. Journal of Composite Material, **53**(23), 3229–3241. https://doi.org/10.1177/0021998318811514
- Kırar, E., 2024. Yaşlandırma İşlemine Tabi Tutulan Kompozit Plakaların Balistik Hasarının Sonlu Elemanlar Yöntemi ile Modellenmesi ve İncelenmesi. Doktora tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, 176.
- Kırar, E., Demircan, G., Kısa, M., Özen, M., 2023-a. Deniz Suyu Yaşlandırmasının Cam/Epoksi Kompozitlerdeki Kayma Dayanımına Etkisi. 4. Başkent International Conference on Multidisplinary Studies. Türkiye/Ankara, 770-777.
- Kırar, E., Kısa, M., Özen, M. and Demircan, G., 2023-b. Yapay Deniz Suyu Ortamında Yaşlandırılan Kompozit Plakanın Düzlem içi Çekme ve Basma Davranışının Sonlu Elemanlar Metodu ile Nümerik Analizi. Harran Üniversitesi Mühendislik Dergisi, **8**(1), 17-26. https://doi.org/10.46578/humder.1148379
- Kirar, E, Kisa, M., Ozen, M., Demircan, G. and Guven, C., 2024. Mechanical properties of glass/epoxy composites under artificial seawater environment: Numerical simulation and experimental validation. Marine Structures, **98**, 103679. https://doi.org/10.1016/j.marstruc.2024.103679
- Li, H., Zhang, K., Fan, X., Cheng, H., Xu, G. and Suo, H., 2019. Effect of Seawater Ageing with Different Temperatures and Concentrations on Static/ Dynamic Mechanical Properties of Carbon Fiber Reinforced Polymer Composites. Composites Part B, 173, 106910. https://doi.org/10.1016/j.compositesb.2019.106910
- Sawpan, M.A., 2019. Shear properties and durability of GFRP reinforcement bar aged in seawater. Polymer Testing, **75**, 312–320. https://doi.org/10.1016/j.polymertesting.2019.02.03 3

- Shillings, C., Javier, C., Leblanc, J., Tilton, C., Corvese, L. and Shukla, A., 2017. Experimental and Computational Investigation of Blast Response of Carbon-Epoxy Weathered Composite Materials. Composites Part B, 129, 107-116. https://doi.org/10.1016/j.compositesb.2017.07.023
- Sridharan, S., 2017. Performance Evaluation of Two Progressive Damage Models for Composite Laminates under High Velocity Projectile Impact. Master of Science, North Carolina State University Mechanical Engineering, North Carolina, 163.
- Wang, B., Ci, S., Zhou, M., Di, C., Yu J., Zhu, B. and Qiao, K., 2023. K. Effects of Hygrothermal and Salt Mist Ageing on the Properties of Epoxy Resins and Their Composites. Polymers, **15**, 725. https://doi.org/10.3390/polym15030725
- Wood, C.A. and Bradley, W.L., 1997. Determination of The Effect of Seawater on The Interfacial Strength of an Interlayer E-Glass/Graphte/Epoxy Composite by in Situ Observation of Transverse Cracking in an Environmental SEM. Composites Science and Technology, 57, 1033-1043. https://doi.org/10.1016/S0266-3538(96)00170-4