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ABSTRACT. In this article, we present an adaptive residual subsampling scheme designed for kernel based inter-
polation. For an optimal choice of the kernel shape parameter we consider some cross validation (CV) criteria, using
efficient algorithms of k-fold CV and leave-one-out CV (LOOCV) as a special case. In this framework, the selection of
the shape parameter within the residual subsampling method is totally automatic, provides highly reliable and accu-
rate results for any kind of kernel, and guarantees existence and uniqueness of the kernel based interpolant. Numerical
results show the performance of this new adaptive scheme, also giving a comparison with other computational tech-
niques.
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1. INTRODUCTION

In [12] an adaptive residual subsampling method depending on radial basis function (RBF)
interpolation is presented. The computational technique guarantees, on the one hand, the non-
singularity of the interpolation matrix (and so existence and uniqueness of the interpolant) and,
on the other, allows an optimal selection of the kernel shape parameter through application of a
maximum profile likelihood estimation criterion. This twofold advantage is obtained by using
strictly positive definite kernels that are radially symmetric [19]. Each of these positive features
do not usually occur in the original method [18], as well as in its modified version [40]. Indeed,
while in [18] the adaptive method is characterized by a kernel shape parameter that can vary
at each node, thus breaking the above-mentioned symmetry and accordingly compromising
the proof of matrix non-singularity, in [12] this issue is solved by an optimal choice of a unique
shape parameter for all nodes. As a result, for practical purposes, any kind of radial kernel
can be used and the adaptive scheme can be iteratively and automatically applied without any
user’s action. Other examples of adaptive interpolation algorithms can be found in literature,
see e.g. [1, 7, 24, 38] and references therein.

In this work, we propose a change in the decision strategy regarding the choice of the opti-
mal shape parameter associated with the kernel within the residual subsampling method [12].
In this context, we opt for use of some cross validation (CV) criteria. In fact, CV is a popular
technique in statistics which, instead of the usually unknown solution, makes use of the given
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data to predict optimal values of model parameters for data fitting. The main idea is to split the
data into a training set and a validation one, then utilizing some form of error norm obtained
by gauging the accuracy of the fit built from information on the training set at points of the val-
idation set [21]. Here, we focus on some possible options of CV algorithms to be applied within
the residual subsampling method. More precisely, we consider the k-fold CV formulated as an
extended version of Rippa’s scheme [30], which includes original Rippa’s algorithm [34] as a
particular case. The latter is an especially popular version of CV, known as leave-one-out cross
validation (LOOCV), and corresponds to using a training set consisting of all of the data points
except one, which in turn is the sole member of the validation set. In the setting of kernel or
RBF methods the LOOCV scheme appears in several papers such as [7, 22, 26, 36, 37], to name
a few. Since the LOOCV method is also efficiently implemented in the MATLAB crossval
routine [31], it will also be used in this study as a term of comparison for our procedures.

The aim of this work is therefore to introduce a CV criterion for an optimal choice of the ker-
nel shape parameter within the adaptive residual subsampling method. The use of k-fold CV
or LOOCV strategies provides greater flexibility and sometimes efficiency than the maximum
profile likelihood estimation criterion in [12]. Indeed, this study shows how the CV techniques
are valid alternative within residual subsampling schemes, even if – due to several variables
involved – is not possible to declare a clear and complete superiority of a specific CV scheme
compared to other ones. However, the resulting algorithm allows a totally automatic compu-
tation of the shape parameter, i.e., any user’s action is not required, either initially, and a single
optimal shape parameter is found at any iteration and for each data point set. In this frame-
work, the interpolation problem is well-posed and hence the kernel interpolant exists uniquely,
obviously provided that the kernel matrix is positive definite (see e.g. [21]). Moreover, the use
of CV techniques has some predictive role to control the ill-conditioning of the interpolation
matrix, in particular when in the iterative/adaptive method the number of interpolation points
grows. Finally, as our numerical results show, an application of CV criteria formulated in the
framework of extended Rippa’s scheme generally results in an adaptive interpolation scheme
more efficient than commonly used MATLAB routines. The new adaptive method is tested
in one and two dimensions and highlights good performance in term of both computational
accuracy and efficiency.

The paper is organized as follows. In Section 2, we introduce some preliminaries on multi-
variate RBF/kernel based interpolation. Section 3 presents CV criteria to find optimal values
of the kernel shape parameter in the interpolation method. In Section 4, we describe the adap-
tive residual subsampling scheme. In Section 5, we report some numerical results, showing
accuracy and efficiency of the different CV schemes and providing a comparison with other
algorithms. Section 6 concludes this article.

2. PRELIMINARIES

RBF or kernel based methods are powerful and effective tools for multivariate data inter-
polation. In this section, we introduce some basic notations and a few theoretical results for
kernel based interpolation. For further details, we refer the reader to [3, 21, 39].

2.1. Multivariate interpolation and positive definite functions. Scattered data fitting is in
general one of the fundamental problems in the field of approximation theory and its appli-
cations. In order to have a well-posed problem formulation, we need to recall the concepts
of positive definite matrices, and strictly positive definite functions. Indeed, such functions
provide a direct entry into meshfree approximation methods [19].
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To give a precise definition of the scattered data interpolation problem, we assume to have
a finite set X = {xi}Ni=1 ⊆ Ω of data points (or nodes) for some region Ω in Rd, d ≥ 1, and the
corresponding scalar-valued data fi ∈ R. These values are often obtained by sampling some
(unknown) function f at the data points, i.e. yi = f(xi), i = 1, . . . , N . So we are now ready for
a precise formulation of the multivariate interpolation problem.

Problem 2.1. Given data (xi, yi), i = 1, . . . , N , with xi ∈ Rd, d ≥ 1, and yi ∈ R, find a (continuous)
function s such that

s(xi) = yi, i = 1, . . . , N.(2.1)

A suitable and common approach to solving this problem is to take the function s as a linear
combination of certain basis functions Bj , i.e.,

s(x) =

N∑
j=1

cjBj(x), x ∈ Ω.(2.2)

Solving the interpolation problem under this assumption leads to a linear system of the form

Ac = y,

where the entries of the interpolation matrix A are given by Aij = Bj(xi), i, j = 1, . . . , N ,
c = (c1, c2, . . . , cN )T , and y = (y1, . . . , yN )T .

Problem 2.1 is well-posed, i.e., a solution to a problem exists and is unique, if and only if the
matrix A is non-singular.

In order to have basis functions Bj , j = 1, . . . , N , that generate non-singular matrices A for
any set of distinct nodes, we recall the special class of positive definite (PD) matrices.

Definition 2.1. A real symmetric matrix A is called positive semi-definite if its associated quadratic
form is non-negative, i.e.,

N∑
i=1

N∑
j=1

cicjAij ≥ 0(2.3)

for c = (c1, . . . , cN )T ∈ RN . If the quadratic form (2.3) is zero only for c ≡ 0, then A is called positive
definite.

An important property which involves all PD matrices is that, if A is a PD matrix, all its
eigenvalues are positive and therefore A is non-singular (but not vice versa). In general, then,
it is convenient to consider basis functions Bj of the form (2.2) which are the shifts of a certain
function centred at xj , i.e. Bj(·) = Φ(· − xj), so that interpolation matrix is positive definite.
For this reason, we introduce the concept of strictly positive definite (SPD) function.

Definition 2.2. A complex-valued continuous function Φ : Rd → C is called positive definite on Rd

if
N∑
i=1

N∑
j=1

cicjΦ (xi − xj) ≥ 0(2.4)

for any N pairwise different data points x1, . . . ,xN ∈ Rd, and c = (c1, . . . , cN )T ∈ CN . The function
Φ is called strictly positive definite on Rd if the quadratic form (2.4) is zero only for c ≡ 0.

It is also possible to characterize real-valued (S)PD functions using only real coefficients.
In fact, Definition 2.2 implies that only functions whose quadratic form is real are candidates
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for (S)PD functions. A characterization of such functions is given in the following theoretical
result.

Theorem 2.1 ([19]). A real-valued continuous function Φ is positive definite on Rd if and only if it is
even and

N∑
i=1

N∑
j=1

cicjΦ (xi − xj) ≥ 0(2.5)

for any N pairwise different data points x1, . . . ,xN ∈ Rd, and c = (c1, . . . , cN )T ∈ RN . The function
Φ is called strictly positive definite on Rd if the quadratic form (2.5) is zero only for c ≡ 0.

A celebrated result on PD functions is the integral characterization given by Bochner’s the-
orem.

Theorem 2.2 (Bochner, [19]). A (complex-valued) function Φ ∈ C(Rd) is positive definite on Rd if
and only if it is the Fourier transform of a finite non-negative Borel measure µ on Rd, i.e.

Φ(x) = µ̂(x) =
1√
(2π)d

∫
Rd

e−ix·ydµ(y), x ∈ Rd.

2.2. Kernel based interpolation. Given a compact domain Ω ⊂ Rd, we assume that the N
distinct data points are defined by the set X = {xi}Ni=1 ⊆ Ω, while the associated data values
are given by yi = f(xi) ∈ R, i = 1, . . . , N , the latter being obtained by sampling some function
f : Ω → R. For Problem 2.1 we want to determine a function s : Ω → R satisfying the
interpolation conditions (2.1).

We can thus express the interpolant s as a linear combination of kernels κε : Ω × Ω → R
depending on the so-called shape parameter ε > 0, i.e.

(2.6) s(x) =

N∑
j=1

cjκε(x,xj), x ∈ Ω.

The solution of this interpolation problem results in the symmetric linear system

Aεc = y,(2.7)

where Aε is the interpolation (or kernel) matrix with entries (Aε)ij = κε(xi,xj), i, j = 1, . . . , N ,
while c and y are defined as above. Specifically, we remark that if the kernel κε is symmetric
and SPD, the matrix Aε is PD for any data point set X , and the coefficients cj in (2.6) can
uniquely be found.

Starting from the kernel κε in (2.6) we may define a SPD RBF ϕ : R+
0 → R such that

κε(x,xj) = ϕε(||x− xj ||2) = ϕε(r) := ϕ(εr), ∀x,xj ∈ Ω,

where || · ||2 denotes the Euclidean norm on Rd. It is noteworthy to observe that the choice of
a suitable shape parameter ε is usually relevant in radial kernel methods, even if it is known
to be a big issue (see e.g. [13, 20, 25, 32], or [21, Chapter 14]). Some popular examples of SPD
RBFs are listed below, together with their smoothness degrees and related abbreviations (see
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[19]):

ϕε(r) =



exp(−ε2r2), Gaussian C∞ GA

(1 + ε2r2)−1/2, Inverse MultiQuadric C∞ IMQ

exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15), Matérn C6 M6

exp(−εr)(ε2r2 + 3εr + 3), Matérn C4 M4

exp(−εr)(εr + 1), Matérn C2 M2.

Additionally, the solution of the linear system (2.7) turns out often to be quite sensitive to
changes in the data, and the choice of ε can greatly influence the numerical result. A way
to measure the computational stability of this interpolation method consists in calculating the
condition number of Aε. As the kernel κε is symmetric and SPD, the conditioning of the kernel
matrix Aε can simply be computed as the ratio between the largest and the smallest eigenvalue
(λmax and λmin, respectively) of Aε as:

cond(Aε) = ||Aε||2||A−1
ε ||2 =

λmax

λmin
.(2.8)

In order to give some error estimates, we introduce the so-called native space associated with
the kernel κε, which is a reproducing kernel Hilbert space Nκε

(Ω) with inner product (·, ·)Nκε (Ω),
i.e., f(x) = (f, κε(·,x))Nκε (Ω), for all f ∈ Nκε

(Ω) and x ∈ Ω. Moreover, Hκε
(Ω) = span{κε(·,x),

x ∈ Ω} is a pre-Hilbert space with reproducing kernel κε and equipped with the bilinear form
(·, ·)κε

. The native space Nκε
(Ω) of κε is its completion w.r.t. the κε-norm || · ||κε

so that
||f ||κε

= ||f ||Nκε (Ω) for all f ∈ Hκε
(Ω) (see [19]). Now, we can thus provide a generic error

bound in terms of the well-known power function Pκε,X .

Theorem 2.3 ([19]). Let Ω ⊆ Rd, κε ∈ C(Ω× Ω) be strictly positive definite on Rd, and suppose that
X = {xi}Ni=1 has distinct points. Then, for all f ∈ Nκε

(Ω), we have

|f(x)− s(x)| ≤ Pκε,X(x)||f ||Nκε(Ω)
, x ∈ Ω.

The first error estimate of Theorem 2.3 can then be improved as shown in the following
theorem.

Theorem 2.4 ([19]). Let Ω ⊆ Rd be bounded and satisfy an interior cone condition. Suppose that
κε ∈ C2k(Ω × Ω) is symmetric and strictly positive definite. Then, for all f ∈ Nκε

(Ω), there exist
constants h0, C > 0 (independent of x, f and κε) such that

|f(x)− s(x)| ≤ Chk
X,Ω

√
Cκε(x) ∥f∥Nκε (Ω) ,

provided hX,Ω ≤ h0. Here

Cκε(x) = max
|β|=2k,

max
w,z∈Ω∩B(x,c2hX,Ω)

∣∣∣Dβ
2 κε(w, z)

∣∣∣ ,
with B(x, c2hX,Ω) denoting the ball of radius c2hX,Ω centred at x, and hX,Ω being the fill distance

hX,Ω = sup
x∈Ω

min
xj∈X

||x− xj ||2.

Theorem 2.4 says that interpolation with a C2k smooth kernel κε has approximation order
k. Accordingly, we can deduce that:

(a) for C∞ SPD kernels, the approximation order k is arbitrarily high;
(b) for SPD kernels with limited smoothness, the approximation order is limited by the

kernel smoothness.
For more refined error bounds, the reader may refer to [39].
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3. CROSS VALIDATION CRITERIA FOR THE SHAPE PARAMETER CHOICE

In Section 2, we compute the interpolant s in (2.6) by solving the linear system (2.7), where
the kernel matrix Aε is symmetric and PD. By the uncertainty or trade-off principle [35, 33]
we know that using a standard RBF one cannot have high accuracy and stability at the same
time. In fact, when the best level of accuracy is typically achieved, i.e., in the flat limit ε → 0,
the interpolation matrix may be very ill-conditioned. A good compromise between numerical
accuracy and computational stability needs to be found. It is therefore important to devise
suitable techniques that allow us to make a reliable prediction of ε. In fact, the approximation
quality is often strongly influenced by the shape parameter, and consequently several strategies
have been proposed in the literature for its tuning, see e.g. [8, 15, 23, 36] and [21, Chapter 14].

In this work, we discuss three possible versions of CV algorithms, which we will apply in the
residual subsampling method for kernel based interpolation. Hereinafter, firstly we consider
the k-fold CV formulated as an extended version of Rippa’s algorithm [30], including original
Rippa’s LOOCV scheme [34] as a particular case (i.e., when k = N ); then, we refer to the
LOOCV method that is implemented in the MATLAB crossval routine [31].

3.1. Extended Rippa’s scheme. Supposing to have N data points, in the k-fold CV the data
set is divided into k (possibly equal-sized) disjoint subsets, k ≤ N . Then, iteratively, k ∈ N
different models are built upon k − 1 training folds and their performance is evaluated on the
respective remaining validation fold. An alternative CV scheme is the so-called leave-p-out
cross validation (LpOCV) [16], p ∈ N, p < N , where all possible combinations of p elements of
the data set are taken into account as validation set. Since such a computation is very demand-
ing in many situations, k-fold CV is usually preferred. In this work, with an abuse of notation,
we refer to LpOCV meaning k-fold CV with k ≈ N/p. A stochastic extension of extended
Rippa’s scheme can be found in [29].

To formulate extended Rippa’s scheme in the k-fold CV setting [30], considering one of the k
folds, we define a vector p = (p1, . . . , pv)

T of distinct validation indices pj ∈ {1, . . . , N}, v ∈ N,
v < N . The data set is subdivided into a training data set T consisting of N − v points (xj , yj)
with j /∈ p, meaning the indices that are not elements of p, and a validation data set V formed
by the remaining v points (xpj

, ypj
), j = 1, . . . , v.

For a fixed ε, we define the partial RBF interpolant constructed upon T as

s[p](x) =

N∑
j=1, j /∈p

c
[p]
j κε(x,xj).

The column vector c[p] = (c
[p]
j )j /∈p is found by solving the system of linear equations

Ap,p
ε c[p] = yp,(3.9)

where Ap,p
ε = (Aε)i,j , with i, j /∈ p, and yp = (yj)j /∈p. Notice that by writing cp = (ci)j /∈p and

cp = (cj)j∈p we are, in practice, considering some subvectors of c, while c[p] represents the
solution of the linear system (3.9). Thus, in general, we have that c[p] ̸= cp.

To extend Rippa’s algorithm, our aim is to compute the validation errors at V , i.e.,

ep := ep(ε) = yp − s[p](xp) = (yp1 − s[p](xp1), . . . , ypv − s[p](xpv ))
T(3.10)

by means of (2.7) and without solving (3.9). Thus, from [30, Theorem 1], if Aε and c are as in
(2.7), the vector of ε-dependent errors ep = ep(ε) in (3.10) related to the points xp1

, . . . ,xpv
is

the unique solution of the linear system

(A−1
ε )p,pep = cp, ep ∈ Rv,(3.11)
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where (A−1
ε )p,p = (A−1

ε )i,j , with i, j ∈ p, and cp = (ci)i∈p, and the vectorized index p extracts
the i-th rows and j-th columns subsystem with i, j ∈ p of the original matrix.

Concatenating all k validation error vectors e(ε) = (eTp1
, . . . , eTpk

)T (ε) of all k folds yields the
vector of errors, and we define the LpOCV optimal value by

ε∗ = argmin
ε

||e(ε)||,(3.12)

where || · || is any norm used in the minimization problem, for instance, the ∞-norm. So from
(3.11) and (3.12) the LpOCV cost function to be minimized is given by

LpOCV(ε) = ||e(ε)||∞.(3.13)

In particular, by setting p = p ∈ {1, . . . , N} in (3.10) and (3.11), we get to original Rippa’s
scheme [34], i.e.

ep(ε) = yp − s[p](xp) =
cp

(A−1
ε )p,p

.

Indeed, when we set k = N in the k-fold CV, this choice is equivalent to consider the LpOCV
with p = 1, thus defining the LOOCV, because each validation fold consists of a single point.
The resulting LOOCV scheme computes an exact N -fold CV, which has been widely employed
by the scientific community and also generalized to other contexts e.g. in [5, 10, 11, 14, 22].

3.2. Other MATLAB CV techniques. CV is a model assessment technique that is commonly
used to evaluate the performance of machine learning algorithms in making predictions on
new data sets that it has not been trained on. This is carried out by creating a partition of the
known data set in two subsets: a subset is used to train the algorithm, while the remaining one
is applied for model validation. More precisely, each CV phase involves randomly partitioning
the original data set into a training set and a validation set. The former is then used to train
a supervised learning algorithm, whereas the latter is considered to evaluate its performance.
This process is repeated several times and the average CV error is used as a performance indi-
cator [31].

Among the most usual techniques of CV, already implemented in MATLAB, we here men-
tion for our purposes only two as follows:

a) k-fold CV: It partitions data into k randomly chosen subsets (or folds) of roughly equal
size. One subset is employed for validation of the model trained using the remaining
subsets. This process is repeated k times such that each subset is used exactly once
for validation. Across all k partitions the average error is computed. This approach
is one of the most popular CV techniques even if it can be quite expensive from the
computational point of view since the model needs to be trained repeatedly.

b) LOOCV: It partitions data using the k-fold approach, k being equal to the total number
N of data. This data is used once as a validation set.

MATLAB software enables to use both k-fold CV and LOOCV algorithms through suitable
application of crossval and cvpartition routines.

4. ADAPTIVE RESIDUAL SUBSAMPLING SCHEME

In this section, we present our adaptive residual subsampling procedure, which allows us
to refine and coarsen the node distribution by applying a kernel based interpolation process.
More precisely, this scheme is used to approximate an unknown target function on uniformly
distributed points, and then the residual error is evaluated at midpoints. The latter are added
to the point set when the residual is over a prescribed refinement threshold, whereas they are
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removed from that set when they are under a predefined coarsening threshold. Hereinafter,
we give a more detailed explanation of this adaptive scheme.

We firstly introduce a finite sequence of data point sets, which in the iterative procedure are
denoted by

X(0), X(1), · · · , X(kmax),

so that the (k + 1)-th set X(k+1) is obtained from the k-th one, i.e. X(k) = {x(k)
i }N(k)

i=1 , after
applying some refinement and/or coarsening procedures till a maximum number kmax of
iterations. This adaptive process thus brings to an update of the node distribution based on the
computation of residual errors evaluated on some suitable test points. The iterative scheme we
are constructing follows the common paradigm to solve, estimate, refine and/or coarsen till
stop criteria are satisfied, or kmax is reached.

Then, after defining a set of test points T (k) = {t(k)i }NT (k)

i=1 ⊂ Ω, for k ≥ 0, we compute the
residual absolute error

ξ(t
(k)
i ) =

∣∣∣s(t(k)i )− f(t
(k)
i )

∣∣∣ , t
(k)
i ∈ T (k),(4.14)

the interpolating function s being here constructed on the set X(k), and NT (k) defining the
number of points belonging to T (k).

The residual in (4.14) provides a measure of the error between the approximate solution
and the function value computed at the test set T (k). In particular, the absolute error ξ(t

(k)
i )

is expected to be small when the test point t(k)i is on or close to a smooth region, while it is
expected to be large when t

(k)
i lies in a part of the domain characterized by a low regularity or

close to a discontinuous region.

Remark 4.1. At the earliest stage (i.e. for k = 0), the test set T (0) is defined by starting from X(0) ≡ X ,
whereas in the next iterations (i.e. for k ≥ 1), the test set T (k) depends on both the sets X(k) and X(k−1).

The residual (4.14) is used as an error indicator to define two different sets of our adaptive
scheme, namely a refinement set and a coarsening one, called X

(k)

refine and X
(k)
coarse, respec-

tively. Therefore, introducing two positive thresholds θrefine and θcoarse, with θcoarse <
θrefine, we can act as follows:

(1) If the error ξ(t
(k)
i ) in (4.14) is larger than θrefine,the test point t(k)i is added in the set

X
(k)

refine, and so X(k) is replaced by X(k) ∪X
(k)

refine.

(2) If the error ξ(t(k)i ) in (4.14) is smaller than θcoarse, the test point is moved from the set
X(k) to the set X(k)

coarse, and so X(k) is then updated with X(k)\X(k)
coarse.

Accordingly, the set X(k+1) is adaptively obtained by adding the set X(k)

refine to the set X(k) and

deleting the set X(k)
coarse, i.e.,

X(k+1) =
{
X(k) ∪X

(k)

refine

}
\X(k)

coarse.

The iterative method concludes once the process of addition/removal was completed, return-
ing the final set X(k∗), k∗ denoting the last iteration.

Analysing the proposed method, we note that it turns out to be dependent on the error
(4.14). Indeed, at each iteration k, the adaptive procedure generates a kernel based interpolant
of the form (2.6) defined on the set X(k), thus requiring to make some extra evaluations of
the function f at the test points t

(k)
i , ∀i. Since the function evaluation might be costly (or,
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for instance, in real world applications, even not available at all), one could think of using an
alternative strategy creating a local approximation around t

(k)
i and using the latter (instead of

function value) in (4.14). A pseudo-code of this adaptive scheme is outlined in Algorithm 1.
Similar computational techniques have already been studied in e.g. [6, 40].

Algorithm 1: Adaptive residual subsampling scheme

STEP 1 Assume X(0) ≡ X

STEP 2 Fix θrefine > θcoarse > 0

STEP 3 While k ≤ kmax & X
(k)

refine ∪X
(k)
coarse ̸= ∅

3.1: Compute ε
(k)
∗ minimizing (3.13)

3.2: Solve the system (2.7) on X(k) and get the interpolant (2.6)

3.3: Define T (k)

3.4: Evaluate the residual ξ(t(k)i ) in (4.14)

3.5: Define

X
(k)

refine = {t(k)i ∈ T (k) : ξ(t
(k)
i ) > θrefine, i = 1, . . . , NT (k)}

X
(k)
coarse = {x(k)

i ∈ X(k) : ξ(t
(k)
i ) < θcoarse, i = 1, . . . , NT (k)}

3.6: Construct the set

X(k+1) =
{
X(k) ∪X

(k)

refine

}
\X(k)

coarse

5. NUMERICAL EXPERIMENTS

In this section, we analyze computational accuracy and efficiency of the residual subsam-
pling scheme, which is implemented in MATLAB for adaptive 1D and 2D interpolation. All
programs are run on a laptop with an Intel(R) Core(TM) i7-1065G7 CPU 1.50 GHz processor
with 16 GB RAM.

In these tests we highlight the performance of k-fold CV algorithms including LOOCV as
a special case, firstly focusing on approximation error and computational time and then em-
phasizing on iteration number (# iter), final number of points required to achieve convergence
(Nfin), and conditioning of the kernel matrix (cond(Aε)). Furthermore, we also compare nu-
merical results obtained by considering a benchmark MATLAB implementation of LOOCV via
crossval routine and those deriving from the adaptive method in [12]. To show how the
adaptive CV based methods work, we consider various types of radial kernels involving both
infinity and finite regularity like GA, IMQ, M6, M4 and M2. In such a case, we select the shape
parameter ε as discussed in Section 3. In particular, the optimal values of the shape parame-
ter are found by minimizing a cost function via the MATLAB fminbnd routine with a default
tolerance of 10−4 and searching ε in the range [0.2, 20].

To analyze the precision of the adaptive scheme, we compute the root mean square error
(RMSE), i.e.,

RMSE =
1√
Ne

||f − s||2 =

√√√√ 1

Ne

Ne∑
i=1

[f(ξi)− s(ξi)]
2
,
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where the ξi is a uniform (equally-spaced or gridded) data set consisting of Ne evaluation
points.

The matrix conditioning in (2.8) is estimated by using the MATLAB cond command, whereas
the execution or CPU time of the adaptive algorithm is computed in seconds. We remark that
the CPU time reported in this article is the result of an average obtained by sequentially run-
ning the code 100 times.

5.1. Results in 1D interpolation. In this subsection, we focus on adaptive 1D interpolation.
All these tests are carried by starting from an initial point set X(0) ≡ X , which consists of
N (0) = 13 equally-spaced points in the interval Ω = [−1, 1]. Then, to connect the sets X(k) and
T (k) within the adaptive method, for k ≥ 0, we define the set T (k) of test points that are the
midpoints taken from (sorted) interpolation nodes, i.e.

T (k) = {t(k)i = 0.5(x
(k)
i + x

(k)
i+1), i = 1, . . . , N (k) − 1}.

The threshold values are assumed to be equal to θrefine = 10−6 and θcoarse = 10−8. How-
ever, in the comparison among the different residual subsampling algorithms, the refinement
threshold θrefine varies, while the coarsening one is kept fixed at the value θcoarse = 10−8.

In order to validate in depth our adaptive algorithms, we consider the following benchmark
target (or test) functions:

f1(x) =
1

1 + 25x2
, f2(x) = 2 sin (5) cos

[
10(x+ 1)

2

]
+ sin

[
5(x+ 1)

2

]
,

where f1 is the Runge function, and f2 represents a trigonometric function (see [18, 40]).
In Tables 1, 2, 3 and 4, we present the results obtained by applying the adaptive residual sub-

sampling method and using 10-fold CV and LOOCV schemes for the shape parameter choice.
From these tables we get some useful information regarding the algorithm execution, i.e. the
number of iterations and the final number of points required to achieve convergence. Specif-
ically, we remark that the average approximation error (RMSE) is significantly smaller than
the prescribed value θrefine. Moreover, the automatic shape parameter choice also allows us
to control the conditioning of the interpolation matrix that is always smaller than 10+17. At
the same time, we observe a high level of precision of the numerical method (roughly around
the order of 10−7 or 10−8). Indeed, taking into consideration the various situations, condition
number and execution time assume quite similar values.

kernel # iter Nfin RMSE cond(Aε) time

GA 4 53 9.6e-8 2.3e+9 0.5

IMQ 4 51 1.8e-7 1.6e+8 0.4

M6 24 37 2.9e-7 2.3e+14 1.7

M4 5 81 6.1e-8 2.7e+10 0.5

M2 12 107 1.9e-7 6.7e+11 1.1
TABLE 1. Results with 10-fold CV for f1.

In Tables 5 and 6, we compare our adaptive CV based methods, specifically the 10-fold CV
and LOOCV, deriving from extended Rippa’s scheme in Subsection 3.1, with the method [12]
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kernel # iter Nfin RMSE cond(Aε) time

GA 4 51 2.3e-7 1.5e+10 0.4

IMQ 4 51 9.4e-8 8.2e+13 0.4

M6 7 99 1.8e-7 1.3e+8 0.6

M4 11 55 1.6e-7 2.0e+9 0.8

M2 7 99 1.8e-7 1.3e+8 0.6
TABLE 2. Results with LOOCV for f1.

kernel # iter Nfin RMSE cond(Aε) time

GA 2 25 1.6e-7 3.9e+17 0.3

IMQ 3 49 2.1e-8 8.8e+17 0.4

M6 9 52 1.1e-7 4.1e+15 0.7

M4 7 66 2.5e-7 7.2e+15 0.7

M2 12 118 2.5e-7 6.8e+13 1.0
TABLE 3. Results with 10-fold CV for f2.

kernel # iter Nfin RMSE cond(Aε) time

GA 3 20 7.8e-8 2.1e+14 0.3

IMQ 2 25 2.1e-7 1.2e+16 0.3

M6 11 116 2.6e-7 6.1e+13 0.9

M4 10 53 1.8e-7 7.3e+13 0.7

M2 11 116 2.6e-7 6.1e+13 0.9
TABLE 4. Results with LOOCV for f2.

and another one characterized by the implementation of LOOCV, called LOOCV∗, through the
MATLAB crossval routine, as described in Subsection 3.2. In this experimentation, all tests
have been run by M4 kernel. From the variation of the threshold θrefine, we can observe that,
on average, 10-fold CV and LOOCV turn out to be comparable to method [12] in terms of both
number of nodes and execution time (necessary to achieve convergence). Though deducing
the superiority of one approach in regard to another is not easy, we can state that the LOOCV
is more efficient than LOOCV∗. This fact is clearly evident when the value of θrefine becomes
smaller and smaller and so the threshold request is more demanding.

5.2. Results in 2D interpolation. In this subsection, we consider adaptive 2D interpolation.
These experiments are run by taking an initial node set X(0) ≡ X , containing N (0) = 320
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θrefine
method [12] 10-fold CV LOOCV LOOCV∗

Nfin time Nfin time Nfin time Nfin time

1e-04 33 0.3 33 0.3 33 0.3 31 0.3

1e-05 39 0.4 39 0.3 39 0.3 39 0.4

1e-06 54 1.4 81 0.4 55 0.7 47 1.7
TABLE 5. Comparison among residual subsampling methods using M4 for f1.
Note that ∗ refers to the use of the MATLAB crossval routine [31].

θrefine
method [12] 10-fold CV LOOCV LOOCV∗

Nfin time Nfin time Nfin time Nfin time

1e-04 35 0.3 44 0.4 33 0.3 32 0.7

1e-05 44 0.4 48 0.5 45 0.4 45 2.4

1e-06 58 0.7 66 0.6 53 0.6 68 11.8
TABLE 6. Comparison among residual subsampling methods using M4 for f2.
Note that ∗ refers to the use of the MATLAB crossval routine [31].

uniformly distributed points on Ω = [−1, 1]2. Then, we update the node set X(k) by applying
the adaptive subsampling procedure described in Section 4. To correlate the interpolation node
set X(k) with the corresponding test point set T (k), for k ≥ 0, we compute the halfway points of
T (k), as in [12]. As refinement threshold we set θrefine = 10−4, while the coarsening threshold
is θcoarse = 10−8.

In our tests we analyze the performance of our algorithms taking the data values by three
test functions. The first is known as a Franke-type function [40], i.e.,

f3(x, y) = exp
[
−0.1

(
x2 + y2

)]
+ exp

[
−5

(
(x− 0.5)2 + (y − 0.5)2

)]
+ exp

[
−15((x+ 0.2)2 + (y + 0.4)2)

]
+ exp

[
−9

(
(x+ 0.8)2 + (y − 0.8)2

)]
.

The second is a hyperbolic tan function

f4(x, y) =
1

9
tanh

[
9

2
(y − x)

]
+ 1,

while the third is the exponential function [40] given by

f5(x, y) = exp
[
−60((x− 0.35)2 + (y − 0.25)2)

]
+ 0.2.

In Tables 7, 8, 9 and 10, we provide a numerical analysis to show how the adaptive residual
subsampling methods based on CV techniques work when they are applied to solve some
unknown functions characterized by quick variations in the domain Ω. As already done in the
one dimensional case, in the above-mentioned tables we provide a detailed summary regarding
the performance of the bivariate algorithm. Specifically, it collects the number of iterations
needed to get convergence, the corresponding final number of nodes, the approximation error,
the condition number of the kernel matrix and the total CPU time. From this study we point
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out that both methods, involving 10-fold CV and LOOCV, enable the algorithm to converge
in a relatively small number of iterations (namely, between 1 and 5). Moreover, the adaptive
procedure is able to avoid an excessive additions of points because – in all considered examples
– the final number of nodes is always less than 1000. This fact has a twofold importance: on the
one hand the conditioning is kept under control, on the other the executing time takes a few
seconds only. As regards the CPU time, we point the reader out that the type of radial kernel
and so its smoothness can influence the convergence speed of the numerical scheme, which is
subjected to an automatic addition or removal of points.

kernel # iter Nfin RMSE cond(Aε) time

GA 2 386 9.6e-6 5.1e+17 1.3

IMQ 2 321 5.0e-6 7.4e+15 1.0

M6 2 681 6.3e-6 3.2e+13 3.3

M4 3 496 1.5e-5 1.2e+13 2.5

M2 5 852 2.3e-5 7.9e+8 9.9
TABLE 7. Results with 10-fold CV for f3.

kernel # iter Nfin RMSE cond(Aε) time

GA 2 550 3.1e-7 1.2e+19 2.3

IMQ 1 315 7.4e-6 9.7e+12 0.5

M6 3 369 2.0e-5 5.9e+14 2.1

M4 5 508 2.1e-5 7.7e+9 4.3

M2 4 860 2.3e-5 7.9e+8 5.4
TABLE 8. Results with LOOCV for f3.

kernel # iter Nfin RMSE cond(Aε) time

GA 3 806 1.8e-5 2.3e+13 5.1

IMQ 2 654 9.3e-6 3.7e+11 2.2

M6 2 623 1.1e-5 2.6e+8 2.8

M4 2 622 6.3e-6 8.1e+8 2.4

M2 3 690 1.3e-5 1.5e+7 4.7
TABLE 9. Results with 10-fold CV for f4.
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kernel # iter Nfin RMSE cond(Aε) time

GA 3 938 1.2e-5 7.0e+11 5.9

IMQ 1 320 2.4e-5 7.4e+11 0.6

M6 4 387 1.4e-5 5.1e+9 2.4

M4 3 428 1.0e-5 1.2e+9 2.0

M2 4 593 1.4e-5 4.9e+7 4.8
TABLE 10. Results with LOOCV for f4.

Finally, in order to highlight the benefit coming from the use of the new adaptive scheme, we
conclude this section by making a comparison among different k-fold CV methods. In Table 11
we report the numerical results obtained by considering some specific values of k in the k-fold
CV. Indeed, in this study we assume k = 5, 25, 50, 100 and k = N , where the latter results in the
particular case of LOOCV. From this table, we can observe that all the CV techniques produce
good results. The main differences in the algorithm performance seems to be dependent on the
kind of radial kernel used. Conversely, for a fixed kernel, as evident focusing on each row of
Table 11, the final number of interpolation points (required to satisfy the thresholds θrefine and
θcoarse) and the CPU time are enough similar. In conclusion, these numerical experiments for
2D adaptive interpolation show that the use of CV techniques are efficient and effective for the
selection of the kernel shape parameter but, at the same time, it is not possible to declare a clear
and complete superiority of a CV scheme compared to other ones.

kernel 5-fold CV 25-fold CV 50-fold CV 100-fold CV LOOCV

Nfin time Nfin time Nfin time Nfin time Nfin time

GA 1243 13.1 1420 33.4 1330 19.6 1327 9.7 1231 9.7

IMQ 824 3.5 881 4.7 806 4.0 800 4.0 1053 7.4

M6 780 4.7 782 5.1 783 5.1 783 5.1 784 5.1

M4 683 7.2 683 7.6 684 7.0 689 7.7 682 7.0

M2 846 11.7 818 11.6 816 10.7 818 11.8 828 11.8
TABLE 11. Comparison among different k-fold CV methods for f5.

6. CONCLUSIONS

In this work, we proposed the use of various CV criteria for selecting optimal kernel shape
parameters within the adaptive residual subsampling method. More precisely, we focused on
extended Rippa’s scheme, considering k-fold CV and LOOCV as a special case. The application
of such strategies in an interpolation framework showed that CV based techniques are valid
alternative compared to other computational methods such as maximum likelihood estimation
approaches. Indeed, the resulting CV based schemes revealed good level of flexibility and
accuracy, also turning out to be more efficient than commonly used MATLAB routines.



90 Roberto Cavoretto, Adeeba Haider, Sandro Lancellotti, Domenico Mezzanotte and Amir Noorizadegan

As future work we expect to extend the application area of the adaptive CV based schemes
to variably scaled kernels and discontinuous functions (see e.g. [2, 17, 27, 28]). Moreover, we
also consider the chance to implement efficient residual subsampling algorithms for partition
of unity methods (see e.g. [4, 7, 9]).
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