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1. Introduction  

Challenges such as increasing environmental pollution, in-

creasing greenhouse gas emissions, increasing global warming, 

climate change, and the scarcity of available natural resources 

cause the use of renewable energy sources to increase daily. The 

electric transportation sector contributes greatly to the reduction 

of these problems with rapid development all over the world. 

Lithium-ion batteries (LIB) are the most important component 

in meeting the transportation needs of electric vehicles. The 

foundations of LIB technology were laid in the 1970s due to 

studies conducted by Michael Stanley Whittingham [1]. In the 

following years, this technology was developed and matured by 

a working group consisting of physicist John Bannister Goode-

nough, chemist Michael Stanley Whittingham, scientist Rachid 

Yazami, and chemist Akira Yoshino [2]. Sony commercialized 

LIB in 1991 [3]. 

LIBs have become popular in energy storage systems due to 

their long lifetime, lack of memory, potential to deliver dense 

and high energy, environmental friendliness, and relatively low 

maintenance. This has led to their dominance in today's energy 

storage market [4]. 

However, an effect called aging is observed in LIBs. The 

leading cause of battery aging is the chemical reactions between 

the electrolyte and the negative electrode [5,6]. Due to these 

chemical reactions, the conduction potential of the electrolyte 

decreases. This means fewer electrons and ions can be trans-

ported, and therefore, the total usable capacity of the battery de-

creases. This is where the concept of state of health (SoH) 

emerges [7,8]. SoH is the most basic parameter that informs the 

user about the aging characteristics of the battery. The battery's 

capacity to hold instantaneously is a key component for SoH de-

tection. Determining the health status of batteries is important to 

increase the battery's useful life and ensure the system's safe op-

eration [9]. Ideally, the SoH value of a factory-fresh battery is 

considered 100%. With calendar or cyclic aging, the battery 
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completes its useful life over time. To detect this, SoH determi-

nation with high accuracy is a good reference for using the sys-

tem to obtain maximum efficiency [6]. Although there is no uni-

versal consensus on the definition of SoH [10], there are various 

definitions in the literature. SoH can be defined based on capac-

ity [11], internal resistance [12], RUL [13], and power [14]. 

However, the definition based on capacity is a much more com-

mon definition. It is defined as the percentage of the ratio of the 

instantaneous capacity to the capacity value of the battery at the 

factory [15]. With the studies conducted, it has been observed 

that when the capacity of the battery drops below 80%, there is 

a serious decrease in the performance of the battery. Therefore, 

80% is accepted as a reference for the end of battery life [16].  

Since LIBs are nonlinear systems, the electrochemical reac-

tions in their structure make it difficult to determine the aging 

characteristics of the battery. This makes SoH estimation and its 

high accuracy more complex. Due to the increasing use of re-

chargeable batteries daily, SoH estimation has attracted great in-

terest from researchers. Various methods have been proposed 

for SoH estimation. When the proposed methods are examined, 

it is observed that various SoH categorizations are proposed 

[17–19]. Basically, model-based methods and data-based meth-

ods can be considered under two categories. The parameters re-

quired for applying model-based methods are obtained through 

data acquisition experiments performed in a laboratory environ-

ment. Parameters such as open circuit voltage (OCV), capaci-

tance, and impedance can be obtained through these experi-

ments. As a result of subjecting these parameters to some exper-

imental studies, they can be sufficiently informative about the 

SoH of the battery. However, complex physics-based equivalent 

circuit model (ECM) models are needed to obtain the parameters 

in experimental studies. The mathematical computational bur-

den is quite high. The model parameters are difficult to self-up-

date and cannot quantify the uncertainty in the estimation. Alt-

hough model-based methods are efficient, they are not preferred 

in real-time applications [20]. In data-driven methods, LIB's 

health monitoring is usually performed by analyzing prelimi-

nary data such as current, voltage, capacitance, and impedance. 

Data-driven methods have the advantages of requiring few input 

features for model training, being model-independent, having 

low relative computational cost, and using a large set of algo-

rithms. These features have made this class of methods more 

preferable in recent years [20]. 

Recent studies have shown that the use of ML algorithms in 

the data-driven method category has increased rapidly. Gaussian 

Process Regression (GPR) [21–23], Support Vector Machine 

(SVM) [24,25], and Artificial Neural Network (ANN) [26,27] 

are some of the most widely used ML algorithms for SoH pre-

diction in the literature.  

When the literature is examined, it is seen that most of the 

studies on SoH are carried out with lithium-iron-phosphate 

(LFP), nickel-cobalt-aluminum (NCA), and nickel cobalt man-

ganese (NMC) batteries. Niraula et al. [28] achieved high accu-

racy in SoH estimation with an error rate of 2.5% using NMC 

battery chemistry. This study emphasizes the effectiveness of 

data-driven techniques for portable applications. In Tang et al.'s 

study [29], an algorithm developed in experiments on four dif-

ferent battery chemistries (LFP, NMC, LCO, NCA) achieved 

high accuracy in SoH estimation with an error rate of 1.2%. This 

method calculates SoH values by analyzing regional capacity 

and voltage variations. In Li et al.'s study [30], Panasonic NCR 

18650B LIB are investigated using electrochemical impedance 

spectroscopy (EIS) at various states of charge, and SoH estima-

tion is performed with an ANN model with high accuracy with 

an error rate of 1.2%. Huang et al. [31] used the local frequency 

method to estimate LIB’ SOH. This method is applied to NCA 

and LFP battery chemistries and achieves high accuracy at low 

sampling frequencies. SOH models based on regional voltage 

values achieved R-squared values of more than 0.99%, proving 

the method's effectiveness. In Müller et al. In a study [32], the 

effects of mechanical pressure on the performance and aging of 

LIB’s are investigated. Experiments on 1.4 Ah graph-

ite/NMC622 LIB’s showed how mechanical pressure at the elec-

trode and cell level can improve and slow down electrochemical 

performance and aging processes. 

However, it has been observed that there are not enough aca-

demic studies on SoH analysis of lithium titanate oxide (LTO) 

battery chemistry. 

Mahdi Soltani [33] et al. used a nonlinear Feed Forward Neu-

ral Network (FFNN) and presented an accurate SoH prediction 

and end-of-life (EoL) prediction model for LTO cells. They 

demonstrated that the SoH of LTO battery can be predicted with 

5% accuracy or <250 FEC (Full Equivalent Cycle) prediction 

error. Chaoui and Ibe-Ekeocha [34] developed a battery analysis 

model for LFP and LTO batteries using dynamically directed 

recurrent networks (DDRNs). The model is based on Nonlinear 

Autoregressive with Exogenous Inputs (NARX) architecture 

and estimates the State of Charge (SoC) and SoH of the battery 

using parameters such as battery voltage, charge/discharge cur-

rents, and environmental temperature. 

To contribute to the literature at this point, the software we 

developed in Python is used to pre-process the aging data of 

LTO batteries. With the processed data, differential voltage 

analysis (DVA) in MATLAB environment is handled with a 

new approach. In the paper that used this method in the literature, 

DVA is used together with a regression method to calculate SoH. 

Especially for LFP batteries, the cycle value and capacity value 

have a linear pattern within a certain range so that the calcula-

tions can be done quickly [35]. However, from the results ob-

tained in this study, it is determined that the cycling and capacity 

loss do not have a linear correlation. Therefore, a new approach 

has been developed based on the cycle value for SoH calculation 

for LTO batteries. Subsequently, the problem setup is discussed 

under two main headings. As the first main topic, SoH estima-

tion is considered a regression problem. Linear Support Vector 

Machine (LSVM), Rational Quadratic Gaussian Process Re-

gression (RQGPR), and ANN methods are used to solve this re-

gression problem. As the second main issue, the problem is 
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treated as a categorization problem. The feed-forward neural 

network method is used to solve the SoH calculation problem. 

This is the first time in the literature that this problem is treated 

as a categorization problem. The performance analysis of all 

these algorithms for determining the SoH of LTO batteries is 

carried out separately, and the results are presented compara-

tively.  

The rest of the paper is organized: Section 2 provides experi-

mental descriptions, the SoH definition, and methodology de-

tails. Section 3 presents the results and discussions. Section 4 

presents the proposed methodology. Section 5 summarizes the 

conclusions. 

2. Material and Method 

2.1. Experiment setup 

Huahui New Energy HTC Series 18650 LTO batteries are 

used in this study. The batteries used for this test are rechargea-

ble LTO 18650 cells with specifications and aging conditions 

specified in Table 1. The test data used are obtained through the 

battery test setup, which includes the NEWERA BTS4000 Bat-

tery Analyzer tester, a computer for user-machine interface and 

data storage, and the battery cells. Seven LTO battery cells with 

the same charge and discharge rate are used for comparison and 

validation. The cells are charged and discharged at constant rates 

in each aging cycle under specified conditions. The batteries are 

gradually aged for 3500 cycles. The data sets obtained from the 

static capacity test with a 0.8 C rate are mainly used in this study. 

Table 1. Material properties of SCP10. 

Battery 

Chemistry 

Battery  

Geometry 

Nominal 

Capacity 

(mAh) 

Nominal 

Voltage 

(V) 

C 

Rate 

Cycle 

Numbers 

Battery 

Label 

Lithium 

Titanate 

Oxide 

(LTO) 

Cylindrical 

(superca-

pacitor) 

18650 

1200 2.5 0.8 

500 Cell 1 

1000 Cell 2 

1500 Cell 3 

2000 Cell 4 

2500 Cell 5 

3000 Cell 6 

3500 Cell 7 

2.1.1 Lithium titanate oxide battery (LTO) 

LTO battery chemistry is a battery chemistry in the category of 

lithium-based rechargeable batteries with a widely used applica-

tion. LTO batteries have also found wide commercial use in wrist-

watches, electric vehicles, and bicycles [36]. 

The chemical formula of the LTO battery is 𝐿𝑖4𝑇𝑖5𝑂12. The 

reaction showing the chemical production of the formula is bi-

directional and is presented in Eq. (1). The chemical reaction can 

be expressed as breaking of 𝐿𝑖7𝑇𝑖5𝑂12 into 3 units of 𝐿𝑖+ and 

the release of 3𝑒− .  

 
𝐿𝑖7𝑇𝑖5𝑂12  ↔ 𝐿𝑖4𝑇𝑖5𝑂12 + 3𝐿𝑖+ +  3𝑒− (1) 

LTO batteries are increasingly used because they have a high 

cycle range, are safe, and have features such as fast charging due 

to the high charge/discharge rate. The batteries used in this study 

are Huahui New Energy HTC Series LTO batteries, which are 

in the 18650 cylindrical battery category according to the 

IEC/EN60086 standard. These batteries' rated capacities are typ-

ically 1300 mAh and a minimum of 1200 mAh. According to 

the battery analyzer data, it is measured as 1207.3 mAh (0.8C). 

The internal impedance of these batteries is less than 35 mΩ. 

Rated voltages are minimum discharge voltage 1.5V, nominal 

voltage 2.4V, and maximum charge voltage 2.8V. The maxi-

mum discharge current is 10C, that is, 13A. As the casing is 

18650, the height of the battery is 65.5 mm, and the diameter is 

18.5 mm. Its weight is 38.5±1 g. The image of the battery is 

presented in Figure 1. 

 

Figure 1. Huahui New Energy HTC Series LTO Battery  

2.1.2. Battery analyzer 

The data used in the study are obtained by aging the batteries 

with the BTS4000-5V6A battery analyzer, as shown in Figure 2. 

The instrument has 0.05% full-scale accuracy. Current output 

ranges are 5mA-1A, 1A-6A, and 6A-12A. The constant voltage-

breaking current ranges are 2mA, 12 mA, and 24 mA. The con-

stant voltage output range is between 25mV and 5V. It has a data 

recording frequency of up to 10 Hz, and its signal-to-noise ratio 

is less than 85dB. The device is designed for the prismatic, 

pouch, and cylindrical batteries. Due to the characteristics of the 

batteries used in the study, the minimum discharge voltage is 

determined as 2V, and the maximum charge voltage is deter-

mined as 2.8V. 

 

Figure 2. BTS4000-5V12A battery tester 

2.2. State of health 

Batteries' performance decreases over time depending on 

their cyclic aging frequency, storage conditions, and calendar 

aging periods. In batteries with declining health, a decrease in 
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capacity and, consequently, an increase in internal resistance is 

inevitable. 

SoH is one of the most critical parameters in LIB's battery 

condition category. It is generally defined depending on internal 

resistance and capacity. Since it is often defined as capacity-de-

pendent, it can be expressed as given in Eq. (2). 

𝑆𝑜𝐻 =
𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙
𝑥 100% (2) 

Here, 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents the instantaneously measured ca-

pacity value, and 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙  represents the capacity value that 

matches the battery's factory conditions. SoH varies depending 

on the electrochemical reactions occurring in the battery struc-

ture. However, it also varies depending on parameters such as 

temperature, storage conditions, and pressure, which are consid-

ered external factors [37]. When the capacity value drops below 

80%, it is accepted as an indicator that the battery is no longer 

suitable for use [38]. 

2.3 Differential voltage analysis (DVA) 

DVA is a method developed for the electrical identification 

of battery cells. Numerous studies in the literature use DVA to 

calculate SoH [39–41]. It is expressed by taking the derivative 

of the voltage concerning the capacitance and writing it as a 

function of the voltage [42]. The potential difference of the bat-

tery cell can be defined as the difference between the anode and 

cathode potentials, as in Eq. (3). 

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝑉𝑎𝑛𝑜𝑑𝑒  (3) 

A derivative expression of the cell's capacity against voltage 

can be defined as a (
𝜕𝐶

𝜕𝑉
)

𝑐𝑒𝑙𝑙
, and Eq. (4) can be obtained by 

considering Eq. (4). In this way, the capacity decrease can be 

observed graphically. 

(
𝜕𝐶

𝜕𝑉
)𝑐𝑒𝑙𝑙 = (

𝜕𝐶

𝜕𝑉
)𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − (

𝜕𝐶

𝜕𝑉
)𝑎𝑛𝑜𝑑𝑒 (4) 

2.4. Artificial neural network (ANN) 

ANN is a method designed and inspired by the functioning of 

the nervous system of human physiology, namely neurons, and 

developed for machines to learn with a similar logic. The pio-

neers of the ANN approach are Walter Pitts and Warren McCul-

loch. The foundations of ANN were laid in 1943, and these re-

searchers studied it [43]. Perceptron, the most basic and primi-

tive form of ANN, which can be considered the first functional 

ANN, was presented by Rosenblatt in 1957. ANNs can be com-

pared to a sandwich because they consist of n hidden layers be-

tween input and output layers. In ANN, inputs are generally ex-

pressed as "𝑥" and outputs as "𝑌". The x's first enter the input 

layer. They are then subjected to some processing and exit the 

layer as layer output "𝑦". ANNs are widely used in different 

fields to predict a battery's health state, parallel with technolog-

ical advances [44,45]. 

ANN will classify cases where the output variable is an or-

dered binary. If the output variables are not continuous but lim-

ited, this can be considered a classification problem. The pur-

pose of classification ANNs can be defined as categorizing the 

analysis made on the data as a function of the input parameters 

belonging to a particular class. Regression ANNs, on the other 

hand, predict an output variable as a function of the inputs. In 

regression ANNs, the mathematical calculations of neurons can 

be expressed as given in Eq. (5). Among the parameters used in 

Eq. (5), 𝑤 weight, x inputs, 𝑏 bias coefficient, 𝑦1 refers to 

the output of neuron number 1 in the hidden layer. 

𝑦1 = 𝑓𝑎𝑐𝑡(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑤302𝑥302 + 𝑏) (5) 

𝑌 = 𝑓𝑎𝑐𝑡 (∑(𝑤𝑖

295

𝑖=1

× 𝑦𝑖) + 𝑏) (6) 

Among the parameters used in Eq. (6), 𝑤 represents weight, 

𝑏  bias coefficient, 𝑌  output function, and 𝑓𝑎𝑐𝑡  activation 

function. The 𝑥 inputs are multiplied by a weight and sent to 

the neurons in the hidden layer. The neuron in the hidden layer 

takes the sum of all the inputs multiplied by the weights, adds a 

bias, and then puts it into the activation function to produce the 

output y. When the neural network is used for regression, there 

is only one output neuron. This neuron sums the outputs from 

neurons in the hidden layer multiplied by the relevant weight 

and adds bias. The regression output Y of the ANN is calculated 

by putting the result into the activation function. 

In this study, the Rectified Linear Unit (ReLU) function pre-

sented in Eq. (7) is used as the activation function. 

𝑓𝑎𝑐𝑡(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 (7) 

Another activation function used in this study is the Softmax 

function, which is presented in Eq. (8). 

𝜎(𝑥)𝑖

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑇
𝑗=1

 𝑓𝑜𝑟 𝑖 = 1, … , 𝑇 𝑎𝑛𝑑 𝑥 = 𝑥𝑖 , … , 𝑥𝑇 ∈  𝑅𝑇 (8) 

2.5. Support vector machines (SVM) 

SVM is an algorithm used in ML to solve regression and cat-

egorization-based problems. Vladimir N. Vapnik and Alexey 

Chervonenkis first developed it in [46,47]. Burger also pre-

sented a comprehensive study on using SVs for classification in 

1998 [48]. 

SVM is widely used in the literature to solve technical prob-

lems, such as analyzing battery health status and estimating their 

remaining useful life [49]. 

The implementation of SVM in solving categorization prob-

lems is based on the principle that the data corresponds to points 
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in an n-dimensional space, which are categorized within them-

selves with the hyperplane. SVM is also widely used in solving 

regression problems. 

2.6 Support vector regression (SVR) 

SVR is a variant of SVM used mainly for classification pur-

poses and analysis of nonlinear situations. They can make infer-

ences and train by generalizing. Finding the 𝑓(𝑥) function with 

a maximum deviation of ɛ from the actual target provided by the 

data obtained through all the training data can be defined as the 

main objective of the SVR. The function should be as flat as 

possible. In other words, the error does not matter if the error is 

less than epsilon 𝜀. 

The literature includes studies using SVR for various tech-

nical problems [50]. These technical problems include predict-

ing the health state of batteries [51,52].   

𝑆 =  {(𝑥1, 𝑦1), ⋯ , (𝑥𝑖 , 𝑦𝑖)}, 𝑥𝑖  ∈  𝑅𝑛, 𝑦𝑖  ∈ 𝑅  sample 

set is defined. In this defined set, 𝑥𝑖 is the eigenvector of the 

𝑖𝑡ℎ  sample, 𝑦𝑖  is the regression value of the 𝑖𝑡ℎ  sample. 

𝑁 can be defined as the number of samples and 𝑛 as the size 

of the input vector. Thus, the SVR function can be expressed as 

in Eq. (9). 

𝑓(𝑥)  =  𝑤𝛷(𝑥)  +  𝑏 (9) 

As the output 𝑓(𝑥)  in Eq. (9), 𝑤  can be defined as the 

weight vector 𝛷(𝑥) as the mapping function moved to the up-

per dimension and 𝑏 as the deviation value. At this point, it is 

possible to determine 𝑤 and 𝑏 parameters using the objective 

function. 

𝑚𝑖𝑛𝑅(𝐹) =
1

2
‖𝑤‖2 + 𝐶 ∑ |𝑓(𝑥𝑖)  − 𝑦𝑖|𝜀

𝑛

𝑖=1

 (10) 

Here, C is the penalty factor, 𝑛 is the number of training 

samples, 𝑓(𝑥𝑖)  𝑖𝑡ℎ  is the predicted value corresponding to 

the sample. 𝑦𝑖 𝑖𝑡ℎ is the actual value of the sample, 𝜀 is the 

maximum acceptable regression error, that is, the threshold 

value. 

|𝑓(𝑥) −  𝑦| 𝜀 =  𝑚𝑎𝑘𝑠{0, |𝑓(𝑥) −  𝑦|  −  𝜀}  (11) 

The definition of the optimization problem of the target func-

tion can be written as follows Eq. (12); 

𝑚𝑖𝑛 
1

2
 ‖ 𝑤‖2 +  𝐶 ∑(𝜉𝑖 +  𝜉 ∗𝑖

𝑁

𝑖=1

),   𝑖 = 1,2, … , 𝑁 (12) 

In cases where 𝜉𝑖  and 𝜉İ
∗  𝑖𝑡ℎ training samples have relax-

ation variables; 𝐶 is the penalty factor. Relaxation is a model-

ing strategy in mathematical optimizations. It can be defined as 

bringing the difficult problem closer to the easy one. The solu-

tion with these parameters provides information about the main 

problem. 𝜉𝑖  and 𝜉İ
∗  , 𝜀 and 𝑓(𝑥𝑖) the constraints between 

them can be expressed in Eq. (13) as: 

𝑠. 𝑡 = {

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉 ∗𝑖

𝜉𝑖 , 𝜉 ∗𝑖≥ 0
 (13) 

The regression functions parameters 𝛼𝑖  and 𝛼𝑖
∗ the La-

Grange multipliers, 𝑥𝑖 , and 𝑥𝑗  are training sample and input 

sample vectors.  

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼 ∗𝑖)𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏

𝑁

𝑖=1

 (14) 

Here, 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function. Gaussian kernel func-

tion is presented in Eq. (15). 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒
(−‖𝑥𝑖−𝑥𝑗‖2)

2𝜎2 , 𝜎 > 0  (15) 

When using SVR as a model, the 𝐶 penalty factor regulates 

the generalization potential of the model. σ is used as a kernel 

function width parameter to control adaptability. If these param-

eters are selected appropriately, estimation performance can be 

noticeably improved. As a result, the appropriate selection of 

parameters can prevent possible erroneous estimations [51]. 

2.7. Gaussian process regression (RQGPR) 

When the estimation approach with Gaussian processes is ex-

amined, it is noticed that it is not a new topic. Its origins date 

back to the 1940s [53]. GPR, which has a probabilistic approach, 

has recently started to attract attention with its applications in 

both statistical and engineering problems compared to nonlinear 

modeling approaches [54,55]. Although GPR is generally used 

to explain static nonlinearity, it also finds application in dynamic 

processes for modeling purposes [56]. Williams and Rasmussen 

first used GPR in ML in 1996.  

GPR is a highly effective ML method for solving the complex 

and challenging problem of predicting the aging characteristics 

of batteries. It has a non-parametric structure. Thus, it has a flex-

ible structure in detecting non-linear system relationships. Its 

flexible structure can directly determine the estimation uncer-

tainties. Various combinations of GPR are suitable for predict-

ing the behavior of a system under specified conditions. It is also 

widely used in SoH prediction studies [57–59]. Gaussian pro-

cesses have a Gaussian distribution with finite sets of variables. 

This is an essential factor in making highly accurate predictions 

[60]. The covariance function and the mean function define the 

Gaussian process. For a process 𝑓(𝑥), the mean function is de-

fined as 𝑚(𝑥), and the covariance function is defined as 𝑘(𝑥, 𝑥′). 

The definition of the Gaussian process is given in the Eq. (16); 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (16) 

The mean and covariance functions written in the equation are 

given in Eq. (17); 
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𝑚(𝑥) = 𝐸[𝑓(𝑥)]   

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] 
 (17) 

One of the powerful features of the GPR model is that it can 

work with all kinds of covariance functions. The covariance of 

the GPR is defined in terms of a kernel. There are different types 

of kernels, such as linear, periodic, and rational quadratic. How-

ever, the most preferred kernels in practice are Squared Expo-

nential (SE), Matérn, and Rational Quadratic (RQ). The kernels 

used provide advantages depending on the data and the charac-

teristics of the problem. This study uses Rational Quadratic GPR, 

which accurately predicts SoH. 

The Rational Quadratic kernel is a kernel function suitable for 

data with multi-scale features and flexible in modelling varia-

tions with non-identical length scales. The mathematical expres-

sion of the RQ kernel can be defined as given in Eq (18); 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2(1 +

(‖𝑥𝑖 − 𝑥𝑗  ‖)2

2𝛼ℓ2
  (18) 

In the given equation, 𝜎2 is the kernel variance. 𝑙 defines 

the length scale. 𝛼 is the scale mixing parameter. These three 

parameters play an active role in determining how the RQ kernel 

captures different features in the data and the model's flexibility. 

Here 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function. The rational Quadratic 

kernel function is presented in Eq. (17). 𝜎𝑓 corresponds to 𝜎𝑓 

in the same way, 𝛼 and ℓ. 

3. Results & Discussions 

In the study, seven LTO battery cells are aged 500-3500 cy-

cles range in the battery analyzer. In the battery analyzer, the 

minimum discharge voltage is set to 1.3V, the maximum charge 

voltage is set to 2.75V, and the aging process is carried out at 

0.8 C. In addition, 10-minute rests are added between the charg-

ing and discharging processes. It took approximately 5.5 months 

to complete all these processes and to obtain the data used for 

training ANNs in the study. The capacity fades depending on the 

cycle, as presented in Figure 3. 

 

Figure 3. Capacity fade of various cycles 

Preprocessing is done using tailored software prepared in Py-

thon to make the obtained data suitable for our study. Voltage 

values and capacity values for each cycle are combined within 

themselves. Then, these processed voltage and capacity data are 

transferred into MATLAB. Subsequently, DVA is performed in 

MATLAB. While performing the analysis, a filtering process is 

applied to remove the noise in the data. The calculated 𝜕𝐶 𝜕𝑉⁄  

and 𝜕𝑉 𝜕𝐶⁄  data are filtered with a frame size 30 sliding win-

dow moving average filter.  

 

Figure 4. 𝑑𝐶/𝑑𝑉 data according to voltage data and cycles 

Afterward, the graphs of the obtained data are drawn against 

capacity and voltage. Graphs of calculated 𝜕𝐶 𝜕𝑉⁄  data are 

presented in Figure 4 according to voltage and Figure 5 accord-

ing to capacity. 

In Figure 4, voltage is presented on the x-axis, cycle on the y-

axis, and 𝜕𝐶 𝜕𝑉⁄   on the z-axis. Here, the energy-holding ca-

pacity corresponding to the same voltage value decreases as the 

cycle increases. 

However, as seen in the graph, the decrease in capacity cor-

responding to the voltage does not have a linear correlation with 

the cycle. Figure 4 It is seen from Figure 4 that the battery sta-

bility is very high up to 1000 cycles, and then it goes to worse 

values. When the 𝜕𝐶 𝜕𝑉⁄  graph of LTO is considered, it is seen 

that two different cathodic peaks are related to different Li en-

vironments in the lattice structure. The redox peak voltage val-

ues with increasing cycling up to 3500 cycles are decreased, 

which means the lattice structure deformation during the litha-

tion and delithation process.  

Figure 5 shows the graph where 𝜕𝐶 𝜕𝑉⁄  is plotted according 

to voltage. Here, the graph is drawn separately for 1, 500, 1000, 

1500, 2000, 2500, 3000, 3500 cycles of a single cell. When the 

curves are examined, it is seen that there are two peaks in all 

curves. It is seen that both peaks in all curves, except the first 

cycle, correspond to a specific voltage value. These voltage val-

ues are calculated as 2.475V for the first peak and 2.625V for 

the second peak. We predicted that the increasing voltage value 

by cycling is related to the change in the local environment of 

the Li-ions in the lattice. The low-voltage Li-site in the lattice 

has more deformation than the high-voltage Li-site in the lattice. 
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Figure 5. 𝑑𝐶/𝑑𝑉 – Voltage graph. 

In these studies, the data obtained from the DVA analysis are 

plotted according to the capacity. The results obtained when the 

same analysis is performed for LTO batteries are presented in 

Figure 6 and Figure 7. When the data of 𝜕𝐶 𝜕𝑉⁄  are plotted ac-

cording to capacity, two peaks are detected in the graphs. The 

distance between these two peaks gives the battery's remaining 

capacity, namely the SoH, since the graph is drawn according to 

the capacity. As the batteries age, one of the peaks remains sta-

ble, while the other one shifts to the left according to the aging 

rate, in other words, according to the number of cycles. This 

shows the aging effect on the battery. However, this method has 

been used successfully only for LFP batteries in the literature. 

 

Figure 6. 𝑑𝑉/𝑑𝐶 – Capacity 3D view 

Since it is impossible to calculate the 0%-100% SoH value in 

the study, as mentioned earlier, the 80%-100% SoH range, 

which is the practical use value, is taken as a basis. In this study, 

the same method is applied to LTO batteries. However, no shift 

is observed at the peak even if the capacity is taken in the range 

of 0.8-1. This can be clearly seen in Figure 7 and Figure 8. 

Therefore, it is concluded that the earlier method does not apply 

to the LTO batteries used in this study. 

 

Figure 7. 𝑑𝑉/𝑑𝐶 – Capacity graph. 

When the methods used for health state analysis of batteries 

are examined in the literature, it is seen that the DVA method is 

used together with ANN, SVM, and GPR methods, which are 

among the ML methods. These methods are analyzed separately 

based on applicability for LTO batteries. The analysis aims to 

determine the cycle count of the battery, which is directly related 

to the SoH. For this reason, in the study, the cycle count corre-

sponding to the health state is calculated as output. 

First, the aging data obtained from LTO batteries are pro-

cessed to determine the voltage values corresponding to the 

peaks of the two ridges observed in the 𝜕𝐶 𝜕𝑉⁄  graphs. Ac-

cordingly, the voltage of the first peak is determined as 2.475V, 

and the voltage of the second peak is determined as 2.625V. The 

data is divided into voltage ranges 2.4V-2.55V and 2.55V-2.7V 

To include both peaks. The training data set is prepared by com-

bining the two data sets obtained. Data from two battery cells, 

3500 and 2500 cycles, are used in the training dataset. The data 

of the other five batteries are used for validation. The training 

data set is subjected to regression analysis with SVM, GPR, and 

ANN algorithms in MATLAB Regression Learner. 

MSE is a measure of error determined by averaging the square 

of the difference between the actual and predicted values. It is 

primarily used in regression analysis problems when estimating 

with continuous variables. It is also used to form a common 

ground for comparing the different algorithms. It is used to de-

termine the quantitative success of the model. It is calculated 

using the formula given in Eq. (19). 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2(1 +

(‖𝑥𝑖 − 𝑥𝑗  ‖)2

2𝛼ℓ2
 (19) 
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In this equation, 𝑛 is the number of data points, 𝑌𝑖 is the ac-

tual value, 𝑌�̂� is the predicted value. RMSE is the square root 

of MSE. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2
𝑛

𝑖=1

 
(20) 

3.1. SVM regression implementation 

The training dataset is subjected to the SVM algorithm. The 

computational cost of the linear SVM algorithm is found to be 

lower than other kernel functions. However, even in the optimal 

case, the lowest error rate calculated is 20 MSE. When the SVM 

kernel function is chosen as Gaussian, and the data is standard-

ized while its parameters are set as kernel scale 6.9352, box con-

straint 975.9178, epsilon 0.44775, the regression could be made 

with an error rate of 1.2353 MSE. As a result of the analysis, it 

has been observed that obtaining a better result than 1.2353 

MSE with the SVM algorithm is impossible. 

3.2 GPR implementation 

GPR kernel function Rational Quadratic is chosen, the train-

ing data set is standardized, and kernel function parameters are 

set as ℓ  =20.1264327950019, 𝛼 =1.05431948363457, 𝜎𝑓 = 

588.287390875263. Thus, it has been observed that the RQGPR 

algorithm can regress with an error rate of 0.77322 MSE. How-

ever, according to the analyses, obtaining a better result than 

0.77322 MSE with the RQGPR algorithm is impossible. 

3.3 ANN implementation 

The trilayered ANN algorithm is trained using a training da-

taset. When the ANN activation function is selected, ReLU, and 

the data are standardized, and the ANN is designed to have 10 

neurons in each of the three layers, it can regress with an error 

rate of 48,384 MSE. However, according to the analyses made, 

it is not possible to obtain a better result than 48,384 MSE using 

the ANN algorithm using this data set.  

4. Proposed Method 

In the literature, there are studies on the onboard applicability 

of ML methods, especially ANN, for battery management sys-

tem functions [61–63]. In this study, the comparison between 

RQGPR, LSVM, and ANN regression algorithms is based on 

the test conducted on a laptop computer with an Intel Core i7-

7700HQ 2.80 GHz processor and 16 GB of RAM. All algo-

rithms run 1500 times to do that, and the average execution time 

is calculated. According to the results obtained, the execution 

times of the algorithms are as RQGPR 0.0179 sec, LSVM 

0.0119 sec, and ANN 0.0122 sec.  

 ANNs can also be used to solve pattern recognition prob-

lems with a categorization problem approach rather than regres-

sion. When the problem addressed in this study is considered a 

pattern recognition problem, the data presented in Figure 4 ob-

tained from DVA can solve a cascading categorization problem. 

In other words, if the 1000-cycle data is divided into 20% slices, 

SoH can be calculated within ±200 cycles. When this 20% slice 

is divided into 20% slices, the sensitivity drops to ±40 cycle.  

The ANN is trained with the first 1000 cycles of aging data 

containing 0.8-1.0 SoH values of 6 LTO batteries. In this way, 

the DVA data of a given cycle can be used to calculate which of 

the cycle classes (1-200, 201-400, 401-600, 601-800, and 801-

1000) the sample belongs to.  

This process uses a two-layer feed-forward neural network 

with 302 input neurons, five output neurons, and a varying num-

ber of hidden neurons for each specified range. In the optimized 

ANN design, sigmoid functions for hidden neurons and softmax 

functions for output neurons are chosen as activation functions.  

While determining the hidden layer size, the number of neu-

rons is selected in the range of 0-300 to keep the operational cost 

low. The error rate is calculated by training the ANN separately 

for each neuron count. In Figure 8, the graph showing the error 

rate according to the hidden layer size is presented. The number 

of neurons that gave the lowest error rate is determined to be 

used in the study. As a result, the hidden layer size for the first 

level ANN is set to 72 for the minimal error value as presented 

in the graph. 

 

Figure 8. Optimal hidden layer neuron number for 1st level ANN  

Figure 9 presents the results obtained from the ANN trained 

with 72 hidden neurons. There are 6000 observations here. Each 

observation collects data by charging/discharging the battery 

from 0% SoC to 100% SoC. 70% of this data is used for training, 

15% for validation, and 15% for testing. According to the results, 

the Level 1 cycle class can be determined with 99.7% accuracy.  

After determining which quintile is in the SoH category at the 

first level, the second-level cycle class (1-40, 41-80, 81-120, 

121-160, 161-200) can be calculated. A similar design to the 

first-level ANN is used for this process. That is a two-layer feed-

forward network with 302 input neurons, five output neurons, 



 

Dikmen et al. / International Journal of Automotive Science and Technology 9 (1): 48-59, 2025 

 

56 

 

and 39 hidden neurons. According to the results obtained, the 

cycle category of the first 20% can be determined with 99% ac-

curacy. As a result, the cycle of the battery's aging can be spec-

ified with a margin of error of 1.3% with the 2-layer cascade 

ANN. 

 

Figure 9. Results of the 1st level ANN with optimal hidden layer 
size:72 

5. Conclusions 

In this study, regression algorithms (SVM, GPR, and ANN) 

based on DVA are applied separately to solve the SoH problem 

for LTO batteries, and the results are presented comparatively. 

For this purpose, 7 Huahui LTO batteries are aged at different 

rates, with a maximum of 3500 cycles in the analyzer. DVA is 

performed with the obtained data. The data of 2500-cycle and 

3500-cycle batteries are used to train artificial intelligence algo-

rithms. The data of the remaining batteries are used for testing 

and validation purposes. 

DVA is a method that has been used successfully in calculat-

ing SoH for batteries with LFP chemistry. This method is pre-

ferred in terms of ease of application. Because it is based on the 

voltage and capacity values measured by BMS, it has been con-

cluded that the algorithms successfully applied for LFP batteries 

in the literature cannot be applied in the same way for LTO bat-

teries. This is because of the different behavior patterns of the 

peaks observed as a result of DVA due to the unique character-

istics of the battery chemistries’ electrochemicals. For example, 

in LFP batteries, as the cycle increases, that is, as the battery 

ages, the voltage value corresponding to the maximum energy 

retention changes. However, as LTO batteries age, the voltage 

value corresponding to the maximum energy retention remains 

constant. 

SVM, GPR, and ANN algorithms for calculating SoH for 

LTO batteries with DVA analysis are discussed in this study. 

According to the results, the highest accuracy rate is achieved 

with the RQGPR algorithm. However, it has been observed that 

the computational cost of the RQGPR algorithm is relatively 

high compared to other algorithms. With the proposed method, 

ANNs can be determined in 0.007 seconds with 93.18% accu-

racy by using a cascade. As a result of the analyses, it has been 

determined that the operational cost of LSVM, one of these re-

gression methods, is 33.52% lower than the other. However, the 

proposed method has been observed to have a lower operational 

cost of 60.89%. If the SoH calculation problems of LTO batter-

ies are to be solved with a categorization-based approach, the 

proposed method is considered to give optimal results; if it is 

desired to be solved with a regression approach, the LSVM 

method is considered to give optimal results. 
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Nomenclature 

𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 : Current capacity 

𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙 : Nominal capacity 

𝑉𝑐𝑒𝑙𝑙 : Cell voltage 

𝑉𝑎𝑛𝑜𝑑𝑒 : Anode voltage 

𝑉𝑐𝑎𝑡ℎ𝑜𝑑𝑒 
 

: Cathode voltage 

𝑦n : Output of neuron number n in the hidden layer 

𝑤 : Weight 

𝑥 : Inputs in ANN 

𝑏 : Bias coefficient in ANN 

𝑓𝑎𝑐𝑡 : Activation function 

𝑌 : Outputs in ANN 

𝑦𝑖 : Output of neuron number 𝑖𝑡ℎ in the hidden layer 

𝜎(𝑥)𝑖 : Softmax function 

𝑓(𝑥) : Output of SVR 

𝛷(𝑥) : Mapping function 

𝐶 : Penalty factor 

𝑛 : Number of training samples 

𝑓(𝑥𝑖) : 𝑖𝑡ℎ predicted value corresponding to the sample 

𝑦𝑖 : 𝑖𝑡ℎ is the actual value of the sample 

𝜀 : Maximum acceptable regression error  

𝜉𝑖  and 𝜉I
∗ : 𝑖𝑡ℎ training samples have relaxation variables 

𝑏 : Deviation value 

𝛼𝑖 and 𝛼𝑖
∗ : Lagrange multipliers 

𝑥𝑖 : Training samples vector 

𝑥𝑗 : Input samples vector 

𝐾(𝑥𝑖, 𝑥𝑗) : Kernel function 

𝜎 : Kernel width  

𝑚(𝑥) : Mean function 
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𝑘(𝑥, 𝑥′) : Covariance function 

𝐸[]   : Expectation function 

𝜎2 : Kernel variance 

𝑙 : Length scale 

𝛼 : Scale mixing parameter 
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