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ABSTRACT 

Objective: The molecularly imprinted polymer (MIP) technique was applied in this study for 

selective, fast, and sensitive electrochemical determination of antiviral drug favipiravir (FAVI).  

Material and Method: By electropolymerizing the functional monomer o-phenylenediamine (o-

PD) on a glassy carbon electrode (GCE) in the presence of a template molecule FAVI, the new MIP-

based sensor (MIP@o-PD/GCE) was constructed using cyclic voltammetry (CV). For the removal 

and rebinding procedures, as well as the optimization of conditions and performance measurement 

of MIP@o-PD/GCE, differential pulse voltammetry (DPV) was used. The ferrocyanide/ferricyanide 

redox marker was used to monitor each step of the experimental procedure using DPV.  

Result and Discussion: MIP@o-PD/GCE has a linear response to FAVI in the range from 10 pM 

to 90 pM under optimal experimental conditions for human serum samples. The detection limit of 

MIP@o-PD/GCE was obtained to be 1.80 pM, whereas the quantification limit was found to be 6.23 

pM. The designed sensor was successfully applied to a synthetic human serum sample to verify its 

applicability and validity. Electrochemical sensor selectivity was evaluated by comparing the 

binding of paracetamol and tenofovir, which are similar to favipiravir, and also oseltamivir and 

famciclovir, which are other drugs used in the treatment of COVID-19. 

Keywords: Antiviral drug, electroanalysis, electrochemical sensor, favipiravir, molecularly 

imprinted polymer 

ÖZ 

Amaç: Bu çalışmada moleküler baskılanmış polimer (MIP) tekniği, antiviral ilaç favipiravirin 

(FAVI) seçici, hızlı ve hassas elektrokimyasal tayini için uygulanmıştır. 

Gereç ve Yöntem: Döngüsel voltammetri (CV) kullanılarak, fonksiyonel monomer o-

fenilendiaminin (o-PD) bir şablon molekül FAVI varlığında camsı karbon elektrot (GCE) üzerinde 

elektropolimerize edilmesiyle, yeni MIP tabanlı sensör (MIP@o-PD/GCE) oluşturulmuştur. 

MIP@o-PD/GCE'nin uzaklaştırma ve yeniden bağlama prosedürlerinin yanı sıra etki edebilecek 

koşulların optimizasyonu ve performans ölçümü için diferansiyel puls voltametrisi (DPV) 

kullanılmıştır. Ferrosiyanid/ferrisiyanid redoks işaretleyicisi, DPV kullanılarak deneysel 
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prosedürün her adımını izlemek için kullanılmıştır.  

Sonuç ve Tartışma: İnsan serum numune örnekleri için MIP@o-PD/GCE, optimum deneysel 

koşullar altında 10 pM ila 90 pM aralığında FAVI’e doğrusal bir yanıt vermektedir. MIP@o-

PD/GCE'nin tespit limiti 1.80 pM olarak elde edilirken, miktar belirleme limiti 6.23 pM olarak 

bulunmuştur. Tasarlanan sensör, uygulanabilirliğini ve geçerliliğini doğrulamak için sentetik bir 

insan serumu örneğine başarıyla uygulanmıştır. Elektrokimyasal sensör seçiciliği, FAVI ile 

benzerlik gösteren parasetamol ve tenofovir ile Covid-19 tedavisinde kullanılan diğer ilaçlar olan 

oseltamivir ve famsiklovirin bağlanması karşılaştırılarak değerlendirilmiştir. 

Anahtar Kelimeler: Antiviral ilaç, elektroanaliz, elektrokimyasal sensör, favipiravir, moleküler 

baskılanmış polimer  

INTRODUCTION 

FAVI also known as 6-fluoro-3-hydroxy-2-pyrazinecarboxamide (Figure 1), is a pro-drug that 

Fujifilm Toyama Chemical Company in Japan developed for treating influenza [1]. It was invented in 

2002 and received approval in 2014 [2]. Following its arrival at the target cell, it undergoes a metabolic 

pathway that creates its active form, FAVI-ribofuranosyl-5'-triphosphate, within the cell [3]. This 

molecule is then recognized as a substrate by the RNA-dependent RNA polymerase, which is crucial 

for viral transcription, and that enzyme is selectively blocked [4]. 

 

Figure 1. Chemical structure of FAVI 

Various research focuses on determining the FAVI (Free Active Pharmaceutical Ingredient) in 

drugs or biological liquids. The previously conducted research employed several analytical methods, 

including capillary electrophoresis [5], spectroflourometry [6], liquid chromatography with UV 

detection [7], liquid chromatography with mass spectroscopy [8,9] spectrophotometry, and voltammetry 

[10,11]. These studies showed that FAVI could be analysed selectively when chromatographic systems 

were applied. However, these methods are time-consuming and too many organic solvents were used. 

Consequently, researchers have created electrochemical approaches as more feasible and eco-friendly 

alternatives in several investigations. Nevertheless, there is little empirical evidence demonstrating the 

resolution of the selectivity issue in these strategies. Furthermore, they lack the necessary sensitivity for 

analyzing biological materials. Hence, it is imperative to establish a more refined and discerning 

analytical technique. Within this particular framework, the integration of electrochemistry with 

molecular imprinting polymer technology presents a very efficient and practical resolution. 

Biomimetic recognition elements, or MIP are polymer matrices with specific recognition sites for 

target molecules, or templates. Specific spots that identify the target molecule are created during the 

polymerization process. Subsequently, using the suitable solvent, these areas are permitted to create the 

suitable hollow spaces for identifying purposes. MIP technology is often used with electrochemical 

analysis techniques to selectively determine drug compounds. 

The aim of this study was to develop a selective MIP surface using an electrochemical 

polymerisation technique for the stable and selective determination of FAVI from biological media. The 

stable, selective, and sensitive surface was optimized by adjusting essential parameters such as 

polymerization cycle, monomer: drug ratio, removal duration, and rebinding time. Subsequently, the 

linear operating range of the selective sensor surface was determined. Finally, we examined the sensor's 

linear working range in serum medium to demonstrate the applicability of the sensor for biological 

matrices. 
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MATERIAL AND METHOD 

Instruments 

A traditional three-electrode cell powered by AUTOLAB (Netherlands) was used to conduct the 

electrochemical experiments, namely CV and DPV. Our system was executed on a PC with the help of 

the NOVA 2.1.4 software. A reference electrode made of saturated Ag/AgCl (3 M KCl), a Pt plate 

counter electrode, and a GCE (3 mm diameter, BASi) were used in a standard three-electrode setup. The 

precision balance was calibrated by Ohaus Instruments (Shanghai, China) to measure the acquired 

quantities. A pH meter with a precision of ±0.05 was used to test the solutions' pH levels (Mettler-

Toledo pH/ion S220, Switzerland). The removal and rebinding operations were carried out using a 

Thermo-Shaker (Biosan TS 100). 

Reagents 

The FAVI standard solution was made using distilled water and thereafter kept in a refrigerator. 

Methanol (99.8%), sodium hydroxide (>97%), acetic acid (AA) o-PD (≥98%), and sodium acetate 

trihydrate (>99%) were obtained from Sigma-Aldrich. For electrochemical measurements, the acetate 

buffer solution (pH 5.2) was prepared by using double-distilled water. All prepared solutions were stored 

at 4◦C in a refrigerator. The human serum stock solution (derived from male AB plasma) was purchased 

from Sigma-Aldrich in St. Louis, MO, USA. 

Preparation of the MIP and Non-Imprinting Polymer (NIP) Based Electrochemical Sensors  

The GCE was subjected to ultrasound for twenty minutes in a mixture of one-to-one methanol 

and two-part distilled water before the electrochemical polymerization (EP) procedure. The next step 

was to use a polishing pad to clean the electrode surface with alumina slurry. The surface was then 

rinsed with double-distilled water and let to dry at room temperature. To prepare the MIP@o-PD/GCE, 

the GCE was immersed in the polymeric film solution (5 mM o-PD, 2 mM FAVI in 0.1 M pH 5.2 acetate 

buffer) and electropolymerized scanning between -0.2 and 0.8 V for 20 cycles with 50 mV/s scan 

rate(Figure 2A). The polymeric film was prepared in the same protocol without FAVI to prepare the 

NIP-based sensor. 

After the EP of the functional monomer o-PD and the template FAVI on the GCE surface, the 

imprinted electrode was rinsed with double-distilled water. Removal of template molecule FAVI was 

performed by immersing the imprinted GCE into a solution containing methanol and 1 M AA (2:3, v/v) 

for 5 min using a Thermo-Shaker at 550 rpm and room temperature. Afterward, the rebinding process 

was carried out by incubating the MIP-based electrode in different concentrations of FAVI for 5 min 

using a Thermo-Shaker at 550 rpm and room temperature. Before incubation of each different 

concentration, the electrode was washed with distilled water for 30 s. 

In order to compare the analytical performance of the MIP-based electrochemical sensor, the NIP-

based sensor was employed. Using the identical experimental procedure and circumstances as described 

above, but without the addition of FAVI during the EP stage, NIP-based GCE was synthesized. A GCE 

in NIP and MIP-based electrochemical sensors were used to conduct electrochemical measurements in 

a solution containing 5 mM [Fe(CN)6] 3− /4- and 0.1 M KCl (1:1). The methods used were CV and DPV. 

RESULT AND DISCUSSION  

Polymerization of MIP and NIP 

Firstly, in order to perform the electrochemically selective determination of FAVI, the most 

widely used monomer in the literature, o-PD, was used and a MIP layer was formed on the surface of 

the electrode by electropolymerisation method as shown in Figure 2A. At this stage, the optimal 

parameters often seen in current studies, namely a monomer-to-template ratio of 10:1 and a 

polymerization cycle of 20, were selected[15]. Subsequently, analysis was conducted using the DPV 

method at each stage in the presence of a redox agent, and the change on the electrochemical surface 

was found to be shown in Figure 2B, where the highest current value is first obtained from the electrode 

surface. However, when the polymer coating increases, the surface becomes closed due to the insulating 
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properties of the polymer, making electron transport more difficult, and resulting in a significant 

decrease in current value. Later, the target molecule, namely FAVI, was removed in the presence of a 

suitable solvent to create selective cavity voids on the surface, resulting in the formation of voids that 

allow electron transfer. As a result, the current value of the redox marker has increased. Later, to 

demonstrate the determination of FAVI from the desired environment, cavity voids were created on the 

surface of the electrode. The surface was then incubated in a solution containing FAVI for 15 minutes. 

As seen in the image, when FAVI selectively settled into the cavity voids, there was a decrease in the 

current signal of the redox marker due to a decrease in electron transfer from the surface. 

 

Figure 2. Cyclic voltammograms during electropolymerization of 5 mM o-PD in the presence of 2 

mM FAVI in 0.5 M acetate buffer, pH 5.2 (Scan rate: 50 mV/s, 20 cycles) (A); Differential pulse 

voltammograms (B) Bare GCE: red. FAVI-MIP/GCE after electropolymerization (black), template 

removal (blue), rebinding in buffer (pink) 

Optimization of Important Sensor Parameters 

Following the successful demonstration of the feasibility of creating a selective surface using o-

PD, several parameters such as the number of polymerization cycles, monomer: template ratio, removal 

time, and rebinding times were fine-tuned to establish a durable and consistent selective surface. Only 

the optimum parameters were modified in each phase, while the remaining values were kept fixed. The 

polymerization cycle was analyzed to determine the total number of cycles when the surface was fully 

coated with the polymer. According to Figure 3A, the highest current value after removal was obtained 

when the electrode surface was coated by MIP solution for 20 cycles. For this purpose, the monomer-

drug ratio was four different monomer: drug ratios (10:1; 5:1; 1:1; and 2.5:1) were tested, and the peak 

current as a 68 µA was obtained at 2.5:1 (Figure 3B). Different removal solutions including: 0.1 M AA, 

ethanol, methanol, and methanol: AA (2:3) were tried to remove FAVI from the cavities formed during 

polymerization. The results obtained are close to each other for each solution media. However, it did not 

rebind after ethanol use and the methanol: AA (2:3) show the highest reproducibility. By using 

methanol:AA mixture as removal solution, removal time optimization was performed to remove FAVI  

in the most appropriate time without damaging the polymer surface and the most appropriate removal 

time was found to be 5 minutes (Figure 3C). The optimization of the incubation period of FAVI is a 

crucial component in the MIP sensor. A 100 µM solution of FAVI was used at this step, with an 

incubation duration of 5 minutes determined as the most suitable (Figure 3D). 

Selectivity of FAVI -MIP Electrode Surface 

The selectivity of the electrochemical sensor was assessed by comparing the affinity of 

paracetamol and tenofovir, which are comparable to FAVI, as well as oseltamivir and famciclovir, which 

are additional medications used in the management of Covid-19. A one-to-one ratio was used for all 
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drugs. It was found that the incubation in these solutions did not result in any notable alteration in the 

sensor (Figure 4). Recovery values of paracetamol, oseltamivir, tenofovir, and famciclovir were 97.25, 

104.85, 98.35, and 102.14, respectively. The 97.25-102.14% recovery indicated that the interfering 

agents did not significantly affect the FAVI/MIP/GCE analytical performance. 

 

Figure 3. The optimization studies of electropolymerization scyle (A), monomer: template 

ratio(B), removal time (C), rebinding time (D), for development of MIP(FAVI)/GCE 

 

Figure 4. The structure of FAVI, FAVI:paracetamol (1:1), FAVI:oseltamivir (1:1),  

FAVI:tenofovir (1:1), FAVI:famciclovir (1:1) 
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Electroanalytical Applications 

To investigate the analytical performance of MIP-modified GCE was incubated in different 

standard FAVI concentrations and the voltammograms obtained are shown in Figure 5A. Also, the 

analytical performance of MIP-modified GCE was evaluated by incubating it in various serum FAVI 

concentrations. The resulting voltammograms can be displayed in Figure 5C. The calibration curve was 

generated by plotting the ΔI current value against the variable FAVI standard concentration (Figure 5B) 

and the varying FAVI serum concentration (Figure 5D). Figure 5B and Figure 5D also shows the signals 

obtained after incubation with NIP-modified GCE at different FAVI concentrations to compare the 

selectivity of the sensor. The linearity was achieved for standard FAVI solutions and serum samples in 

the concentration range of 20–100 pM and 10-90 pM, respectively (Figure 5). While by using standard 

FAVI concentration, the related equation between peak current and concentration was founded as ΔI 

(µA) = 0.4562 C (pM) – 23.85 (r = 0.9924), by utilizing spike human serum  FAVI solution, the 

related equation between peak current and concentration was described as ΔI (µA) = 0.5213 C (pM) – 

21.63 (r = 0.9948). 

 

Figure 5. DP voltammograms of MIP-FAVI/GCE with different FAVI concentrations in (A) buffer 

solution, and (C) commercial serum solution. The calibration curve of FAVI with MIP-FAVI/GCE 

and NIP/GCE in (B) standard solution, and (D) commercial serum solution 

Statistical data of the calibration are given in Table 1. Repeated measurements of FAVI peak 

potential and peak current within and between days demonstrate the sensitivity of the developed method. 

The formulas 3 s/m and 10 s/m were used to determine the LOD and LOQ values, where "s" is the 

standard deviation of the response and "m" is the slope of the calibration curve. The LOD and LOQ 

values (Table 1) showed the sensitivity of the method. The proposed methods are simple to use and are 

based on human serum obtained reproducible results that were sensitive enough to detect FAVI in 

samples (Table 1). 

The performance of the developed method was also compared with previous analytical methods 
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(Table 2) and it was found that the developed method was the superior in terms of sensitivity, while 

most of the other methods involved time-consuming preconcentration, high consumption of harmful and 

organic solvents and expensive equipment.  
Furthermore, the recovery studies were performed with commercial serum samples (Table 3). 

Recovery and RSD % results have proven the accuracy and precision of MIP@FAVI/GCE. 

Table 1. Correlation data for FAVI calibration generated using DPV in from standard solution and 

serum  

Parameters Standard Serum 

Linearity dynamic range (pM) 20-100 10-90 

Slope (µA pM-1) 0.4562 0.5213 

Intercept (µA) 23.85 21.62 

Correlation coefficient (r) 0.9924 0.9948 

LOD (pM) 2.22 1.80 

LOQ (pM) 7.53 6.23 

Intra-day precision of peak current (Relative Standard Deviation, RSD%)* 1.78 3.56 

Inter-day precision of peak current (RSD%)* 2.43 4.70 

*LOD and LOQ values were calculated based on the lowest value of the calibration range. For serum the intra-day precision of the peak current 
and the inter-day precision of the peak current values were calculated based on the midpoint of the calibration. Each value is the average of 

five experiments 

Table 2. Comparison with other previously reported analytical methods to study the analytical 

performance of FAVI determination 

Method LOD Linearity range Applications References 

Spectrofluorometry 0.06 µM 0.25-1.78 µM Tablets and 

human plasma 

[6] 

LC-MS/MS 37.5 µM and 28.6 µM for 

positive and negative 

modes 

30-318 µM and 39-318 µM 

for positive and negative 

modes 

Human plasma [9] 

Capillary 

Electrophoresis 

1.59 µM 1.59-19.09 µM Plasma and 

urine 

[5] 

AdSSWV 

(BDDE) 

18 nM 64-6400 nM Tablets and 

human urine 

[16] 

SWV 

(MnO2-rGO/SPE) 

9.0 nM 10-55000 nM Tablets and 

plasma 

[17] 

DPV 

(MIP) 

1.80 pM 10-90 pM Human serum Proposed 

method 
* MnO2-rGO: Manganese oxide-reduced graphene oxide; SPE: screen printed electrode;BDDE: boron doped diamond electrode  

Table 3. Results of DPV recovery studies by using MIP sensor from serum samples 

                                         

 

 

 

 

Parameters Serum 

Added concentration (pM) 10.00 

Found concentration (pM) 10.14 

Average recovered % 101.4 

Number of experiments 5 

RSD % recovery 5.08 
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Conclusion  

This study attempts to design a molecularly imprinted polymer using the advantages of easy 

preparation of an electrochemical sensitive sensor. FAVI was used to template molecule. Optimized 

electrochemical MIP sensors were used to analyze FAVI from human serum samples. Results showed 

that developed electrochemical MIP sensors provide simple, low cost and sensitive determination of 

FAVI. The effect of some interfering agents onto the FAVI signal was also evaluated and and a change 

of less than 5% in the FAVI response was observed. In order to analyze serum samples with easier 

sample preparation and cheaper apparatus, this approach seems to be promising. 
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