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ABSTRACT

In this paper, the Bayesian estimators for the Inverse Weibull Distribution (IWD) scale param-
eter are derived when the shape parameter of distribution is known. The Bayesian estimators 
for the parameter are obtained by using the Gamma prior under the different types of loss 
functions such as square error loss function (Self), Entropy loss function (Elf), Precautionary 
loss function (Plf), Linear exponential loss function (Linexlf) and nonlinear exponential loss 
function (Nlinexlf). A classical maximum likelihood estimator (mle) for the parameter is also 
derived. To compare the efficiency of the parameter estimation methods, a simulation study is 
carried out. The comparison is based on mean square error.
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INTRODUCTION

The Weibull distribution is frequently used in reli-
ability engineering, especially for analyzing lifetime data. 
The probability density function (pdf) of the Weibull is a 
uni-modal or decreasing function. Also, the Weibull haz-
ard function depends on its shape parameter. Depending 
on the parameter’s value, the hazard function decreases or 
increases. If the data have a non-monotone hazard func-
tion, the Weibull distribution is not considered the appro-
priate model, for example, lung and breast cancer patients’ 
mortalities [1-3]. In these circumstances, the problem is to 
find an appropriate distribution for the analysis of such data 
sets. Kundu and Howlader (2010) remarked that the IWD 
is an appropriate model for these data sets [4]. The IWD 

might be considered a suitable model when the study con-
cludes that the pdf of the data can be unimodal [3].

Keller and Kamath (1982) used the IWD to investigate 
the failures of mechanical components subject to deteriora-
tion [5]. Calabria and Pulcini (1994) studied parameter esti-
mations of IWD based on classical and Bayesian methods 
[6]. In the Bayesian aspect, they used informative priors. 
Some crucial theoretical properties of the IWD are given 
in [5]. Kundu and Howlader (2010) considered Bayesian 
inference for IWD type II censored data in their study [4]. 
Helu and Samawi (2015) studied progressively the first fail-
ure censoring data in their work and used Lindey’s meth-
ods to derive a Bayesian estimator for IWD parameters [7]. 
Bi and Gui (2017) studied the stress-strength reliability of 
IWD [8]. Nasar and Kaser (2017) described frequentist and 
Bayesian estimation for the parameters of the IWD based 

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0002-9649-5276
http://creativecommons.org/licenses/by-nc/4.0/


Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 1108−1115, August, 2024 1109

on an adaptive type-II progressive hybrid censoring scheme 
[9]. To obtain Bayesian estimation, they used the Lindley 
approximation. Singh and Tripathi considered the parame-
ter estimation of an IWD when it is known that samples are 
progressive type-I interval censored [10]. They proposed an 
EM algorithm to obtain maximum likelihood estimates and 
mid-point estimates. They obtained Bayes estimates under 
the square error loss function. Under the entropy loss func-
tion, Jana and Bera (2022) developed Bayes estimators of 
the IWD parameters [11]. They, also investigated the reli-
ability of multi-component stress-strength model using 
classical and Bayesian approaches. 

Suppose that Y is a random variable from the Weibull 
distribution. The pdf of Y is given as follows:

where α is a shape and λ is a scale parameter of the dis-
tribution. If we take the transformation of Y with X = 1/Y, 
then X has the IWD, and the pdf of X is derived as follows:

	 	 (1)

The cumulative distribution function (cdf) of X is writ-
ten as 

	 .	 (2)

The expected value and the variance of the IWD are

	 	 (3)

and

	 	
(4)

respectively, where Γ is the Gamma function. 

The reliability function of X,

	 	 (5)

and the hazard function

	 	 (6)

is given. IWD has a scale parameter (α) and a shape 
parameter (λ). The λ is equal to the slope of the regression 
model, which is obtained via the graphical method. So it’s 
known as a slope. When the slope takes a value between 
zero and one, failure rates increase. If α = 1, this distribu-
tion is called the Inverse Exponential distribution, and if 
α = 2, then the Inverse Rayleigh distribution. If the λ is a 
constant and the α increases, the kurtosis of the distribu-
tion increases, and parallel to this, the height decreases. If 
the value of the scale parameter decreases, the height of the 
curve increases, and this distribution is sharper. Density 
curves for different values of λ and α are shown in Figure 1 
and Figure 2, respectively.

Figure 1. IWD density curves with various values of λ when α = 2.
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The IWD might be considered an alternative to the 
Log-Normal and the Gamma distributions, especially in 
life testing and reliability engineering. This study deals with 
the estimation of the scale parameter of the IWD. The esti-
mation is considered in both classical and Bayesian aspects. 

The rest of the study is as follows: In Section 2, the mle of 
λ is derived when the α is known. In Section 3, the Bayesian 
estimators with the Gamma prior under the Self, Elf, Plf, 
Linexlf, and Nlinexlf are discussed for the λ in IWD. In 
Section 4, the mle and the Bayes estimators for λ are com-
pared based on the mean squared error criteria. In Section 
5, the main observations of the simulation results are given. 
Concluding remarks are presented at the end of the paper.

MLE for the Scale Parameter of IWD
Mle is one of the most widely used techniques of esti-

mation in statistics. In this section, for IWD, the mle for  
λ is derived when α is known. Suppose that X1, X2, …, Xn 
is a random sample from the IWD when α is known. The 
likelihood is given as

	 	 (7)

then, the log-likelihood function (l) corresponding to 
(7) can be obtained as

	  	 (8)

By taking the first derivative of l relating to the parame-
ter λ and setting the equation to zero, the following estimat-
ing equation can be derived:

	 	 (9)

Then mle for the λ 

	 	 (10)

is obtained.

Bayesian Estimator for the Scale Parameter of IWD 
Under The Different Loss Functions

The selection of appropriate priors and appropriate loss 
functions are the most important issues in Bayesian infer-
ence. The symmetric square loss function is frequently 
used in Bayesian theory. In this loss function, positive and 
negative prediction errors are given equal weight. It may 
not be appropriate to use a symmetric loss function for a 
different valuation of estimation errors [6], [12], [13], [14]. 
This paper deals with comparing estimation results for dif-
ferent loss functions in IWD. Parsian and Kinmari (2002) 
and Misra and van der Meulen (2003) studied asymmetric 
Linexlf, and they estimated the Normal distribution loca-
tion parameter θ [15], [16]. Nematollahi and Shariati (2009) 
estimated the scale parameter of the Gamma distribution 

Figure 2. IWD density curves with various values α when λ = 2.
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under the Elf [17]. Azimi et al. (2012) studied the compar-
ison of Bayesian estimation methods under different loss 
functions for a progressive censored Rayleigh distribution 
[18].

Suppose that Xi, i = 1, …, n is an iid random sample 
from the IWD, and the shape parameter α is known. The 
likelihood is given as

	 	 (11)

	 	 (12)

where . 
In this study, to compute the Bayesian estimate of the 

IWD scale parameter λ, a Gamma prior and five different 
loss functions are used. Choosing a prior distribution for 
the unknown model parameter is essential in Bayesian 
theory. Being a natural conjugate prior, in this study, the 
Gamma distribution is considered a prior for the scale 
parameter λ in IWD with hyperparameters a and b. Then it 
has the following density function: 

	 	 (13)

For the λ, the posterior distribution is computed as 
follows: 

	 	 (14)

	 .	 (15)

This distribution is appropriate for the Gamma distri-
bution with parameters (n + a) and (T + b). 

Bayesian Estimator under the Self
In Bayesian estimation, a frequently used loss function 

is the symmetric Self. The Self is given as

	 	 (16)

The Self gives equal weight to both overestimation and 
underestimation. If the Self is used as the loss function in 
Bayesian inference, the estimator is the expected value of 
the posterior distribution. Then, for the λ, it is given as

	 	 (17)

then the Bayes estimator

	 	 (18)

is obtained.

Bayesian Estimator under the Elf
The Elf is a useful asymmetric loss function that was 

pointed out by [6]. Let f(x, λ)represent the pdf of the ran-
dom variable X, and λ is the parameter. If λ̂ is an estimator 
for λ, then general Elf is defined by 

	 	 (19)

[3]. In Elf, if c1 > 0, then an overestimation error is more 
important than an underestimation error. If c1 < 0, then an 
underestimation error is more important than an overesti-
mation error. Under the general Elf, the Bayesian estimator 
of λ is given as

	 	 (20)

when Eλ(.) exists and is finite. If c1 = -1 then the Bayesian 
estimator under the Elf is the same as under the Self. If in 
the Elf, c1 is taken as 1 then for the λ, the Bayesian estimator 
becomes

	 	 (21)

The expectation is computed as follows:

	 	 (22)

Then the estimator for the λ under the Elf 

	 	 (23)

is obtained.

Bayesian Estimator under the Linexlf
The Linexlf for the parameter λ is expressed as the 

following:

	 	 (24)

where λ̂ is an estimate of λ and c ≠ 0 [19]. This loss func-
tion is asymmetric. Many authors have discussed the Linex 
loss function [15],[20], [21], [22]. Under the Linexlf, the 
Bayesian estimator for λ is obtained following

	 	 (25) 

[23]. For IWD, the  λ̂ Linexlf
 is

	 	
(26)
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(27)

	 	
(28)

	 	
(29)

computed.

Bayesian Estimator under the Plf
The Plf is introduced in [14] as follows 

	 	 (30)

This function is asymmetric. By solving the equa-
tion that follows, the Bayesian estimator under the Plf is 
obtained as

	 	 (31)

Then 

	 	
(32)

	 	 (33)

is computed. Finally, under the Plf, the Bayesian estima-
tor of λ can be obtained as

	 	 (34)

Bayesian Estimator under the Nlinexlf
The Nlinex loss function is given as

	 	 (35)

In Equation (35) D= λ̂ -λ represents estimation error. 
For lack of generality, one can assume k = 1. The estimator 
under Nlinexlf λ̂ Nlinexlf

 is obtained as follows: 

	 	 (36)

[24]. Then at first, 

	 	 (37)

is computed. From (15), it is known that the posterior 
distribution is the Gamma, then

	 	 (38)

and 

	 	 (39)

Then, the Bayes estimator under Nlinexlf is as follows:

	 	
(40)

SIMULATION STUDY

In a simulation study, different random samples from 
the IWD with the sample sizes n=10,30,50,70,90,110 are 
generated in Matlab. A simulation study is carried out 1000 
times for the parameter values α = 2 and λ=2,3,4 where the 
prior hyperparameters are chosen as a = 2, b = 2. This is 
iterated 1000 times, and the λ is estimated using each of the 
methods given in the previous sections. The mean squared 
error (MSE) is used as a criterion to compare the efficiency 
of the methods. The MSE is calculated as follows:

	

The results are given in Table 1.

RESULTS AND DISCUSSION 

The main observations of the results from Table 1 are 
summarized below:
1)	 From Table 1, it can be said that the Bayes estimate using 

the Gamma prior under the Plf provides the smallest 
Mse values in most cases as compared to the other loss 
functions and the classical mle. Especially for small 
sample sizes, Bayes estimates give better results than 
classical mle, except for the linexlf and the Nonlinexlf. 

2)	 The Linexlf and the Nlinexlf give the worst conclusions 
in all cases. 

3)	 The Bayesian estimates under linexlf and nonlinexlf 
are sensitive to the values of the corresponding shape 
parameter c.
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Table 1. Estimation results for the scale parameter λ
λ=2 λ=3 λ=4

α = 2 MSE MSE MSE
Mle n = 10 2.20644 0.62068 3.32654 1.53461 4.45114 2.80048
Self 1.57090 0.30698 2.04200 1.07607 2.40437 2.71816
Elf 1.42129 0.43547 1.84753 1.45778 2.17539 3.47012
Plf 1.64401 0.26129 2.13703 0.91810 2.51626 2.39000
Linexlf c = -10 1.13154 1.58873 0.30863 7.43790 0.04522 16.44679

c = 5 0.66794 1.82347 0.95072 4.24738 1.14415 8.19917
c = 10 0.66837 1.79457 0.85270 4.63050 0.97563 9.16387

Nlinexlf c = -10 1.02170 2.43911 0.12471 10.18573 0.65762 21.91668
c = 5 0.92593 1.22029 1.26252 3.09159 1.50422 6.30024
c = 10 0.81880 1.427641 1.050918 3.832341 1.213758 7.794792

Mle n = 30 2.07868 0.15796 3.09597 0.35062 4.13027 0.61825
Self 1.84925 0.11318 2.59618 0.32256 3.27339 0.75132
Elf 1.78862 0.12930 2.51106 0.38826 3.16607 0.90439
Plf 1.87932 0.10799 2.63840 0.29548 3.32662 0.68412
Linexlf c = -10 3.16380 2.46902 6.31791 18.95462 7.49366 23.26038

c = 5 0.99492 1.07413 1.59093 2.07454 8.54872 38.44228
c = 10 1.11109 0.82798 1.56196 2.11680 1.91857 4.38625

Nlinexlf c = -10 3.49244 3.79986 7.24834 30.01407 2.07873 3.79572
c = 5 1.23902 0.65013 1.87814 1.36562 2.42006 2.63001
c = 10 1.23412 0.63158 1.73433 1.66474 2.14437 3.51741

Mle n = 50 2.04451 0.08798 3.06739 0.20508 4.08864 0.36833
Self 1.90612 0.07218 2.75382 0.18680 3.53995 0.40785
Elf 1.86838 0.078214 2.699294 0.211681 3.469854 0.469568
Plf 1.92490 0.07026 2.78095 0.17668 3.57482 0.38086
Linexlf c = -10 2.69097 0.63340 4.26068 2.30543 6.55848 11.14111

c = 5 1.05226 0.95238 1.79978 1.52877 2.43634 2.56340
c = 10 1.25340 0.59388 1.85760 1.36063 2.35641 2.77175

Nlinexlf c = -10 2.88718 0.97274 4.63739 3.62416 7.31312 17.64494
c = 5 1.29622 0.55202 2.07236 0.95889 2.75166 1.69695
c = 10 1.36218 0.44724 2.00697 1.05143 2.55366 2.17880

Mle n = 70 2.02797 0.05776 3.04745 0.14047 4.04641 0.24060
Self 1.92921 0.05087 2.82030 0.13190 3.64807 0.27840
Elf 1.90184 0.05420 2.78030 0.14507 3.59633 0.31314
Plf 1.94284 0.04978 0.12654 0.12654 3.67385 0.26311
Linexlf c = -10 2.58868 0.42674 3.89315 1.06752 5.41010 2.67484

c = 5 1.06035 0.92584 1.88711 1.31728 2.60159 2.06323
c = 10 1.31867 0.49517 2.01267 1.02877 2.59702 2.03842

Nlinexlf c = -10 2.75354 0.65812 4.16136 1.67429 5.85061 4.30444
c = 5 1.30860 0.52177 2.15374 0.80062 2.90059 1.32891
c = 10 1.42043 0.36915 2.14727 0.78773 2.77220 1.58935

Mle n = 90 2.02507 0.04677 3.02781 0.10255 4.04501 0.18797
Self 1.94772 0.04171 2.85082 0.10119 3.72882 0.20581
Elf 1.92620 0.04357 2.81932 0.10984 3.68762 0.22695
Plf 1.95846 0.04114 2.86653 0.09762 3.74936 0.19656
Linexlf c = -10 2.55689 0.36793 3.74179 0.71043 5.09393 1.57450

c = 5 1.05983 0.92237 1.92404 1.22483 2.71174 1.75989
c = 10 1.35875 0.44017 2.10215 0.85470 2.76497 1.59458

Nlinexlf c = -10 2.70919 0.56603 3.96453 1.11530 5.43521 2.51891
c = 5 1.31351 0.50986 2.18883 0.72840 3.0023 1.10430
c = 10 1.45691 0.32548 2.22693 0.65075 2.92561 21.23268

Mle n = 110 2.01365 0.037582 3.02873 0.08849 4.04084 0.15622
Self 1.95074 0.03501 2.88234 0.08498 3.77911 0.16572
Elf 1.93309 0.03647 0.09052 0.09052 3.74491 0.17989
Plf 1.95955 0.03452 2.89535 0.08273 3.79617 0.15953
Linexlf c = -10 2.53318 0.32799 3.68057 0.58632 4.93338 1.13273

c = 5 1.04366 0.94787 1.95337 1.15882 2.77927 1.58430
c = 10 1.37505 0.41641 2.17095 0.73494 2.88021 1.32190

Nlinexlf c = -10 2.67878 0.50751 3.88013 0.91301 5.22194 1.79988
c = 5 1.30283 0.51913 2.21879 0.67584 3.06494 0.97472
c = 10 1.47100 0.30676 2.28951 0.55600 3.03003 1.01606
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4)	 The results show that estimators of the different meth-
ods are closer to each other as the sample size increases, 
except for Linexlf and Nlinexlf.

5)	 Moreover, it is seen that when the sample size increases, 
the MSE decreases significantly. 

CONCLUSION

This study deals with the investigation of the mle and 
the Bayesian estimator for the scale parameter of IWD 
when the shape parameter is known. For Bayesian infer-
ence, five different loss functions are used respectively: Self, 
Plf, Elf, Linexlf, and Nlinexlf. In the simulation study, the 
Bayesian estimates and the mle are computed. To compare 
the results of the estimations, the MSE values are calculated. 
The results show that the Bayesian method of estimation 
for the Gamma prior under the Self, Plf, and Elf gives better 
results than the mle method. Also, the Bayesian estimators 
that are obtained under the Plf have the smallest MSE as 
compared with the Bayesian estimators that are obtained 
under the other loss functions. Also, Bayesian estimators, 
which are obtained under Linexlf and Nlinexlf, are worse 
than the other loss functions and the mle.
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