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ABSTRACT

We investigate the several special functions defined by a matrix integral on the Hermitian matrix space of size n. They are the
matrix argument analogues of the Gauss hypergeometric, Kummer’s confluent hypergeometric, the Bessel, the Hermite-Weber
and Airy functions which play important roles in the multivariate statistical analysis and the random matrix theory. We give the
integral representations for them as functions of eigenvalues of the matrix argument by using the result of Harish-Chandra and
Itzykson-Zuber, and give the systems of differential equations for them. We show that these system are holonomic and have the
holonomic rank 2" using the theory of Grobner basis.
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1. INTRODUCTION

In this paper, we are concerned with the special functions of a matrix argument defined by an integral on the space of complex
Hermitian matrices or normal matrices. One of the most important classes of classical special functions may be the Gauss
hypergeometric function (HGF) and its confluent family, namely, Kummer’s confluent HGF, Bessel function, Hermite-Weber
function and Airy function. For example, Gauss, Kummer and Bessel functions are given by the power series

2F1(a,b,c;x) = Z (L(l();)n(i):n ",
(@)m o
lFl(aC'x)_Z(c) m' ’

-nm
oFi(c+1;—x) = %mx ,

respectively, where a, b,c¢ € C, x is the complex variable and (a),, = I'(a + m)/I"(a) is the so-called Pochhammer’s symbol
defined by the gamma function I'(a). In this paper we consider and study the matrix argument analogues of these classical HGF
family. The matrix argument analogues of Gauss, Kummer and Bessel are studied in connection with the multivariate statistical
analysis Muirhead (1982) and with the analysis on symmetric cones Faraut and A. Koranyi (1994). We also want to add in this list
the matrix argument analogues of Hermite-Weber and Airy functions, which have been studied in Inamasu and Kimura, (2021).
Let us explain our motivation of our study. The above mentioned classical HGF family is sometimes displayed schematically as

Bessel

/ N

Gauss — Kummer Airy,

N /

Hermite — Weber

where each arrow implies some kind of limiting process called confluence. These functions are studied by using various aspects
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of the functions: the power series expressions, the integral representations, the differential equations, the contiguity relations.
Here we focus on the aspects of differential equations and integral representations. The differential equations and the integral

representations for them are given as follows.
Differential equations:

Gauss :
Kummer :
Bessel :

Hermite-Weber :

x(1=x)y" +{c=(a+b+1)x}y —aby =0,
xy" +(c—-x)y —ay=0,
xy"+(c+1)y +y=0,

’

v’ —xy' +cy=0,

Airy : y”" —xy=0.
Integral representations:
I'(c) v ae _
F b,c;x) = —————— M1 =) (1 - x)"Pdr
2Fi(a, b, c;x) (@) (c—a) Jo ( ) ( x)
r 1
1Fi(a,c;x) = (c) 711 =) e gy,

I'(a)T'(c—a) Jo

oFi(c+1;-x) =/t°_1e”_%dt,
C

gl
H(c;x)z/t_‘ LeX=21" gy,
c

Ai(x)z/ex“%ﬁdt,
c

where C is an appropriate path in the complex 7-plane. Note that we took the path 01 as the path of integration for the Gauss’ case
and the Kummer’s case so that the integrals give the power series expressions. If one takes another appropriate paths of integration,
we get various solutions to the differential equations (see Iwasaki et al. (1991)). We should comment on the Bessel equation. In
many literatures, it has the form zZw” + zw” + (2% — ¢*)w = 0. If one perform, for this equation, the change of unknown w s y
by w = z°y and then the change of independent variable z — x by x = z%/4, we get the differential equation we gave in the list.

The Gauss HGF and its confluent family appear in many research fields of mathematics and mathematical physics and play
important roles. For example, it is known that the Gauss, Kummer, Hermite-Weber, Bessel and Airy functions appear as particular
solutions of the Painlevé equations Pg, Ps, P4, P3 and P,, respectively Iwasaki et al. (1991).

It is also known that they are understood as simple cases of Gelfand’s HGF on the complex Grassmannian manifold Gr(r, N),
the set of r-dimensional subspaces in CV . Roughly speaking, Gelfand’s HGF on Gr(r, N) is defined as follows. First we consider
the maximal abelian subgroup H, of GL(N) obtained as the centralizer of a regular element a of GL(N), where « is in the Jordan
normal form and its cell structure is described by the partition A of N. Then Gelfand’s HGF of type A on Gr(r, N) is defined as the
Radon transform of a character of the universal covering group H . In this context, the Gauss, Kummer, Bessel, Hermite-Weber and
Airy functions are identified with Gelfand’s HGFs on Gr(2,4) corresponding to the partitions (1,1,1,1),(2,1,1),(2,2),(3,1)
and (4), respectively.

Taking into account of these facts, we think it is natural to study the extension of classical HGF family to the functions of a
matrix argument including those of the Hermite-Weber and Airy functions. It should be commented that the Airy function of
a matrix argument, defined by a Hermitian matrix integral in Section 2.2, already played an important role in the resolution of
Witten’s conjecture on the 2-dimensional quantum gravity by M. Kontsevich Kontsevich (1992).

In Inamasu and Kimura, (2021), we discussed the relation of the HGFs of a matrix argument, defined by the integrals on the
space # (n) of Hermitian matrices, to some semi-classical orthogonal polynomials and to the polynomial solutions to the quantum
Painlevé systems (see also Nagoya (2011)). We stated in Inamasu and Kimura, (2021) a conjecture on the explict form of the
systems of partial differential equations characterizing the Hermite-Weber and Airy functions of a matrix argument. We give the
answer (Theorem 3.1) to this conjecture deriving the systems of differential equations for a matrix argument analogue of the Gauss
and its confluent family defined by the matrix integrals (Definition 2.1). It should be mentioned that the differential equations for
the matrix argument analogues of Gauss, Kummer and Bessel were obtained in Muirhead (1970) by J. Muirhead. He handled the
functions given by the series expansion in terms of zonal polynomials and derived the differential equations characterizing them.
Our approach is different from his. We treat the functions defined by the integrals with various possible choices of domain of
integration in deriving the differential equations. On the other hand, the functions treated by Muirhead correspond to the integrals
with a particular choice of domain of integration, see Proposition 2.8. Since we use the matrix integrals on # (n) or on the space
of normal matrices to define the HGFs of a matrix argument, we call them the HGFs of matrix integral type.

Another main result of this paper is Theorem 5.1 on the holonomicity of the systems and on their holonomic ranks which give
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the dimension of the solution space for the systems at a generic point. This theorem is proved by computing a Grobner basis for
the ideal in the ring of differential operators generated by the differential operators characterizing the HGFs.

This paper is organized as follows. In Section 2, we introduce the HGFs defined by an integral on the Hermitian matrix or
normal matrix space. We give the expressions of HGFs as the functions of eigenvalues of the variable matrix. The main tools are
the Harish-Chandra and Itsykson-Zuber integral formulas. In Section 3, we give the systems of differential equations for the HGFs
of matrix integral type as the functions of eigenvalues of the matrix argument (Theorem 3.1). Section 4 is devoted to the proof of
this theorem. In Section 5, we discuss the holonomicity and the holonomic rank of the systems (Theorem 5.1).

2. HGF OF MATRIX INTEGRAL TYPE
2.1. Integrals on Hermitian matrix space

Let % (n) be the set of n x n complex Hermitian matrices. It is a real vector space of dimension n?. For Y = (¥; i) € # (n),letdY
denote the volume element on # (n), which is the usual Euclidean volume element

n
dy = A dYi; A (dRe(Y;;) A dIm(Y;j)),
i=1 i<j
where we fix some order of indices in the right hand side.
The matrix integral version of the gamma function and the beta function are defined by

T,(a) = / Y% "etr(-Y) dY,
Y>0

Bu(a, b) :=/ Y| "1 -Y|P™" dy,
o<y<I

respectively, where Y € 7 (n), |Y|is the determinant of Y, trY is the trace of Y, etr(Y) := exp(tr (¥)) and the integral is taken on the
set of positive definite Hermitian matrices Y > 0 for the gamma function and on the subset of # (n) satisfyingY > 0Oand /-Y > 0
for the beta function. The gamma integral converges for Re(a) > n — 1 and the beta integral for Re(a) > n—1,Re(b) > n—1, and
they define holomorphic functions there.

Proposition. (see Faraut and A. Koranyi (1994)) The following formulas hold.

(i) Tp(a) = a5 [, T(a+i - 1).

(ii) By(a, b) = %

2.2. HGF of matrix integral type
We introduced the family of HGFs of matrix integral type in Inamasu and Kimura, (2021). We recall them.

Definition 2.1. For X € % (n), put
Ig(a,b,c;X) = /C Y| = Y|<¢ "I - XY|~? dy,
Ix(a,c;X) = /C Y|4 - Y|4 "etr(XY) dY
Ig(c; X) = /C [Y[¢"etr(XY — Y1) dY,
Inw(c; X) = /C Y| "¢ "etr(XY — %YZ) day,
IA(X) = /C etr(XY — %Y3)dY,

where C is an appropriate domain of integration in # (n) or in the space of normal matrices of size n for which the differentiation
with respect to the entries of X can be interchanged with the integration.

Comparing the above integrals with the integral representations for the classical hypergeometric family in the introduction, one
may recognize that they are extensions of the classical HGF family to functions with a matrix argument. In fact, Muirhead treated
in Muirhead (1970) the extension of Gauss and Kummer to the functions of a matrix argument expressed by the series in terms of




Istanbul Journal of Mathematics

zonal polynomials. They are denoted by ,F)(a, b, c; X) and | Fj(a, c; X) and have the integral representations:

() - —a- b
JFi(a,bye;X) = — 20 Y471 = Y|4 |1 — XY|™? av,
Fh(@)h(c —a) Jocy<r
. _ Fn((,‘) a-n c—-a-n
\Fi(a,c:X) = V|97 = Y|~ etr(XY) dY.

Ih(a)Th(c —a) Jov<r

It should be mentioned on the choice of domains of integration C for the integrals in Definition 2.1. We required that C is chosen
so that the differentiation with respect to the entries of X can be interchanged with the integration, and that we can apply the
Stokes theorem. For example, to define the Airy function of matrix integral type, we consider the integral in the space of normal
matrices. In this case, taking into account that a normal matrix is a matrix which is transformed to a diagonal matrix with complex
eigenvalues by conjugating with a unitary matrix, we see in Proposition 2.6 that the matrix integral can be reduced to the integral
on the space of eigenvalues. Then we may take the domain of integration C in the normal matrix space which, after a reduction of
the integral, becomes an n-cycle of a locally finite homology group of the space of eigenvalues y = (y1,...,y,) € C" on which
the integrand decreases to 0 exponentially when |y| — oo. See Hien (2007) for this kind of homology groups.

Remark 2.2. The matrix integrals in Definition 2.1 define functions of the eigenvalues x1, ..., x, of X, see the next subsection.

2.3. Integrals on the eigenvalues

For the HGFs of matrix integral type, we want to rewrite them to the integrals on the space of eigenvalues y = (yy,...,y,) of
Y € 7 (n). To this end we need the following integral formulas . Let % (n) denote the group of unitary matrices of size n.

Proposition 2.3. (Weyl integration formula) We have

n(n-1)

[ ray == o0 [ fleve)amiads,
p=1

where Y ~y = diag(y1,...,yn) by Y = gyg* with g € %(n), A(y) = [1;<;(yi —y;), dy = dy1- -~ dyn, and dg is the normalized
Haar measure on the unitary group % (n).

We also need the following results due to Harish-Chandra and Itzykson-Zuber. We refer to Balantekin (2000); Bleher and
Kuijlaars (2004); Deift, (2000); Harnad and Orlov (2007); Mehta (1991) for these formulas.

Proposition 2.4. Let A, B be normal matrices of size n diagonalized as
A ~ diag(ay, ...,a,), B~ diag(bi,...,b,),
and assume that a; # aj, b; # bj fori # j. Fort € C, we have

n-1 —a+n—1

- p! det[(1 —ta,-bj) ]

det(1 —tAgB dg =
/@z(n)( et(l ~1AgBg")) " dg ]l;[l (a—n+1), A(a)A(b)

Proposition 2.5. Let A, B be as in Proposition 2.4. For t € C, we have

'ﬁ | det(erabi)
123 wEYvIEY

* d = .
/%(n) exp[rtr (AgBg")]dg A(a)A(b)

p=1
By applying Propositions 2.3, 2.4 to the integrals in Definition 2.1, we obtain the following result.

Proposition 2.6. Assume that X € % (n) has distinct eigenvalues xy, . . ., x,. Then we have
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A(y) dy.

. — a-ng1 _ ,,.\c—a-n . —-b+n-1
Ig(a,b,C,X)—Co/Dl_[yi (1= 30 det (1 =301 ) T

. A
IK(a,c;X) = / l_[ya n(] _yi)c—a—n ~det(ex-/yk)%dy,

—n—1/yi ey AQY)

Ip(c;X) =Cy / yi e 1/i det (e¥7Yk) —==dy,
DL_][ ' A(x)
- 12 AQ)

Igw(c; X) =C / y;€eT 2% det (€M) —=—dy,
i D 1_1[ A(x)

S PRI ey AWY)
Ix(X)=C / e~ 37 det (e™%) ——=dy,
4 ‘ Drl[ A(x)

where Co = 71" =2 (n' H" (b n+1),)",Ci=n e (n))~!, and D is a twisted n-cycle of the homology group defined by the
integrand.

Proof. We show the assertion for I/ (a, b, c; X) for the sake of completeness of presentation. We apply the Weyl integration
formula to f(Y) = |Y|'|I = Y|2|I — XY|~? with ¢; = a — n, c2 = ¢ — a — n. Note that

f(gyg") = lgyg* 1|l — gyg"|* |1l — Xgyg*I™"
=y -y - Xgyg*| ™"

n
=] [yt =y 11 - xgye'I™".
i=1

Putting this in the Weyl formula and using Proposition 2.4 for ¢ = 1, we have

n n
n(n-1) _ O c C
Ig(a,b,c;X)=n"7 (l |P!) l/ ('/%( )|I—ngg | bdg)l_[yil(l—y,-) 2A(y)*dy
p=1 n i=1

D

det((l—xjyk)_h+n—l) n . o )
CO/D AX)A®) L_l[)’i (1=yi)?A(y)=dy.

= [Tty der (1 = a0t 2,
i=1

The expressions for the other HGFs can be obtained in a similar way by using Proposition 2.5.

Remark 2.7. For the Airy integral 74(X), we can take an n-cycle D in the rapidly decay homology group Hien (2007). Let y1, v
be the paths in C as in Figure 1. Then D;, =7y XX, foriy, ... i, € {1,2} gives an n-cycle and there are 2" choices.

Now the following statement is easily deduced from Proposition 2.6.

Proposition 2.8. (1) For ,F|(a, b, c; X), we assume that X € 7 (n) has distinct eigenvalues x1, . . ., x,,. Then we have

A(y)d

Fi(a,b,c;X) = a1 = y) A det ((1 - pan-t
2Fi(a,b,c; X) Cz/mnﬂy, (1=yi) e(( XjyK)~ )A(x) y

Ay)
=n!C2/ ya n(l_y)can(l_x )b+n1 d
o1 1_[ i A(x)
where C, = —rn(ar)'f_i?c_a) Co
(2) For Fi(a, b, c; X), we assume that X € I (n) has distinct eigenvalues x1, . . . ,x,,. Then we have
(y)
1Fi(a,c; X) = C; YT (1 = y)TT" - det(e xfy")
(0,1)" 1—[ A(x )
:n!C3/ ny“ T =y (y)d
o.n" A(x)
where C3 = —I“,,(al;'f'(nc()cfa) C
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Figure 1.Figure 1

Proof. We show (2). The first representation for | Fi(a, ¢; X) is obvious by Propostion 2.6. We show the second one for | Fj. Put
U(y) :== [T, y¢7"(1 = y;)°7“" and consider the expansion

det(exfyk) = Z (Sgng-)exlyﬂ'(l) e gxnyo'(n>’
e,

where &, is the symmetric group of degree n. Then we have

2 e = Y, . (e | e nacay.
i=1

Tgec,

Consider the integral in the right hand side for any fixed o € &, and make a change of variables y — y’ defined by y; =
Yoy (i =1,...,n). Note that, by the change y — y’, the function U(y) and the domain of integration (0, 1)" are invariant, and
A(y") = (sgno)A(y). Hence the integrals in the right hand side are all equal to

/. ﬂy“ (1= )OS A(y)dy.
0" ;

This establishes the second representation for | F.

3. SYSTEM OF DIFFERENTIAL EQUATIONS FOR HGF

We give the systems of differential equations satisfied by the family of HGFs of matrix integral type given in Definition 2.1. We
assume that the domain of integration C for these integrals is chosen so that the interchange of derivation with respect to X and

the integration with respect to Y is allowed and the Stokes theorem can be applied. Let d; denote the partial derivation %.

Theorem 3.1. The HGF I.(X) (x = G, K, B, HW, A) satisfies, as a function of eigenvalues of X, the following system of differential
equations S..

Gauss Sg :
xi(1=x)0F+{c—(n—1)—(a+b+1-(n—1)x;}6;F
Xi(1 =x;)0;F —x;(1 —x;)0;F
+ > A= )0F = U220 F e 1 <i<n,
£ Xi —Xj
J(#i)
Kummer Sk :
X;0;F —x;0;F
xiBiZF+{c—(n—l)—xi}6,~F+Zé— F=0, 1<i<n
X=X
J(#i)
Bessel Sp:
Xi0;F —x;0;F
x,62F+{c+1}6F+Z—] =0, l1<i<n
Xi —Xj

J(#i)
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Hermite-Weber Sy :

8:F — 0;F
ORF —xiGiF + Y ———+cF=0, l1<i<n (1)
jGy TN
Airy Sa:
8:F —;F
63F+Z;—xiF=0, l1<i<n. 2)
— Xi —Xj
J () J

The proof of the theorem is given in the next section.
As a particular case of Theorem 3.1, we have the following result, which was given by Muirhead in Muirhead (1970).

Proposition 3.2. (1) ,Fi(a, b, c; X), as a function of eigenvalues of X, is characterized as the holomorphic solution F to the
system Sg which is symmetric in the variables and satisfies F(0) = 1.

(2) 1F1(a,c; X), as a function of eigenvalues of X, is characterized as the holomorphic solution F to the system Sk, which is
symmetric in the variables and satisfies F(0) = 1.

Once we get the system of differential equations S, (x = G, K, B, HW, A), we can consider it as defined on C". In Theorem 5.1
of the last section, we show that these systems are holonomic on the Zariski open set Q. c C" and their holonomic rank is 2",
namely the systems are equivalent to the completely integrable Pfaffian systems of rank 2".

4. PROOF OF THEOREM 3.1

In this section, we use Y;; (1 < i, j < n), the entries of matrix integration variable Y, as the independent variables of the real space
# (n) instead of ¥;;,Re(Y;;),Im(Y;;) (1 <i < j < n). Note that, since
Yij +Yji

Y:: — Y
2 b} Im(Ylj) = 2 J

Re(Y;)) = ﬁ’

(I1<i<j<n),

we have

dy = /n\le/\ (gyu /\in).

4.1. Lemmas

Let X = (X;;) € #(n) be diagonalized as x = UXUT,x = diag(xy,...,x,) by a unitary matrix U, where U is the hermitian
conjugate of U, namely U T = 1. Assume that x|, . . ., x, are distinct. Note that x and U depends on X. The following lemmata
are known (Adler and Moerbeke (1992), p50). For the sake of completeness of presentation, we give their proof.

Lemma 4.1. The following equalities hold.

0Xxq

— i
aX” - Uaina,s (3)
ou .
(xa—xﬁ) (EUT)QB :U"iU;ﬁ’ ifa + B. “4)
Proof. Differentiate the both sides of x = UXU" with respect to X; 7. Using the identity
ou . oU"
—U"+U =0, 5
8X[j aX[' ( )
which comes from UUT = I, we have
0% _ (U i) s g, Ut +x (022
0X;;  \0X;; Y 0X;;
ou ou
- Ut x+UE;;U" - U, 6
(3Xij )x Y x(a ij ) ©

where E;; is the (i, /) matrix unit, namely the n X n matrix whose only non-zero entry is 1 at the (i, j)-entry. Comparing the
(@, a)-entry of both sides of (6), we get (3) and comparing the (a, B)-entry with a # 3, we get (4).
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Lemma 4.2. For (a,B) with 1 < «, B < n, we have the equalities:

ox
1 a _
Uy X, Upj =bap-
i,j

Ut %xq _0%a —xalxﬁ, ifa # 8,
Z BOXij0Xje | Syea i ifa=p
vyEa xa_xy, = pP.

1 o
; azxa, X1 —Xs° lf‘a—l,lis,
D, UiUpUsUia 5% = e fa=slzs,

@b.p-a b4 0, otherwise.

Proof. From the equality (3) of Lemma 4.1, we have
UT axaf _ UTU U‘]'U = §5. 08 =5
Z lﬁaX j_Z ipYaiVjoVUBj = %apOBa = Oap-
1)

To show the second equality, differentiate the both sides of g;" =U m-U;Q with respect to X jx and obtain

T

Ugim— 6X . Denote the left hand side of (8) as A(«, 8). Then
T
oU
T il
A(a,B) = Z Uig XmU Uﬁk+z i8 maX LUy
i,j,k i,j,k
¥
= U' U~aUﬁk+5 B —Uﬁk =ZA1((I,ﬁ)+A2(a’,ﬂ).

(ank g’ : ,Zk: 90Xk

In the case a # S, the contribution to A comes only from A;. Using the equality (4) of Lemma 4.1, we have

1
Ay(@,B) =) —— - UajUkﬁUjaUﬁk =

Tx Xa — X
In the case a = 3, using (5) and U;aUm- =0 — Zym U Uy,, we have
aut Ulg 4
Al(a,a)——Z(Uaxjk)a ZUQ, “Uj (U

J.k i,j,k

= Z Z aX‘ZU;yU Uk — As(a, ).

y#¥ai,j,k

Hence using the identity (5) and Lemma 4.1, we have

Ala,a) = A (a,a) + Ax(a,a)

IWNC axk) Var == 33 (5, 0) Ut

y#a j.k v#a j.k
1
=-23 ZU UlaUnUaF—Zx —
yEa Xy = Xa yta Y @

dxq :
% - = UQPU;(, with respect to X, to get

i
02xa _ aUﬂ/p U( +Uaanqa‘
3Xab3qu 0Xup 0Xaup

Xy
6X,‘j6Xjk

_ OUy;i
X1

U’r

)

®)

C))
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Denote the left hand side of (9) as A(«a, 1, s). Then

AU, au. .,
Ala,l,s) = Z Ul U UspUg e LUS o + UQ,,GT"
a,b,p.q ab
au. U,
_ T ap T qa
= > ULULU; Ut gy Upe+ Y. ULULU; wUigUap g3
a,b,p.q a,b,p,q “
U 104l
- Z Ut UuaU; (—U) U+ Z ut Ut U (U—)
=S q qa 1Y ps—s ap
a,b,q “ 6X as a,b,p “ 6X“b la

ou
UZJAb&a(

104l
+ T
o U )as + Y Ul UspOas (U )

a,b a,b aXab la

=A|(a,l,5)+ Asx(a,l,s).

Let us compute the first term A;. In the case @ # [, this term vanishes. So assume @ = /. When [/ # s, we have

1
) Z UlaUl;S -

Let us compute the term A . In the case @ # s, this term vanishes. So assume @ = 5. When [ # s, we have

U’ 1
mu¢w=§t@mwm( ) § ( )=— :
a,b Is X] — Xs

When a = [ = s, we have

Al 1,s) = z@m*

a,b

ou + U’
— t i
AL = Z Ul U (ax ~U )” + > UL U, (UaX - )”
a a.b a

U’
Z Ulb ( U'+U ) =0.
0Xup i

Thus we have proved the equality (9).

4.2. Gauss case

In the Gauss case, we put

F(X):/ |Y|CI|I—Y|CZ|I—XY|C3dY=/expf(Y)a’Y, X,Y € Z(n), (10)
c c
where ci =a—-n,co=c—-a—-n,c3 =-b,

fY)=cilog|Y|+calog|l =Y|+c3log|l — XY,

and C is the domain of integration explained in the last paragraph of Section 2.2. By virtue of this choice of C, we can interchange
the operations of differentiation with respect to X;; and integration with respect to Y. In the following we will not write C in the
integrals for the sake of simplicity. For a function g(Y) of Y, we use the notation:

<m:/wmmvw.

Lemma 4.3. Forany 1 <i,j < n, we have

;TJ; =1 (Y i - ((I - Y)_l)u m e ((1 - XY)_IX)U" o
;}gl =—c3 (Y(I XY)~ )] 2
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Proof. We see that
of 8
Y, 0Yj;
Lo, Loyl 1 9|l -XY|
=CcC|— — C C
YWlay; " li-v| oy Nr=xy| vy

(c1log|Y|+cplog|l = Y|+ c3log|l — XY|)

:Cl

Y]

where Cj;(Y) is the (j,7)-cofactor of |Y|, and we used a%ﬁ(XY)ki = X, to compute the last term. Then noting that |71|Cj,-(Y) =

1 1 1 <
—Cji(¥) = er——Cji(I = V) + 30— 3 (=X1,/)Cua (I = XY),
ji(Y) 2y ji( )+c3|I—XY| kz}( k) Cri ( )

(Y‘l)[j, we get (11). The equality (12) is shown in a similar way.

Lemma 4.4. Forany 1 <i,j < n, we have

dF
—C3<<Y(I—XY)‘1)_j> == (13)
i Jji

—C3<((1 XY)" ) > me ——oyjesr. (14)

Proof. Differentiate the both sides of (10) with respect to X;; and use (12) to obtain

ar\ o
ax,, /axﬂ exp f(Y)dY = <axﬂ>_ C3<(Y(I XY) )ij>.

The second equality follows from

wa _me( C3)<(Y(I XY)~ ) _>=—C3Za:<xm (Y(I—XY)—I)aj>

S <(xy<1 - xy)-l)”> =3 <((1 —(I=XY) (I - XY)‘I)ij>

= s <(1 - XY)i_J-1> + 301, F.
Put
w=exp f(Y)dY, wij=iguey,dY, 1=<i,j<n, (15)
where ig/gy,; is the inner derivation with the vector field 9/9Y;;.

Lemma 4.5. Forany 1 <i,j < n, we have
<C2 (-0 > Zxa, ;XF +6i5(c1 +ca+n)F (16)
and
<((1—XY)_IX)._tr((I—XY)_l(I—X)Y)
ij
+(c1 +n) ((I—XY)_l(I—X))_.—cz ((I—XY)“(I—X)Y(I—Y)‘l)_.
ij i
—e3 ((1 —XxY)" ' - Xx)Y(I - XY)“X)H> 0. (17)
ij

Proof. To obtain the equality (16), consider n;; = >.3_, Yix exp f(Y) w;x for 1 < i, j < n. Then using Lemma 4.3,
& Yix L af
dn;j = —+ ) Yik—

{nawZYlk (cl(Y i = ea((1=1)"g = es (1= x1)7'X) j)}w

k=1

- {(cl +eatmoij—c((I=Y) V)i — 3 (Y(I - XY)‘IX)._} .
ij

10
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Since / dn;; = 0 by virtue of the Stokes theorem, using (13) we have
-1 _ -1
<cz (-1 )> =—c; <(Y(I—XY) X)> +61j(c1+ca+n)F
ij ij
oF
= aE XajaTai +(5ij(C1 +C) +n)F

To obtain the equality (17), putn;; = 27_, ((I - Xy)~'(1- X)Y)l.k exp f(Y) w;x and compute its exterior derivative. We have

[0 vyl S (07— vyl - of
dnu—(; 7, (-xn)ta X)Y)ik+;((1 X0 - xy) aY,-k)‘”‘ (18)
Noting that
(I - Xy)~! YRS 1
. =(I-XY X.iE, I-XY s
Y 1 ( ) ; JjEak ( )

the first terms of (18) are computed as

ik

n 6 B
];ayjk ((I—XY) l(I—X)Y)

L

= (7= x7)"'x) ,

tr ((1 —Xxy)"'(I- X)Y) +n ((1 —XxY)"\(I - X)) . (19)
Using (11), the second terms of (18) are computed as

of

Zn: ((I - X0)7H(I - X)Y)ik Y ji

k=1
= ¢ ((1 —Xxy)"'(- X))l_j —e ((1 —XxY)" ' -x)v(I - Y)‘l)

ij
e ((1 —XY)"' 1= X)Y(I - XY)-IX) )
ij
Then the equality (17) follows from (18),(19),(20) and / dn;; = 0.

We shall derive the system of differential equations for ' from (17). So it is necessary to compute
Aij = <((1 —XY)"' (1 - X)Y(I - Y)_l) _ > :
ij

B = c3 <((1 —XY)"\ (1 - X)Y(I - XY)‘IX) 4 > .
1]
To compute A;;, note that

(I-xXV)'U-xX)yy(-y)'=—-(I-xy)'+(1-v)"".
Then from (14) and (16) we have

C3Aij

<—czc3 ((1 _ Xy)—l)ij> + <CzC3 ((I —Y)—l)ij>

oF oF
=C ag Xiam_é‘ijch +c3 ag Xaj@+6,-j(c1+c2+n)F)
X oF + X oF +8;;(ci +n)csF 21
=c E jamo— t¢C E i +0ij(ci +n)c3F.
2 : Laana 3 s ajaXai ij\c1 3

To compute B;;, note that

<((1 —xY)" (- x)Y(I - XY)“X) >

ij

- Za: Xa,j Zbl <((1 —xY)" (1 - X))ib (Y(I - XY)—l)ba> .
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Taking this into account, we differentiate { ((/ — XY)~' (I - X)), ) with respect to X, and get

- ((1 - XY)’]Eab)ib

(I =XY)" ) YorEar) (I = X¥) ™' (1 = X)
k

= (1 - X)) (Y(I —Xy)"\(I - X))bb - (- XY);.

Using (12) we have

o ((a-xna-x), )
- <(1 — XY);]! (Y(I —xy)"'(- X))bb — (- xY);}
e ((1 —xy)~ (1 - X))ib (Y(I - XY)‘l)ba> .
Then

ZXaj Z a)% <((1 —xy)" ' - X))ib>

b
= X <(1 — XV (Y(I —xy)"\(I - X)) —n(I - XY);!

” e ((1 —XY)"' (= X)Y(I - XY)’l)ia>
_ <((1 - XY)‘]X)U r (Y(I —xy)" ' - X)) “n ((1 - XY)‘IX)U
pe ((1 —XY)"' (= X)Y(I - XY)‘IX)U> .
Thus we have

- _Za“xaj Zb: a)?j ((a-xn)a- X))l_b> —n <((1 - XY)‘IX)ij>

+ <((1 - XY)“X)U r (Y(I _xy)"'(- X))> .

Hence the relation (17) becomes

Za] X, Zb: a)(?j <C3 ((1 —XxY)"\I - X))l_b>

+ <(c1 + 1) ((1 - XY)‘l)ij> - <6’1C3 ((1 - XY)‘IX)

We assert that this relation gives the differential equations for F.

> —c3A;;=0. (22)

iy

Lemma 4.6. The function F, defined by (10), satisfies the differential equations

d*F dF
Z Xaj(I _X)priqm +ZXij(1 _X)pbﬁX_
ab,p.q ab bop pb
oF
_CSZXa](I X)lb (Cl+n)ZijquaX
oF
+(C]+62+n)ZX,a +C3ZXW8X +(ci+n)e3XijF =0, 1<i,j<n. (23)

Proof. We express all the terms in (22) in terms of F and its derivatives. The first term in (22) is computed as follow. From (14),
we have

(ex(0-xn'a-x) )= Z(I X)pb ZX”’@X SipesF .
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Differentiate the both sides with respect to X,;. Then, from the right hand side, we have

_Z(l - X)pb
p

Zx’qax ~8iqcaF |.

ab0Xpg " OXpb ax ab

d*F aF
quxiq % +6; — §ipC3 e

Hence we have

Zalxaj Zb: a)?j <C3 ((1 —XxyY)" (1 - X))l_b>

0*F oF
a,;[’,q “ po 8Xabaqu Z N P aXpb
oF
+C3ZXaj(I X)zb + Z Xanlq(9 nXijC3F.

Then using (14), (21) and

<c3 ((1 - XY)_IX)U> =->'X,; <—C3 ((1 - XY)‘I)ip>

p

OF
== Xp X,qa +XUC3F
p.q

we obtain the differential equations (23) from (22).

Theorem 3.1 for the Gauss HGF of matrix integral type is the following.

Proposition 4.7. As a function of eigenvalues x, ..., x, of X, Ig(a, b, c; X) satisfies the system
x(1 _xl)g_fl - xa(l - xa)aaTF
x(1 - x,)— >
a#l X~ Xa

+{(c—(n—1))—(a+b+1—(n—1))xl}g—z—abF:O, 1<i<n (24

We give the proof of this proposition. Take any 1 < / < n and fix it. Multiply the both sides of (23) by U;l Uj; and take a sum

fori,j =1,...,n. We compute the term which comes from the first term of the left hand side of (23):
. ; 8°F
r=>ul-| > Xaj (I = X)poXig 5w | Uni
i.j a,b,p.q av=pd

Noting that

dF =Z Oxa OF
0Xpq — 0Xpq 0xg’

°F xa  OF .\ dxq Oxg O°F
0Xap0Xpg 44 0XapdXpg Oxa L4 0Xpg OXap Oxo0x5°

we write I as I = I + I, with

d*F . 0xa Oxp
I = Ul Xoi(I = X) pp Xig —2 —2- Uy,
1 axa3Xﬁ i ‘;p . Jjl a]( )pb iq Bqu X b li
oF 8%x,
I, = Xoi(l = X) pp Xig ——2—Uy;.
2 Z Z ]( )pb qaxabaqu 1

abpq




Istanbul Journal of Mathematics

For I}, using the equality (3) of Lemma 4.1 and x = UXU", we have

0*F .
I = UtXa-I—X XioUqy UT UaUT Uy,
: ﬁaxaaxﬁi Zb: Jl J( )T’b qYapYqa¥Ba ppvl
»J,a,0,p,q
— Z EP 6xﬁ ZUﬁaXajU ZUQP(I X)prbﬁ ;UIIXIqua

_ (,Z,;; Bxaaxﬁ (6p1x1) (S ap (1 = xa)) (81ax1)

d°F
= X] 2(1 = x) —.
8x12

Next we compute /». Note that, from X = UTxU, we have X, i=2 Ulrxr Uy, etc. By virtue of (9) of Lemma 4.2 we have

oF - 8%x,
L= Ut Xoi (I = X) pp Xig ———2—Uj;
3 zjgpq i g lanabaXPq l
BF + 4 (92)(
= Ut UL x, U US (1 = x)UspU! xUpg ———2—Uy;
5 Zb: rZS: jYar*rYrj m( xs)Usp Uy, xu U qaxabaqu
i,j,a,b,p,q r.s.u
oF 8%x
2 T a
= — (1 - U Ul UgpUpg ——2—
x; QZ; axa( xs)a;pq wUpsUsbUlg 9Xar0X g
oF -1
:xlz{ a—(l—xa) Z(l Xs) — }
azl OYs s#l Xs
B (1—xa>g—;—<1—xa>a%
=X .
a#l
(1-x)%E - (1-x0)2E oF
_ 2 dx; OxXq 2
= 2, X| — Xq =D
a#l
Thus we have
IF
8*F (l_xl)a -(1-x Q)Bxa oF
I=x {xl(l —xl)— + X7 — +(n— l)xl (25)
l a#l X = Xa

To compute the contribution, which comes from the other terms of the left hand side of (23), we need the following lemma, which
can be shown in a similar way as above using Lemma 4.2.

Lemma 4.8. We have

oF oF
Q.U le,(l X)ob o Ui =310 ) (I =xa) 5= (26)
L,J p 4
. oF oF
e XaoiI = X)ip—1 U =x1(1 —x;)—. 27
,Z]-:U]l Zz; i( )baxab Ui = x( x’)axl 27
oF oF
t v, 2
Zuﬂ. > XajXav ax | Ui =45 (28)
i,j a,b
oF oF
UT . Xia_ . Ui = _— 29
zz ! ; 0X;a) T Mo 29
oF oF
;j jl ; ajaXai li xlaxl (30)

By the help of (25) and Lemma 4.8, we can derive from (23) the equation

14
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- - (gl o
i 2E
X1

xl(l —xl)— + X Z

l a#l x=

OF OF aF
# (0 w0 g —es(l =)o~ (e +mng
OF
+(c1+cy+c3+n)— + (¢ +n)c3F =0.
3xl

Using

oF oF
D(1=xg) == 3 == ( —xa> +(1—XZ)—I

a alxl

:Z)MG_F_ZM oF (1_x,)_

x| = Xa 0xq X] 0xq
we obtain the differential equation
OF
9%F xl(l_xl)a_xl_xa/(l xa/)axt
x(l=x)—+
l a#l M~ Xa

oF
+{(ci+cr+n—-1)—=(cy —c3 —2)x1}a—XI+(c1 +n)csF = 0.

Recovering the original parameters c; = a —n,c, = ¢ —a —n, c3 = —b, we obtain the desired differential equations (24) and finish
the proof of Proposition 4.7.

4.3. Kummer case

We prove Theorem 3.1 for Kummer’s HGF of matrix integral type following the same line of thought as in the Gauss case. Put

F(X) = / etr (XY) |Y|'|I - Y|?dY = / exp f(Y)dY, X,Y e I (n), 3D
c c

where c; =a —n,cy = ¢ —a —n, C is a domain of integration which allows us to apply the Stokes theorem, and
f¥Y)=t(XY)+cilog|Y|+crlog|l -Y]|.
The usage of the symbol (g) for a function g(Y) is the same as in the Gauss case. A simple computation shows the following.

Lemma 4.9. Forany 1 <i,j < n, we have

of _y. 9
oX;; U oYy

=Xji+a (Y Dji+e((I-Y) )

Lemma 4.10. The function F, defined by (31), satisfies the differential equations

oF oF
X Xkjim—
Z % O X m® Xt akaaxml Zk: kg Tt earngy
oF ..
+6;; {Zkl X (c1 +n)F} =0. 1<ij<n (32
Proof. Let w i, w be those by (15) with f(Y) in (31). Consider (n?® = 1)-form

n
nij= > (YU=Y)yexpf(wp, 1<ij<n
k=1

15
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and compute d7; ;. Using Lemma 4.9, we have

v 0 C of
i = 0, gy V=Dt ), (U =1y gy

n
= Z(éij = 0iYik = Yij) - w
k=1

+ 3 U=V (10 g = (T =1) iy + X ) @

k=1
= {ndij —6;jwY —n¥;;+c1(I-Y)ij —c2¥y + (Y(I -YV)X),;; }w

{(c1+n)5,j Sty - (c1+cz+n)Yu+ZYlka] ZY,mYmkxk,}

k,m

Then the Stokes theorem implies
(c1+n)d;;(1) — i Z Yik) = (cr + 2 +n) (Yij)
k
) Xag (Vi) = > Xij (Yim¥oui) = 0. (33)
k k,m

Since (1) = F by definition and (Y,p) = 0F /0 Xp, by virtue of Lemma 4.9, the equality (33) implies the differential equation (32).

Theorem 3.1 for the Kummer’s case is the following.

Proposition 4.11. As a function of eigenvalues x, ..., x, of X, Ik (a, c; X) satisfies the differential equations
OF
d*F xge
l—+(c n+1—x1)—+Z o - aax"—aF:O, 1<l<n. (34)

ox; X
Proof. For a fixed 1 <[ < n, multiply the both sides of (32) by U;.l U;; and take a sum over i, j = 1, ..., n. The terms containing
the second order derivatives are computed as follows. Since

d’F ?x, OF Oxq Oxg  O*F

- = _— 4+ s
BkaaXm,- p ﬁkaaXml- ﬁxa aB aXmi anm (9x(,6xﬁ

we have Zl] (kaXk]m) Ull —11+12 with
h=3 ) et S| SR e
"7 Ly axﬁ i O Xmi 0Xiem
8%x,
h= ax Z jl (Z K O X m® X i

Using Lemma 4.1 and x = UXU", I} is computed as

li’

Uj;.

I = Z XUl UamU},UpiU} 5Un

6xa(9x/g
0°F

_Z()x 7% 61“6ﬁ“ZUBkaJUjl lc’)_xlz.

Noting that Xz ; = 3, Uszp U, and using (8) of Lemma 4.2, I, is computed as

d°x
E E T -7 .
12 B c')x(, Ulekp pj an aXml Ull
i,j,k,m p

n 8%x, 1 oF OF
xlz Z klan 0 X i Yii XIZX(I — X ((3)6& - 6351).
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Thus we have

0°F d’F 1 OF OF
Ut Xpi———— |- Ui =x— + -—]. 35
Z | 2 X Xm0 Xy | T2 T 2, Xo — X (axa sz) G
L] k,m ) #1
For the other terms of the first derivatives, contribution from the second term in (32) is already computed in (30), and that from
the rest is computed by using as
oF oF
Ul —| Ui = —, 36
Z il (ax-i) BT ox (36)
ij 1
] oF oF
20U ey Ui= D5 (37)
iy X ki o OXa

Noting that 3}; ; 6;; U;lUli = 1, from the differential equation (32), we have

O%F 1 dF OF OF
ox;  Oxg

x2 £ x| —Xq — Ox o
oF
+(ci+cr+n—x;))— —(c1 +n)F =0.
Bxl

Usingcy =a—n,co=c—a—nand

oF le—xa oF oF
_ = —_—

~ 0xqy X|—Xq 0xoq Ox;

a#l

we have the differential equation (34).

4.4. Bessel case

We prove Theorem 3.1 for the Bessel integral Ig(c; X). Put

F(X) = / etr (XY - Y—l) Y| dY = / exp f(V)dY, X,Y € Z(n), (38)
where
fX) =tr (XY =Y Y+ (c-n)log|Y]|.
The usage of the symbol (g) is same as above. The following lemma is now easy to show.

Lemma 4.12. Forany 1 <1i,j < n, we have

af of ") -1
ax; " ¥ji), vy Xji+ (Y )ji+ (c—n) (Y™ )i
Lemma 4.13. The function F, defined by (38), satisfies the differential equations
9°F OF oF
Xii + +0;; +F; =0, 1<i,j<n. 39
kz,:n O X om0 X Caxji ! { = O Xk } b=n %9)

Proof. For 1 <i,j < n, consider the (n*> — 1)-form

n

nij = Z (Y2>ik exp f(Y) wjk,

k=1
and compute dn;:

v |
={ S ai-k (Zn: Y,-mYmk) +Zn: (v?), (ij+(Y_2)kj+(c—n)(Y_l)kj)}w
k

k=1
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where the usage of w and w j; are similar as in the Kummer’s case. Then the Stokes theorem implies that

D" Xy Yim¥oni) + € (Yi) + 81 > (Vaa) +6;(1) = 0, (40)
k,m k

Since (Yup) = 0F /0 Xp, by virtue of Lemma 4.12, the equality (40) implies the differential equation (39).

Theorem 3.1 for the Bessel function of matrix integral type is the following.

Proposition 4.14. As a function of eigenvalues x1, ..., x, of X, the Bessel integral Ig(X) satisfies the differential equations
OF OF
9*F aF Xigy =X
g e+ )y M+F=0, 1<i<n @1)
ox} e R

Proof. For afixed 1 </ < n, multiply the both sides of (39) by U L U;; and take a sum over i, j = 1, ..., n. Using the identities
(35), (36) and (37), we have from (39) the equation ‘

32 1 OF 0F OF
—_— - —+F=0.
6 2 +xlle—xa (ﬁxl 6xd)+ 0xgy *

Rewriting it using

ZBF _le—xa oF 8F
— 0xq £ X1 = Xa 0xq 6xl
we obtain the differential equation (41).

4.5. Hermite-Weber case

We prove Theorem 3.1 for the Hermite-Weber matrix integral Igw (c; X). Put

F(X) = /C |Y]|~¢"etr (XY - %Yz) dy = /Cexpf(Y)dY, X e #(n), (42)
where C is a domain of integration as in the previous cases and
f(Y) = (=c—n)log|¥| + tr (XY — %YZ).
The usage of the symbol (g) is the same as in the previous cases. The following lemma is shown easily.

Lemma 4.15. Forany 1 <i,j < n, we have
af of
=Y,
aXij aY
Lemma 4.16. The function F, defined by the integral (42), satisfies the differential equations
8°F
= 0Xjr0Xi

=(-c—-n)(Y~ )J,+XJ,—Y-1-. (43)

0
_ZXkJ_F+c5UF:O, ISl,an (44)
0 Xk

Proof. For any pair (i, j), define n;; = 3.7_, Yir exp f(Y) wjx as in the previous cases. Then using Lemma 4.15, we have
n n
0Yix of
dn;j = —+ ) Yyp——w
Y {kzl Y i ; Yk

= {néij +iYik ((—C - n)(Y_l)kj + Xy j —ij)}w

k=1
n n
= {_Céij + Z Yikaj — Z Yikij} w
k=1 k=1

Since / dn;j = 0 by the Stokes theorem, we have

D U¥aYag) = > Xay (Yia) + 6 (1) = 0. (45)

k k=1
Then we see that the identities (45) lead to the differential equations (44) since Lemma 4.15 implies 0F /0Xap = (Ypq - 1).

18
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Theorem 3.1 for the Hermite-Weber case is the following.

Proposition 4.17. As a function of eigenvalues xy, . . ., x,,, the Hermite-Weber integral Iyw (X) satisfies

0°F oF 1 OF OF
UL (___)+CF=0, L<ij<n (46)

6x12 ox; X|—Xxq \Ox;  O0xq

Proof. We proceed as in the previous case. For a fixed 1 < [/ < n, multiply the both sides of (44) by UJT.I Uj; and take a sum over
i,j=1,...,n Then we easily see that

d*F 0*F 1 oF OF
S PE Ly, PP L (o8 or)
Tt J ankani ﬁxlz X —Xq \Ox;  Oxgq

a#l

For the second term in (44), we use (30). Then we obtain the differential equation (46) from (44).

4.6. Airy case
We prove Theorem 3.1 for the Airy integral 74(X). Put

1
F0 = [ e (xy - §y3) ar= [ ewsmar. x e, 1)
c c
where C is a domain of integration explained in the last paragraph of Section 2.2 and
1
fY)=tr (XY - §1/3) )

By virtue of this choice of C, we can interchange the operations of differentiation with respect to X;; integration with respect to
Y. See also Remark 2.7. The usage of the symbol (g) is the same as in the previous cases. The following lemma is easy.

Lemma 4.18. Forany 1 <i,j < n, we have

af 2
—— =Y, Y9 — (X)) =0. 48
o =i () = () 48)
Lemma 4.19. The function F satisfies the differential equations
0*F
——— - X;F=0, 1<i,j<n 49
X 0Ky b= 49)

Proof. The equation (49) follows from Lemma 4.18 and (Y2)jl. =Y YirYui.

Theorem 3.1 for the Airy integral is the following, whose proof is similar to that for Proposition 4.17 and is omitted.

Proposition 4.20. As a function of eigenvalues x, . .., x, of X, the Airy integral 14(X) satisfies the differential equation
d*F 1 dF OF
all — ——|-xF=0, 1<i<n.
fre ;ﬂxz ~Xa (axz axa) 5 "

5. HOLONOMICITY OF THE SYSTEM FOR HGF

Theorem 5.1. The system S. (x = G,K,B,HW, A) is holonomic in Q. C C" and is equivalent to the completely integrable
Pfaffian system of rank 2", where

Qc = {reC" | | [xi(u—1)-AQ) # 0},
i=1

QK=QB={x€Q|Hxi-A(x)¢0},
i=1

Quw =Qa={x € Q| A(x) #0}.

19
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We prove the theorem in detail for the systems Sgw, Sa by using the theory of Grobner basis.

Let C[x] be the ring of polynomials in x = (x1,...,x,) and let R be the localization of C[x] by A = [],.;(x; — x;), namely
R={f/A"| f € C[x],m € Zs(} which is also denoted as C[x]s. We denote by D the ring of differential operators in x with
coeflicients in R. Any P € D can be expressed uniquely in the so-called normal form

P = Zad(x)a" = Zad(x)(?lm 0 ag(x) €R,

where 37, is a finite sum with respect to multi-indices a = (a1, . .., @,) € ZZ . To this P € D we associate its symbol:
T(P)= ) aa®)E® =) aa()E - £ € R[£].
a a
For a = (ai,...,an) € Z, let |a| denote the sum a; + - - - + @y.

Let us fix an order in the set of monomials {a,(x)0?} in D as follows. Firstly, we use the lexicographic order as a monomial
order <j.x in C[£], namely, é? <., £P means that either || < || holds or || = |B] and the most left nonzero member of
(B1—ais...,Bn — @) is > 0. Using <. , define the order in D as

aq(x)0% < bp(x)0P & £ <ex EP.
For P € D, the initial term in. (P) is the symbol of the greatest monomial in P with respect to the order <. For P,Q € R with
ing(P) = a(x)é?,in<(Q) = b(x)&P, let y = (max(ai, B1), . .., max(ay,, Bn)) € Z%)- Then S-pair sp(P, Q) for P, Q is defined by
sp(P,Q) = b(x)d? P — a(x)d” FQ.

Let ¥ be a left ideal of D. By in<(.¥) we denote the ideal of R[£] generated by {in<(P) | P € F}. Let {f1,..., fa} be
a generator of the ideal .#. It should be noted that {in<(f}),...,in<(fy)} does not necessarily generate in<(.¥), in general.
A generator G = {g1,...,8m} of 7 is said to be a Grobner basis for .7 if (in<(g;),...,in<(g;,)) generates in. (¥ ), namely
in<(F) = (in<(g1),...,in<(gm)) . We can apply the Buchberger’s algorithm to find a Grobner basis for a given left ideal .7 of
D.

5.1. Hermite-Weber

Consider the system of differential equations Sgw for the Hermite-Weber function /5w (¢, X) and put
1

Li=(9i2—x,-(9i+z )
k(#i) Xi

(O =) +c, 1<i<n

Let Fyw C D be the left ideal with the generator Gyw = {L1,...,Ly}.
Proposition 5.2. Gwy is a Grobner basis of the left ideal Fgw.

Proof. 1t is enough to show that, for any pair L;, L; (i # j), the S-pair sp(L;, L;) = 0 after applying the division algorithm of

Buchberger using Gwg. Since the largest term of L; is 6i2, we have
13

sp(Li,Lj) = 07L; — 07 L;

1
=70 —xidi+ Y, ——— (B = dh) +c
Ky Tk

1
— |} -x0,+ Y. (8, — ) +¢

Keej) N Tk
=A+B+C+D,
where
_ 2 2
A= —xiaiaj +)Cj(9j(9i s
1 1
B=07- (8 — ;) - d?- (9; = ),
Xi —Xj Xj—Xi
1 1
C= { (0 — )0 - (9; - ak)aiz} ;
k(7 KT XK A

D =c(8;-87).
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We carry out a reduction of A, B, C, D by the division algorithm using the generator Gwpg. Noting that

02 = L +x;0; — Z L(ai — &) —c, (50)
N
k(#i)
we have
1
= —x;0; x,@ - (6j—8k)—c +xj(9j x;0; — -C
h Kz N
k(:#l] { }
+ 0;(0; — ;) + ! ———(0; -0} - ! —09;(0; - 9;) + ! (0; — 9))
Xi j\Oi = 0j) + ———=0; = 0j)(,
Xj =X (xj —x1)? xi—x; 7 T (xi - xp)? !
+ c(xial- —xjaj),
and
B= (0; = 0,)07 + #(a~—a‘)a~+#(a—a~)
_x-—xj (i —xp)? T -t
2
- (8 = 000} — ———=(0; — )0 - ————(9; - )
xj—xi? (7 —x;)2 (xj=x)3
_ 1 . a2 o
Cxmx o (xi_xj)z(aj %
1 2
= B - 3% — 8?).
Xi — Xj ! (xi—xj)z( J l)

To compute B, we use

1
907 =Lj—Li+x;0; —xid + ) { —H(a,—ak)}

k(#i,j)

and we have

B = (6, —aj) Xjaj —xial- + Z (Xi —
k(#i,j)

=x;(0; — 0;)0; — x;(0; — 0:); — (0; + 9;)

+ 1_6 -
DREE 0
k(#i,j)

1
(x; — Xk)2 @ - Bk)}

1
- -0 — (0, - k)¢ -
k(#i,)) {x o+ (x; _xk)z( ! k)}

Similarly, we compute C. Using (50) we have

C= P )Cjaj— Z . ((9 —85)—c
k(71,5 ¥ T Xk e
() — &) xla—z —c
k(i) ~T TNk ezi) !
57 J
k(i,j) "

1 1
(0; = Ox) - (3j—t9k)}+C1,
Xk — Xk

e {
k(zig) VX T
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where

Cl = 0 —63)
Kz~ (@
+ Z
k(#i,5) A f(;ez)

In Cy, we consider separately the cases £ = i, k in the first part and the cases £ = j, k in the second part. Thus

Cl== ), =0~ 00) T (8= )

k(i) YTk

- T — (0, =)
k(z0,)) k

1

- > D (8; = 3 (3; - 3)

Gy e (= x) (g = xe)
1 1

+ ——(0j — ) ——(9: = 9))
Gy X Xk Xi =X

+ (6; - 3k) (51' — Ok)
k(i) N TRk

I
+ (0 — 0k)(0; — Or).
k(;jmg; o (¥ =¥ = xe)

Reducing C; to the normal form we have

1 1
Cl:_xi—x~ Z { —

X
T k(i) V!

1
- (9; - 5k)} (0; - 0))

1 1 1
{x-—x T —x ;(x-—x-)z(ai_aj)
k(zij) k J k i J
1

1
_k;;,){(xi—xkﬁ(xj—xk) =00~ o e @00

(D

and we get the normal form of C. Collecting the terms in A, C, D containing ¢ as a coefficient, we see that they are equal to
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c(Lj - L;) and is O after applying the division algorithm. Also summing up all the other terms in A, B, C, we have

X X
sp(Li, Lj) = E { : _lx 0i(0j = O) = —— _Jx 9;(9; - 3k)}
k(zig) Tk Pk

+xi{ ! 6i(6j—6i)+;(6j—6i)}

Xj— X (xj —x;)?

— X { : 9;(0; = 9;) + L _@- 3;)}

Xi = Xj (x; —x;)?
1
+ ——— {x;(0 = 0)0; = xi(3; ~ 8)3: — (8 + &)}
i = Xj
1 1 1
+ oy Z { T (3i—3j)(3i—3k)—ﬁ(6i—6k)}
xi— xS L = (x; — xx)
—_ 1 Z { 1 (64—0')(6'_6)4';(6'—8)}
Xi _.Xj k(#i,)) )Cj — Xk ' ! ! * (xj —xk)2 / k
2
— (3-8
* (xi_xj)z( r o)
X; xX;
+ : ; _j (61' - 8k)aj T (aj - 6k)ai}
k(zi) Tk Xj = Xk
1 1 1
e S @)~ ——— (8~ ) | (8~ 9))
Xi=xj At i = Xj = Xk

1 1 1
+ + (0; — 9))
k(:tzi;j) {x" BRI ”Ck; (i = xj)? !
1 1
- (0i — k) —
v { (i = x1)%(x; — x) (x; = xp) (xj — x1)?

(9; - Bk)} .

This reduces to

_ L 02— 0% - 20— 10, ! SRV
PULi L)) = (s 12000 =0 =2 =0 + 3 (Xi_Xkerj_Xk)(al o)
k(#i,)
1
* 0 — ) + (9 - d
k(:tzi,:j) (i =) (o = xp) Oek = xi) {01 =90+ (9 - 30}
2

= — Ll_L
(xi—xj)z( J)

=0.
by applying the division algorithm using G gw. Thus we have shown that G gw is a Grobner basis for the ideal /gy .

Since Ggyw is the Grobner basis of the ideal fgw and in<(L;) = 51.2, we see that Fgw is a zero-dimensional ideal of D,
rankg (D / Fgw) = rankR(R[f]/< 12, e ,f,%)) =2"and

(00105 - 9f | ki, k= 0,1}

gives a basis of R-free module D/ #gw, where when k| = - - - = k, = 0, above element is understood to be 1. Thus we have shown
the following proposition and completed the proof of Theorem 5.1 for Sgw.

Proposition 5.3. The system Syw is holonomic on C" \ S, § = U, ;j{x; — x; = 0} and the holonomic rank is 2".

5.2. Airy

We show the similar result for the system S4 for the Airy integral /4(X) of matrix integral type. Put
1
Li=dl+ ) ——@-d)-x, 1<i<n,
L Xi T Xk
k(#i)
and let ¥4 C D be the left ideal of D with the generator G4 = {Ly,...,Ly}.
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Proposition 5.4. The generator G 4 is a Grébner basis of the left ideal F4.

Proof. For i # j, let us compute the S-pair sp(L;, L;) and show that sp(L;, L;) = 0 after carrying out the division algorithm

using G 4.
sp(Li, Lj) = 87L; — 0} L,
= 07|07 i — Ok) = Xi
K
- o7 a2+Z (0} = )~
K T
=B+C+D,
where
1
B=9;- (9 = ),
Xi — j j—xi
c= > { ! L -4 )32}
= P — L= j — Ok)O; (>
k(zij) Tk b

2 a0
D——x,8j+x]8i.

Note that B, C has the same form as in the proof of Proposition 5.2. We make a reduction of B, C in a similar way. B can be written

as
1 2

Xi = Xj (xi = x;)?

(87 - 07).

where B] = (0; — Bj)(ﬁjg - 61.2). Note that

we have

a? 62—L—L+Z{

k(#i,j)

}— (x; = xj),

and see that

Bi=(0-0p)1 > (—(a o) -

k(#i,j)

1
= 31- _a
k(;}) {‘x ( i_-xk)Z( k)}

(j_ak)}

T (0j - 3k)) - (x; = xj)

1
- ~(8 =) (05 =9 + 3
TS o

- (xi —Xj)(ai — 6,) - 2.
Similarly we compute C using (52) and get

cc1+2(

k(#i,j)

Xi
Ok) — (9; - 3k)) ,
Xj— Xk

where Cj is the same as in (51). For D we have

D=@-d)- > ( 2

k(#i,7)

’i’Xk(a, —ak)).

(52)
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Summing up B, C, D, we have

sp(Li, Lj) = W( =05~ @i=9)) - Xi = X;
N .1 {—(a 8,)(9 - ) — —— 2(ai_6k)}
Xi —Xj k(%)) X ( i_xk)
1 1
_ 8 —9;)(d; — -9
Xi — Xj k() {xj—xk( J)( k)+( )2( k)}

1 1 1
— {._ (@—&)—T(aj—ak)}(ai—a,-)
Xi — X k(# ) Xi — Xk Xj— Xk

1 1
" Z>{ '_xk}(x_x)2( ~9)

k(#i,j
- { ! (0; — ) — 1 (9; -9 )}
o =202y -0 oGy -0
+(0; - 0)) - k(;”) (x —-0k) — T (0j - 6k)) .

This reduces to

. ) = 2 92y o 1 1 s
(LinLy) = s 12000 - 9) — 2 xj)+k;,)(xi—xk+xj_xk)(al ")
1
0;—0 0:—0
+k;)( —x;)(xj —xp) (Xk — xp) {( k) + (9 k)}
2
=m(L,~—L,)

=0
by the division algorithm using G 4. Thus we have shown that G 4 is a Grobner basis for the ideal #4.

Since G 4 is the Grobner basis of the ideal 4 and inL (L;) = &7, we see that %, is a zero-dimensional ideal of D, rankg (D /.%4) =
rankg (R[£]/(€2,...,€2)) = 2" and

{01105 - 9% | kyy ok = 0,1}

gives a basis of R-free module D /.4, where when k| = --- = k,, = 0, above element is understood to be 1. Thus we have shown
the following proposition and completed the proof of Theorem 5.1 for S4.

Proposition 5.5. The Airy system Sy is holonomic on C* \ S, § = U;<;j{x; — x; = 0} and its holonomic rank is 2".

5.3. Gauss, Kummer, Bessel

In this section, we give the reduced form of the S-polynomial sp(L;, L j) for the systems Sg, Sk, Sp for Gauss, Kummer and
Bessel without explicit computation. For the proof of these cases, we must modify the ring R = C[x]a, which is used in the cases
Suw,Sa, as

R={f/g" | f €Clx],m € Z50}
with g = [T, x;(x; = 1) - A(x) for the case S and g = []}-, x; - A(x) for the cases Sk, Sp.

5.3.1. System Sg
Put
Li=xi(1-x)d?+{c—(n—=1)=(a+b+1—(n—1)x;};

+ Z xi(l—xi)ﬁi—xj(l—xj)o"'j —ab

x,-—xj

J(#)




Istanbul Journal of Mathematics

and G ={Ly,...,L,}. Then
in(xl- - l)xj(xj - 1)

sp(L;, L) = (Li—Lj)
! (xi = xj)? !
after applying the division algorithm using G.
5.3.2. System Sk
Put
Xi0; —x;0;
Li=x;0} +{c—(n—1)—x;}0; + Z ﬁ—a
IC
and Ggx ={Ly,...,L,}. Then
(LiLj) = —5(L-Ly)
Sp{Li, Lj) = (xi _xj)2 i J

after applying the division algorithm using Gg.

5.3.3. System Sp

Put
x;0; —x;0;
Li:x,-()i2+{c—n+1}6,~+ZM+l
X=X
J(#0)
and Gg ={Ly,...,L,}. Then
(Lol = — (1, 1))
sp(Li,L;) = —9 (L, —L;
A (xi—xpr

after applying the division algorithm using G p.
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