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 Enhancing project management (PM) for machine learning (ML) requires structured 
acquisition and application of PM knowledge. However, significant differences exist between 
managing ML-enabled software products (MLESP) and traditional software products (TSP). In 
modern tool-centric ML environments, creating a method base to support team learning and 
knowledge management is challenging. Studies also show that a “one-size-fits-all” approach 
to PM can fail to meet diverse team and organizational requirements. Indeed, the main 
challenge is capturing, storing, and reusing tacit knowledge on PM methods, processes, tasks, 
and tools for ML. The experimental, data-driven nature of ML may often lead to ad hoc 
processes, complicating integration with traditional software lifecycles. Therefore, tailoring a 
PM method for MLESP becomes critical. This study uses a mixed research approach combining 
Design Science Research (DSR), PM, Method Engineering (ME), and Process Algebra (PA). Key 
outputs include an ME framework for PM, a method base for ML, and a hybrid ML PM method 
tailored for Baskent University Hospital Ankara (BUHA). A use case-based scenario analysis 
technique validated the requirements phase of the hybrid ML PM method in the context of 
BUHA. The proposed approach can offer comprehensive, yet pragmatic and adaptable 
solutions as it blends the strengths of ML, PM, ME, and PA knowledge domains. Moreover, PA 
contributes formal and mathematical foundations for specifying and validating PM methods 
and tailoring processes. This study has the potential to contribute not only to ML PM and BUHA 
but also to advancing process management within the mission and safety-critical domains like 
healthcare. 
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1. Introduction  
 

The rapid advancement of artificial intelligence (AI), 
as in machine learning (ML) and deep learning, continues 
to reshape our community and business landscape, 
which requires new ways of working environments and 
business models. Despite the popularity and remarkable 
success stories associated with ML applications, it's also 
essential to acknowledge some potential challenges. 
There have been instances of overestimating business 
objectives, unrealistic expectations, and a high risk of 
failure in ML projects. Selecting a feasible business case, 
aligning business processes with AI processes, and 
fostering an appropriate organizational project 
management (PM) culture also arise as important factors 
[1]. However, most studies tend to focus on technical 
aspects of ML such as data processing, model 
development, and deployment [2]. Little emphasis is 

given to the software engineering (SE) aspects, especially 
tailoring, or adopting a PM method for ML-enabled 
software products (MLESP) [3]. Therefore, successfully 
transitioning an organization toward AI and ML 
capability involves careful consideration of PM 
knowledge management. 

 

The first research argument of this study lies in the 
belief that improving SE practices and PM capability for 
ML requires the systematic acquisition, structuring, and 
application of PM knowledge [4]. The key factors 
affecting the tailoring or customization of PM methods 
include context-specific requirements (such as the 
organization and project type), team-specific factors, 
compliance with standards, and, most importantly, the 
retention and transfer of PM knowledge. Therefore, 
building a formal method base or repository for 
customizing PM methods can significantly contribute to 
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creating a rich knowledge base [5]. Thus, tailored PM 
methods can enhance efficiency and effectiveness as well 
as optimize resource utilization, which ensures 
processes are aligned with organizational and project 
goals. Project stakeholders’ satisfaction can be improved 
through better communication, engagement, and 
increased adaptability by allowing PM methods to be 
scaled and customized. Therefore, a well-maintained PM 
knowledge can not only foster continuous improvement 
and adaptation but also ensure that PM practices can 
evolve with emerging developments in the methods, 
techniques, and tools for ML [6].  

 

The second research argument is that there are 
substantial differences between MLESP and traditional 
software products (TSP) when adopting or tailoring PM 
methods [7]. Several critical factors need to be 
considered regarding the distinct differences from TSP. 
For example, the requirements of TSP can be well-
defined and may remain relatively stable while the 
requirements of MLESP can change because of the 
experimental nature of ML [3]. Stakeholders can easily 
provide the requirements that will guide the 
development processes of TSP, validation and 
verification of these requirements. As for MLESP, data 
and model performance requirements drive the 
development process and therefore, they involve 
continuous validation, verification, and evaluation of ML 
models [8]. Well-established PM methods such as plan-
driven and agile, can be adopted for TSP. However, data 
processing forms the integral parts of the development 
process for MLESP. While iterations are often based on 
adding or refining the TSP features, the iterations of 
MLESP are focused on improving model performance 
through data refinement, feature engineering and model 
testing. Once a TSP is deployed, it usually requires 
periodic updates or bug fixes. However, MLESP needs 
continuous monitoring, retraining, or updating of the ML 
models to adapt to changing data patterns. Most of the 
PM methods for TSP have defined team roles, but for 
MLESP, new roles may come into play in addition to the 
data scientist and SE roles [2]. 

 

1.1. Motivation 
 

In essence, customizing or tailoring a PM method for 
the specific demands of MLESP emerges as a significant 
challenge [9]. Due to the black box, data-centric, and 
experimental nature, ML processes can be easily evolved 
into ad hoc processes. The studies and industrial 
applications indicate that a “one-size-fits-all approach” 
for PM can be impractical or can fall short of the 
expectations of teams and organizations [10]. Moreover, 
SE and PM best practices may not be easily tailored to 
different project types and application domains, 
primarily because their method parts may not be easily 
extracted, adapted, or combined [11]. Therefore, an 
effective PM environment for MLESP should be able to 
encompass and harmonize the ML development and 
software development life cycle processes [12]. 

 

In contemporary tool-centric PM environments, it is 
not easy to design and build a method base for PM 
activities to enable team learning [5,11]. The knowledge 

required for tailoring a method may not be easily shared 
or disseminated among team members. The guidelines 
for customizing PM processes are presented in informal 
ways, textual or visual formats, lacking formal and 
common ground for engineering the PM methods [13]. 
The main challenge lies in how to elicit, store, and reuse 
tacit knowledge related to the methods, processes, tasks, 
and tools of PM [4]. Therefore, it is possible to state that 
there is a need for a method engineering (ME) 
framework that not only illustrates what can be 
accomplished through a given PM method but also 
provides insights into tailoring previously applied 
methods [11].  

 

The Software Engineering for Machine Learning 
Applications International Symposium (SEMLA) was an 
important attempt to foster collaboration between 
practitioners and researchers to explore the challenges 
and implications at the intersected areas of SE and ML 
[2]. Consequently, two fundamental questions emerged: 
(a) “How should software development teams integrate 
the AI model lifecycle (training, testing, deploying, 
evolving, and so on) into their software process?” and (b) 
“What new roles, artifacts, and activities come into play, 
and how do they tie into existing agile processes?”. 
Therefore, we argue that the questions discussed in 
SEMLA require the employment of the methods or 
techniques of two disciplines: (a) ME and (b) process 
management.  

 

In the context of ME, we can establish a similarity 
between a method user and an end-user of a software 
product. Both seek effective tailored solutions that meet 
their specific requirements. The decision to either 
construct a new method from the ground up or tailor an 
existing one hinges on situational factors that could 
pertain to the organizational, team, or project levels [11]. 
Thus, ME can be instrumental in addressing the 
challenges posed by the diverse and dynamic nature of 
the MLESP, system, and software development life cycle 
processes. As for process management, ME can provide a 
systematic approach for improving and optimizing the 
PM processes to enhance efficiency, effectiveness, and 
adaptability. However, process management also needs 
to leverage engineering and formal approach to connect 
the diverse domain processes of SE, ML, and PM. 
Therefore, Process Algebra (PA) can connect these 
knowledge domains and provide the formal ground 
needed to model, analyze, and verify the PM process 
models with high precision and reliability. 

 

Consequently, the existing literature falls short of 
providing solutions to the problems given above, which 
also leaves engineering the PM processes for MLESP 
relatively neglected. Therefore, our research study seeks 
to address this problem. We believe that standardized 
representation, modeling, enactment, and deployment of 
reusable PM methods in a method base can pave the way 
for more adaptable PM processes for MLESP [7]. The 
subsequent parts of this paper include a review of related 
work, theoretical foundations, research method, 
presentation of the research outputs, discussion, and 
conclusion sections respectively. 
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2. Related Work 
 

In the context of SE challenges associated with ML, 
several literature review studies have contributed 
different insights. Kumeno [14] conducted the first 
review mapping the SE challenges for ML to the SE 
knowledge areas defined by the Software Engineering 
Body of Knowledge (SWEBOK) [15]. Lwakatare et al. [16] 
focus on large-scale ML systems in real-world industrial 
settings. Nascimento et al. [17] highlight various 
categories, including test, software quality, data, 
management, model development, and PM in the context 
of SE challenges for ML. Giray [3] also  takes an SE 
perspective on ML system engineering and presents 
findings from an extensive systematic literature review 
on the state-of-the-art and SE challenges for ML. Key 
issues identified include forming cohesive teams, 
improving the requirements process, tailoring 
development approaches, and assessing the SE process 
[18]. 

 

Some of the research reports the case studies of 
companies engaged in ML projects [19, 20]. They identify 
ML-specific technical problems, including issues related 
to data processing, algorithm usage, incomplete tests, 
and evaluations. ML projects often face the unique 
challenge of not being able to conduct detailed 
requirement analysis and specification from the outset. 
The black-box nature of ML algorithms also makes it 
challenging to provide explanations to both technical and 
non-technical stakeholders, leaving questions about 
“what is possible and what is not” [21]. ML processes 
tend to be task-focused, and the traditional or stepwise 
approaches can complicate planning and coordination 
tasks. However, ML project managers may prefer PM 
methods reminiscent of traditional, plan-driven, 
waterfall methods, such as Cross-Industry Standard 
Process for Data Mining (CRISP-DM). The inflexibility of 
fixed-length sprints in PM methods like Scrum can lead 
to the inclusion of unrealistic sprint backlog items. For 
example, data analysis or model development tasks may 
require varying amounts of time and effort. Therefore, 
the adaptability of sprint lengths becomes critical, 
allowing teams to modify them according to the specific 
requirements of ML experimentation processes [7]. 

 

Effective coordination between teams and 
stakeholders stands out as another issue in ML projects. 
These projects often rely heavily on the knowledge and 
technical expertise of team members such as ML 
engineers and data scientists [11]. Team members need 
to possess expertise in various domains, encompassing 
data processing, statistics, algorithms, and application 
development. Teams utilizing an immature ML PM 
method may find themselves overly dependent on senior 
data scientists or ML practitioners. In a similar context, 
Saltz et al. [7] compare data science teams using Scrum, 
Kanban, CRISP-DM, and baseline PM methods. Their 
findings highlight that CRISP-DM excels in requirements 
specification and PM processes but faces delays in 
analytics, modeling, and coding. Scrum teams can 
encounter challenges in understanding client and data 

requirements, leading to estimation difficulties or 
reduced confidence in sprint task completion. 

 

Some researchers point out the need for establishing 
a consensus on the critical success factors and key 
performance indicators specific to ML and agile analytics 
projects [22-23]. Amershi et al. [11] conducted a case 
study on the SE challenges encountered within ML 
projects at Microsoft. They note that integration of ML 
and SE modules introduces a higher level of difficulty and 
intricacy. The automation of ML pipeline processes 
becomes a shared concern among ML teams. Therefore, 
the dynamic and complex context surrounding the 
development of large-scale MLESP differs substantially 
from traditional or agile software development contexts. 
Therefore, there is a growing need to integrate ML 
workflow management into SE processes to address the 
adaptability, scalability, and development challenges 
[11]. 

 

The importance of hybrid PM methods for complex 
software products like MLESP is underscored by some 
studies. For example, Kuhrmann et al. [24] provide 
insights into the practical implementation of hybrid 
software and system development, combining waterfall 
and Scrum methods, in real-world projects. They 
highlight effective communication, stakeholder 
involvement, and skilled PM, contributing to project 
success in hybrid development. Therefore, Situational 
Method Engineering (SME) offers an architecture model 
and provides insights into the development of hybrid PM 
methods [25]. Papadakis and Tsironis’s research [26] 
involves a review of PM methods, specifically plan-
driven, agile, and hybrid techniques. They point out a 
growing interest in hybrid PM approaches, which 
integrate practices from plan-driven and agile 
approaches. Conforto and Amaral [27] introduce a hybrid 
PM framework that blends agile PM and the Stage-Gate 
model, specifically tailored for technology-based 
companies. They report the benefits of flexibility, 
adaptability, and innovation alignment while 
acknowledging the challenges of implementation. Zasa et 
al. [28] aim to understand the dynamics and challenges, 
and then propose strategies for corrective actions, and 
for the coexistence of agile, Stage-Gate, and hybrid PM in 
organizations. The coexistence can be driven by the 
recognition that different phases within projects may 
require varying levels of adaptability. Sithambaram et al. 
[29] also report the issues and challenges impacting the 
successful management of agile-hybrid projects by using 
a grounded theory approach. They suggest that effective 
management of agile-hybrid projects requires a holistic 
approach that addresses challenges in multiple 
categories, such as organizational support, alignment 
with business goals, teamwork, education, and skill 
development. Azenha et al. [30] explore the role and 
characteristics of hybrid approaches to PM for 
technology-based products and services. They 
emphasize that hybrid methods can allow for a balance 
between structured planning and the flexibility required 
for risk management, innovation, and rapid change. 

 

3. Theoretical Foundations 
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3.1. Machine learning 
 

ML is composed of a range of mathematical, 
statistical, data science, and computer science methods, 
processes, and techniques. It uses data and complex 
algorithms to create learning models that determine 
patterns within training and test data. The main objective 
of an ML project is to generate knowledge that informs 
better decision-making and provides valuable insights 
derived from this knowledge. As can be seen from Figure 
1, the ML process starts with the problem definition, 
which involves clear identification and articulation of a 
business problem that the ML project aims to solve. Data 
acquisition and processing includes gathering, 
preparing, and transforming data into a suitable format 
for model training and evaluation. Exploratory data 
analysis is conducted to examine and understand the 
data to uncover patterns, find anomalies, test 
hypotheses, and check assumptions. Feature engineering 
is the process of using domain knowledge to extract 
features (attributes and variables) from raw data to 
improve the performance of the ML model. It is used to 

create new features or modify existing ones to make 
them suitable for ML algorithms. The dataset is split into 
training and testing subsets to build and validate the ML 
model, which is followed by an evaluation process with 
related metrics. Finally, model deployment is the 
implementation of the evaluated ML model in a real-
world environment, which is also continuously 
monitored for its performance. 

 

3.2. Machine learning for healthcare 
 

The healthcare industry, as one of the most critical 
domains, expects significant benefits from MLESP [31]. 
ML healthcare projects can offer transformative 
possibilities, such as improving patient outcomes, 
optimizing treatment plans, and enhancing operational 
efficiency and resource allocation. In this complex and 
safety-critical field, effective PM ensures that ML 
applications align with healthcare goals, comply with 
regulatory requirements, and address challenges related 
to data quality, security, and privacy. PM is essential for 
this rapidly evolving domain, which ensures the delivery 
of safe, effective, and efficient healthcare solutions. 

Therefore, PM remains a critical and evolving topic in 
healthcare practices, and research, attracting interest 
from practitioners and researchers across various 
domains [8]. 

 

Figure 2 illustrates an ML-supported illness and 
disease diagnosis process model. Initially, the doctor 
reviews the patient's clinical history after admission. 
Following a physical examination, the doctor may 
request diagnostic tests, such as blood samples, 
laboratory work, and radiology. Depending on the 
patient's condition, a consultation with other experts 
might be necessary. The doctor then uses the ML service 
to support decision-making and diagnosis. If there is any 
inconsistency or doubt about the ML inferences, or if the 
ML service is not operational, the doctor completes the 
diagnosis using traditional procedures. 
 

3.3. Method engineering 
 

ME covers a broader spectrum of development 
processes, activities, and guidelines, allowing for the 

creation or customization of methods tailored 
specifically for software and information system 
development [32]. Within ME, the decision to either 
construct a new method from the ground up or tailor an 
existing one depends on situational factors that could 
pertain to the organizational, process, or individual 
project levels. At the core of this process lies method 
rationale, serving as a critical background that provides 
the reasoning and arguments behind method 
prescriptions. It explains why a method user might opt to 
follow a method as-is or adapt it in a particular manner, 
thus bringing a crucial element of context awareness to 
ME. 
 

In the context of ME processes, the utilization of 
method parts is essential with these parts manifesting as 
method fragments, method chunks, or method 
components [11]. A method fragment typically has a 
singular focus, concentrated either on the product or the 

Figure 1. Machine learning process model. 
method. 
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process aspect. On the other hand, a method chunk 

combines a process-focused fragment with a product-
focused one. The concept of method components bears a 
resemblance to the employment of software components 
within SE. A method component encompasses input and 
output product(s) and can function either independently 
or in conjunction with other method components. There 
are three distinctive ME approaches: 
 

 Paradigm-Based Method Engineering (PB-ME) 
provides the extension and adaptation of a metamodel 
(i.e., SPEM 2.0) to specific situations, processes, and 

product models [44]. 
 Assembly-Based Method Engineering (AB-ME) 
enables the decomposition, aggregation, and tailoring of 
SE practices, tasks, and roles in the forms of method 
fragments, chunks, or components, which are stored as 
method parts in the method base. 
 Configuration-Based Method Engineering (CB-ME) is 
primarily based on the concept of method components. 
The components are selected and then they are classified 
into templates to support the method configuration 
process. 
 

The concepts of the "ideal-typical method," 

"situational method," and "method-in-action" provide 
core perspectives on the knowledge and execution of 
software development methods [11]. The "ideal-typical 
method" represents a theoretical or conceptual 
framework of a method. The "situational method" 
recognizes that software development projects are not 
one-size-fits-all endeavors. Instead, they are influenced 
by various factors, including project type, complexity, 
domain, team composition, and organizational culture. 
Situational methods emphasize the need for adaptability 
and tailoring. The "method-in-action" represents the 

practical execution of the method within a real-world 
project. It is the embodiment of the ideal-typical method 
and the situational method within actual project 
contexts. 

 

3.4. Eclipse Process Framework 
 

A meta-model for ME should be able to represent any 
relevant method and product and process aspects of PM 
should be integrated within the meta-model. Software & 
Systems Process Engineering Metamodel (SPEM v2.0) is 
an Object Management Group standard for software and 
systems process engineering meta-model specifications 

Figure 2. ML-supported illness and disease diagnosis process model method. 

Figure 3. SPEM 2.0 Metamodel. 
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(Figure 3) [33]. As a conceptual framework, “it separates 
reusable method content from their application in 
processes”. The goal is to satisfy the requirements of 
many processes regardless of development approaches, 
lifecycle models, cultural backgrounds, or levels of 
formalism. As it is conceptually based on SPEM 2.0, 
Eclipse Process Framework (EPF) is an extensible 
framework for software process engineering [34]. EPF 
Composer (EPFC) is the ME platform and method 
development environment [35]. The fundamental 
principle of EPFC is to separate the reusable method 
contents from their application in software development 
processes. Therefore, it enables designing methods and 
processes, authoring, tailoring, configuring, and finally, 
publishing these methods by providing content and 
library management mechanisms. 

 

3.5. Process Algebra 
 

PA is a mathematical structure that adheres to 
fundamental axioms, which enables the adoption of an 
algebraic and axiomatic approach for both reasoning and 
performing calculations for processes [36, 37]. PA is 
focused on equational reasoning and provides a set of 
formal notations, rules, and equations designed for 
describing algebraic manipulations of processes. Both as 
a formal method and mathematical framework, PA finds 
utility in specifying and evaluating process models, 
offering a range of algebraic methods to describe, specify, 
and verify different systems. 

 

PA employs three fundamental approaches to 
describe the semantics of sequential systems: 
operational, denotational, and algebraic [38-40]. Each 
approach provides a unique perspective on modeling and 
understanding system behavior. The operational 
approach views a program as a labeled transition system, 
effectively capturing how a system progresses from one 
state to another through labeled transitions. This 
approach finds use in the Calculus of Communicating 
Systems (CCS). The denotational approach involves 
mapping a language to an abstract model, which helps 
grasp the fundamental meaning of the system's behavior. 
Communicating Sequential Processes (CSP) relies on this 
approach. Finally, the algebraic approach employs a set 
of algebraic rules and definitions to model the semantics 
of various constructs and components within the system. 
This approach serves as the foundation for the Algebra of 
Communicating Processes (ACP). Therefore, the possible 
contributions of PA to process design may be as follows: 
 

 Axiomatic reasoning: PA facilitates an axiomatic 
approach, enabling formal reasoning and calculations 
with processes. 
 Operational semantics: PA is equipped with 
operational semantics, enabling the description of 
system evolution through transitions. 
 Verification and validation: PA provides means to 
control and ensure completeness, consistency, 
specification adherence, implementation correctness, 
and verification in communicating systems. 

 Formal design basis: PA serves as a foundational, 
formal, and mathematical basis for designing and 
developing process models and systems. 

 
3.5.1. Definitions and rules 

 

Abstract algebra, as applied in PA, focuses on the 
study of fundamental arithmetic operations on 
processes. This generality is achieved through the 
axiomatic definition of operations. For instance, ACP 
employs equational axioms to abstract away from the 
specifics of considered processes, providing an 
equational framework for asynchronous process 
cooperation via synchronous communication. Syntax 
serves as a fundamental component of PA, comprising 
operators, a set of rules, process terms, and symbols. 
Collectively, these elements establish a rigorous and 
mathematical foundation for understanding PA 
semantics. Operators are used to describe sequential, 
parallel, and nondeterministic process compositions. For 
instance, in ACP, the symbol (+) signifies alternative 
composition, (.) represents sequential composition, and 
(║) denotes parallel composition. The 𝛿 operator 
signifies process deadlock or failure, while the 𝜕ℋ  
operator encapsulates processes. 

 
 x + y = y + x (commutativity of alternative 
composition)     (1) 
 x + (y + z) = (x + y) + z (associativity of alternative 
composition)     (2) 
 x + x = x (idempotency of alternative composition)
       (3) 
 (x + y) . z = x . z + y . z (right distributivity of + over.)
       (4) 
 (x . y) . z = x . (y . z) (associativity of sequential 
composition)     (5) 
 x ║ y = y ║ x (commutativity of parallel composition)
       (6) 
 (x ║ y) ║ z = x ║ (y ║ z) (associativity of parallel 
composition)     (7) 
 δ operator is for deadlock or failure   (8) 
 ∂_H operator is for encapsulation  (9) 
 ⊲ (true) and ⊳ (false) are the conditional operators
       (10) 
 √ represents successful termination of a process 
       (11) 

 

3.5.2. CRISP-DM 
 

CRISP-DM method stands as one of the earliest 
standard process models for data mining projects, dating 
back to 2000 [41]. Its framework includes six sequential 
phases (Figure 4). While these phases are typically 
executed sequentially, CRISP-DM may follow a cyclic 
process model that allows for iterative refinement. 
Despite its comprehensiveness and detailed process 
descriptions, it does not prescribe specific PM roles. This 
model is relatively mature and well-established, offering 
a sequence of tasks and a roadmap for DS projects. 
However, it falls short of providing the agility and 
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flexibility required by contemporary SE and ML projects 
[42]. 

 

3.5.3. Team Data Science Process 
Microsoft introduced the Team Data Science Process 

(TDSP) as an agile and iterative PM method designed for 
data analytics and the development of AI applications 
[43]. TDSP represents a combination of SE methods, such 
as Scrum, and DS methods, notably CRISP-DM (Figure 5). 
Roles within TDSP include the project manager, project 
lead, solution architect, data scientist, data engineer, and 
application developer. It allows for the adoption of 

different PM approaches, whether they align more with 
CRISP-DM's predictiveness or the incremental and 
iterative nature of agile methods. 
 

3.5.4. Scrum 
 

Scrum is the most widely adopted agile PM method, 
characterized by its agile development approach [44]. 
Scrum's iterative and incremental nature, combined with 
its emphasis on regular communication and adaptability, 
makes it a popular choice for agile PM. It organizes 
software development into time-boxed cycles known as 
“sprints”, lasting from two to six weeks (Figure 6). Each 
sprint comprises the following activities: Sprint planning 

meeting, sprint execution, daily standup meeting, sprint 
review meeting, and sprint retrospective meeting. The 

development team, scrum master, and product owner 
are the key roles within Scrum. 
 

3.5.5. Kanban 
 

Kanban may be regarded as one of the flexible and 
adaptable agile methods (Figure 7). It shares strong ties 
with lean thinking and just-in-time production concepts 
from the industry [45]. The primary objectives of Kanban 
are to maximize value, minimize resource waste, and 

prevent bottlenecks during the development cycle. It 
achieves these goals by effectively balancing work 
demands with the team's available capacity. Unlike some 
other agile methods, Kanban doesn't impose a 
predefined process model, specific team roles, and 
mandatory meetings. The task board serves to visualize 
the workflow. Kanban PM method operates based on 
following core principles: Limiting work-in-progress, 
measuring, and managing workflow, implementing quick 
feedback loops, and adjusting cadence 

Figure 4. CRISP-DM process model. 
 

Figure 5. TDSP process model. 
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3.5.6. Data-Driven Scrum 
 

Data-Driven Scrum (DDS) [46] is a method designed 
specifically for managing agile DS projects, providing an 
agile lean process framework tailored to the unique 
needs of DS. It views a DS project as a series of iterative 
experiments and seeks to integrate the core structure of 

Scrum with principles inspired by Kanban (Figure 8). The 
central objective of each iteration in DDS is to formulate, 
conduct, and observe a data-driven experiment, followed 
by a careful analysis of the results. DDS shares some 

similarities with Scrum in terms of roles, events, and the 
use of item backlogs. However, it introduces several 
distinctive elements. Decoupling meetings from the 

iteration, high-level item estimation, and capability-

based execution are its core principles. An iteration 
typically encompasses three key phases: Experiment 
creation, performance observation, and results analysis. 
 

3.5.7. Hybrid Methods 
 

Relying only on a plan-driven method may lead to 

inflexibility, while adopting a fully agile approach may 
not always align with complex systems featuring 
interdependent components. The hybrid PM approach 

bridges these two extremes on a spectrum for a tailored 
PM strategy (Figure 9). Customizing agile PM to align 
with organizational needs and the specific requirements 

Figure 6. Scrum process model. 

Figure 7. Principle-based Kanban process model. 

Figure 8. DDS process model. 
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of MLESP can be highly beneficial, contingent upon the 
organizational context and the team's collective 
experiences. Various adaptations of PM methods like 
CRISP-DM, Scrum, Kanban, and TDSP have been 
successfully applied in ML projects and they can be just 
as effective as fully agile approaches [47]. 
 

3.5.8. Criteria for Tailoring PM Methods 
 

Depending on the theoretical background, literature 
review and industrial case reports, it is possible to 
summarize the criteria and qualitative metrics, which 
can be used for tailoring PM methods according to the 
adopted development approaches as follows: 

 

Table 1. Criteria and qualitative metrics for PM 
approaches 

Criterion  
Plan-
Driven 

Agile  Hybrid 

C-1: It supports a sequential process 
model. 

High Low Medium 

C-2: It supports an incremental and 
iterative process model. 

Low High Medium 

C-3: It supports ME approaches (PB-
ME, AB-ME, or CB-ME). 

High High High 

C-4: It supports the domain-specific 
requirements of SE. 

Low High Medium 

C-5: It supports the domain-specific 
requirements of ML. 

High Medium Medium 

C-6: It supports the domain-specific 
requirements of healthcare. 

High Medium Medium 

C-7: It has sound and satisfactory 
scientific evidence. 

High High Medium 

C-8: It has applications and wide 
acceptance in the industry. 

High High Medium 

 
 

4. Research Method 
 

This three-phased research study employed a mixed 
approach that harmonizes the principles and guidelines 
of Design Science Research (DSR), PM, and ME (Table 2). 
This approach combined DSR cycles with PM and ME 
activities, allowing them to complement each other. 
Hevner et al. [48] define DSR as a research paradigm 
where designers seek to address problems by creating 
innovative artifacts, thus contributing new knowledge to 
the scientific body of evidence. These artifacts are 

intentionally constructed by humans, and they are 
expected to be both useful and fundamental in 
addressing specific problems. DSR artifacts may belong 
to categories, such as constructs (vocabulary and 
symbols), models (abstractions and representations), 
methods (algorithms and practices), instantiations 
(implemented or prototype systems), and refined design 
theories. This research study includes two main artifacts. 
The first artifact is the instantiation of a method base for 
tailoring PM. The second artifact is a new hybrid PM 
method for MLESP. PA was used to connect the processes 
of diverse knowledge domains. It also facilitated the 
formal specification, implementation, and evaluation of 
the PM process models and tailoring processes 
throughout the design and development cycles. 
Additionally, EPFC served as an integrated development 
environment for the ME processes, while providing the 
theoretical and implementation foundations upon which 
the artifacts are constructed. 
 
4.1. Phase-1 (Relevance): 

 

4.1.1. Step-1: Problem definition 
 

Baskent University Hospital Ankara (BUHA) is the 
first and one of the most sophisticated transplantation 
surgery hospitals in Turkey. It uses healthcare 
information systems (HEIS) and owns state-of-the-art 
medical equipment. Recent developments in technology 
and ML have motivated the BUHA administration and 
researchers to take a step forward in the area of ML-
driven HEIS. However, the stakeholders of BUHA, 
especially the technical staff and software developers, 
are not sure about “what-to-do” and “how-to-do" as well 
as how to adapt a PM method suitable for SE, ML, and 
healthcare domains [6, 8, 31]. Therefore, BUHA's goals 
involve a wide range of objectives, reflecting the complex 
nature of healthcare and the integration of ML and SE 
into its operations. Baskent University and its boards 
approved and provided support for the research. The 
research problem was focused on the need for a 
knowledge base for PM and a tailored PM method that 
can effectively address the domain-specific 
requirements. 

 

Table 2.  Research method 

Phase-1 (Relevance) Phase-2 (DSR Cycle-1) Phase-3 (DSR Cycle-2) 

Step-1: Problem definition, 
Step-2: Stakeholder concerns and 

research goals, 
Step-3: Evaluating available PM 

methods, 
Step-4: Goals of a new PM method as 

acceptance criteria 
Step-5: Formal specifications of 

available PM methods. 

Step-1: Establishment of EPFC as a 
method base, 

Step-2: Creating ME content 
packages for SE, PM, ML, and 
healthcare domains. 
 
 
 
 

Step-1: Identifying textual descriptions of 
PA specifications related to the 
method goals, 

Step-2: Transforming textual descriptions 
to corresponding method components, 

Step-3: Composition of a new phase-
based PM method.  

Step-4: Validation of the new PM method 

Output: Problem definition, available PM 
methods and acceptance criteria 

Output: Artifact-1 (an ME 
framework and a method base) 

Output: Artifact-2 (A new hybrid PM 
method for MLESP) 

Theoretical Foundations and Knowledge Base: Machine Learning; PM Methods; Method Engineering; Process Algebra; 
Healthcare Domain 
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4.1.2. Step-2: Stakeholder concerns and research 
goals 

 
The ML-supported illness and disease diagnosis 

process, as depicted in Figure 2 above, highlights how ML 
can enhance decision-making in healthcare. It 
demonstrates that ML is used as a supportive service, 
with doctors having the flexibility to return to their 
traditional diagnosis processes when needed. A 

breakdown of the main concerns of the stakeholders are 
as follows: 

 

 ML developers: Their focus was on the ML pipeline 
processes, data management, and the quality and 
efficiency of ML model development and deployment. 
 Software engineers: They were concerned with 
establishing effective and efficient software engineering 
processes. 
 IT staff: Their primary responsibility was to maintain 
the overall IT healthcare infrastructure, ensuring the 
availability and quality of healthcare systems. 
 Doctors and medical staff: They were concerned with 
diagnostic accuracy and the quality of healthcare 
decision support. ML applications can help them for 
accurate insights and recommendations for patient care. 
 Administration: Their expectations were volume-
based care, profitability, and cost reduction through 
effective PM. 

 

4.1.3. Step-3: Evaluating available PM methods 
 

The selection of specific methods, including CRISP-
DM, TDSP, Scrum, Kanban, and DDS, reflects the 
recognition that different aspects of the project may 
benefit from diverse PM methods. By considering a 
combination of these methods, a team can tailor the PM 
approach to specific project phases, tasks, and team 
dynamics. This approach can allow for a more adaptive 

and context-aware PM strategy, which is essential in the 
complex and evolving domain of ML-driven healthcare 
service. The ability to leverage both plan-driven and agile 
practices can provide a robust foundation for managing 
diverse aspects of the project effectively. The research 
goals, ML context, organizational culture, and literature 
review confined selecting plan-driven method (CRISP-
DM), hybrid method (TDSP), and agile methods (Scrum, 
Kanban, and DDS) for the initial evaluation processes 
(Table 3): 

 

The evaluation of the available PM methods was on 
the mean score (mean score >= 2), which was expected 
to be two or above according to the metrics (C-1 to C-8). 
Accordingly, DDS (1.28 points) is excluded from the next 
phases of the study. CRISP-DM (2.42 points), TDSP (2.00 
points), Scrum (2.28 points), and Kanban (2.28 points) 
were considered for inclusion in the ME processes. It's 
important to note that the mean scores provided a 
quantitative basis for decision-making, but other factors, 

such as organizational requirements, team expertise 

Table 3.  Evaluation of available PM methods based on the acceptance criteria 

 C-1 C-2 C-4 C-5 C-6 C-7 C-8 Mean Score Evaluation 

CRISP-DM 3 2 1 3 2 3 3 2.42 Included (+) 

TDSP 1 3 2 3 2 1 2 2.00 Included (+) 

Scrum 1 3 3 1 2 3 3 2.28 Included (+) 

Kanban 1 3 3 2 1 3 3 2.28 Included (+) 

DDS 1 2 1  1 1 1 1.28 Excluded (-) 

Low: 1    Medium: 2    High: 3 

Figure 9. Hybrid process model for PM. 
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would be considered when finalizing the choice of PM 
methods. 

 

4.1.4. Step-4: Goals of a new PM method as 
acceptance criteria 

 

The method goals (MG) derived from the 
stakeholders’ concerns reflect the main requirements of 
BUHA. The goals provided a holistic view of the 
expectations and supported the acceptance criteria for 
evaluating and customizing the new PM method within 
the context of BUHA. Each goal reflected one or more 
specific aspects and expectations as follows: 
 MG-1 (Addressing project and organizational 
requirements): The PM method should accommodate 
both project-level and BUHA requirements, including 
aspects such as project type, organizational culture, and 
healthcare domain regulations (alignment with business 
goals). 
 MG-2 (Early handling of ML requirements): The PM 
method should enable the early elicitation, analysis, and 
specification of data-driven, complex, and 
interdependent ML requirements, particularly during 
the RE phase (it aligns with criterion C-1). 
 MG-3 (Agile and flexible approach): The PM method 
should allow for an agile, iterative, and incremental 
approach to ML and software development, with 
flexibility in incorporating agile and SE practices as 
needed during the development phase (it aligns with 
criterion C-2). 
 MG-4 (Support for experimentation): Given the 
experimental nature of ML projects, especially during 
model training and evaluation, the PM method should 
enable the implementation of quick feedback loops, and 
work-in-progress limits based on experimentation 
results, akin to Kanban principles (it aligns with criteria 
C-2 and C-5). 
 MG-5 (Visualization and predictive capabilities): The 
PM method should provide a structured way to visualize 
tasks and workflows, allowing for various types of 
predictions to measure and manage project tasks 
effectively (it aligns with criterion C-2). 
 MG-6 (Domain-specific roles and communication): 
The PM method should define team structures and roles 
that align with the specific requirements of SE and ML 
domains, fostering communication, ownership, and 
knowledge sharing among team members (it aligns with 
criteria C-1 and C-2). 
 MG-7 (Integration, monitoring, delivery, and 
maintenance): Recognizing the safety-critical 
importance of ML-driven HEIS, the PM method should 
support integration, monitoring, delivery, and 
maintenance processes to ensure the successful 
implementation of ML in healthcare (alignment with 
monitoring and maintenance processes). 

 

4.1.5. Step-5: Formal specifications of available PM 
methods 

 

In addition to the textual guidance and acceptance 
criteria provided by the method goals, there was a need 
for a mechanism both for the elimination of the 
researcher’s subjectivity and for a common ground that 

would connect the knowledge domains of ML and SE 
during the ME processes. Therefore, PA specifications 
were used to meet these requirements. 

 
4.1.5.1. Project management approaches 

 
 Specification-1: Let a formal specification of a simple 
plan-driven software process model (𝑆𝑃𝐸𝐶𝑃𝑙𝑎𝑛−𝐷𝑟𝑖𝑣𝑒𝑛) 
be as follows: 

 
𝑆𝑃𝐸𝐶𝑃𝑙𝑎𝑛−𝐷𝑟𝑖𝑣𝑒𝑛 =  𝑃𝐴𝑁𝐿  .  𝑃𝑃𝐿   .  𝑃𝐷𝑆𝑁  .  𝑃𝐷𝑉𝐿  .  𝑃𝑇𝑆𝑇    (12) 

where the specifications of sub-processes such as, 
analysis (𝑃𝐴𝑁𝐿), plan (𝑃𝑃𝐿), design (𝑃𝐷𝑆𝑁), development 
(𝑃𝐷𝑉𝐿) and test (𝑃𝑇𝑆𝑇) are abstracted and sequentially 
composed.  

 

 Specification-2: Let a formal specification of an agile 
(iterative and incremental) software process model 
(𝑆𝑃𝐸𝐶𝐴𝑔𝑖𝑙𝑒) be as follows: 

 

𝑆𝑃𝐸𝐶𝐴𝑔𝑖𝑙𝑒 =

         𝑆𝑃𝐸𝐶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−1 .  𝑆𝑃𝐸𝐶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−2 .  𝑆𝑃𝐸𝐶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑛

        (13) 
where the specifications of iterations are 

sequentially composed and each iteration includes the 
sub-processes such as, analysis (𝑃𝐴𝑁𝐿), plan (𝑃𝑃𝐿), design 
(𝑃𝐷𝑆𝑁), development (𝑃𝐷𝑉𝐿) and test (𝑃𝑇𝑆𝑇). 

 

4.1.5.2. Machine learning 
 

Specification-3 (ML process): Let a high-level formal 
specification of an ML process model be as follows: 

 

𝑆𝑃𝐸𝐶𝑀𝐿 =  𝑆𝑃𝐸𝐶𝑅𝑄  .  𝑆𝑃𝐸𝐶𝐷𝑃  .  𝑆𝑃𝐸𝐶𝑀𝐷 .  𝑆𝑃𝐸𝐶𝑀𝐷𝑃𝑀  

        (14) 

where the sub-specifications such as, requirements 
(𝑆𝑃𝐸𝐶𝑅𝑄), data (𝑆𝑃𝐸𝐶𝐷𝑃), model development (𝑆𝑃𝐸𝐶𝑀𝐷), 

model deployment and performance monitoring 
(𝑆𝑃𝐸𝐶𝑀𝐷𝑃𝑀) are abstracted and sequentially composed.  

 

Specification-4: The data sub-process (𝑆𝑃𝐸𝐶𝐷𝑃) 
encapsulates the inner processes: Data acquisition (PDA), 
data processing (PDP), exploratory data analysis (PEDA), 
and feature engineering (PFE) where parallel composition 
and encapsulation operations are applied as follows: 

 

𝑆𝑃𝐸𝐶𝐷𝑃 =  𝜕{𝑃𝐷𝐴,   𝑃𝐷𝑃,   𝑃𝐸𝐷𝐴,   𝑃𝐹𝐸 }(𝑃𝐷𝐴 ∥  𝑃𝐷𝑃 ∥  𝑃𝐸𝐷𝐴 ∥

 𝑃𝐹𝐸 )         (15) 

 

Specification-5: The model development (𝑆𝑃𝐸𝐶𝑀𝐷) 
sub-process encapsulates the inner processes: model 
training (𝑃𝑀𝑇𝑅), model testing (𝑃𝑀𝑇𝑆), and model 
evaluation (𝑃𝑀𝐸𝑉) where sequential composition and 
encapsulation operations are applied as follows: 

 

𝑆𝑃𝐸𝐶𝑀𝐷 =
 𝜕{𝑃𝑀𝑇𝑅,   𝑃𝐷𝑃,   𝑃𝑀𝑇𝑆,   𝑃𝑀𝐸𝑉 } (𝑃𝑀𝑇𝑅   .  𝑃𝑀𝑇𝑆  .  𝑃𝑀𝐸𝑉 )   (16) 

 

Specification-6: The model deployment and 
performance monitoring sub-process (𝑆𝑃𝐸𝐶𝑀𝐷𝑃𝑀) 
encapsulates the model deployment (𝑃𝑀𝐷) and 
performance monitoring (𝑃𝑃𝑀) inner processes where 
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sequential composition and encapsulation operations 
are applied as follows: 

 

𝑆𝑃𝐸𝐶𝑀𝐷𝑃𝑀 =  𝜕{𝑃𝑀𝐷,   𝑃𝑃𝑀,}(𝑃𝑀𝐷  .  𝑃𝑃𝑀  )    (17) 

Specification-7: Let 𝑃𝑃𝑀  be a performance 
monitoring process and XH (high level) and XL (low level) 
are the constants that represent the performance states 
(Xn) of an ML model. The specifications for a continuous 
and recursive 𝑃𝑃𝑀  are as follows:  

 

XH = 𝑃𝑃𝑀  XL and XL = 𝑃𝑃𝑀  XH, are the two equations 
that represent the performance states of a 𝑃𝑃𝑀 , which 
would be at a high or low level.     (18) 

 

𝑆𝑃𝐸𝐶𝑀𝐷𝑃𝑀  ⊲ Xn ⊳ 𝑆𝑃𝐸𝐶𝑀𝐷  which also means that if 
the state of 𝑃𝑃𝑀  is XL then the model development 
processes of  𝑆𝑃𝐸𝐶𝑀𝐷  are revisited, otherwise the 
processes of 𝑆𝑃𝐸𝐶𝑀𝐷𝑃𝑀  are executed.    (19) 

 

4.1.5.3. CRISP-DM 
 

Specification-8: Let a high-level formal specification 
of a CRISP-DM process model be as follows: 

 

𝑆𝑃𝐸𝐶𝐶𝑅𝐼𝑆𝑃 =  𝑆𝑃𝐸𝐶𝐵𝑈  .  𝑆𝑃𝐸𝐶𝐷𝑈  .  𝑆𝑃𝐸𝐶𝑀𝐷𝐷𝑃     (20) 

where the sub-specifications such as, business 
understanding (𝑆𝑃𝐸𝐶𝐵𝑈), data understanding (𝑆𝑃𝐸𝐶𝐷𝑈), 
model development and model deployment (𝑆𝑃𝐸𝐶𝑀𝐷𝐷𝑃) 
are abstracted and sequentially composed.  

 
Specification-9: The model development and model 

deployment specification (𝑆𝑃𝐸𝐶𝑀𝐷𝐷𝑃) encapsulates the 
data preparation (𝑃𝐷𝑃), modeling (𝑃𝑀), evaluation (𝑃𝐸) 
and model deployment (𝑃𝐷𝑃𝐿) inner processes where 
sequential composition and encapsulation operations 
are applied as follows: 

 
𝑆𝑃𝐸𝐶𝑀𝐷𝐷𝑃 =  𝜕{𝑃𝐷𝑃,   𝑃𝑀,   𝑃𝐸 , 𝑃𝐷𝑃𝐿  }(𝑃𝐷𝑃  .  𝑃𝑀  .  𝑃𝐸  . 𝑃𝐷𝑃𝐿 )

      ..(21) 

Specification-10: Let  𝑃𝐸  be an evaluation process, 
and XH (high level) and XL (low level) be the constants 
that represent the performance states (Xn) of an ML 
model of 𝑆𝑃𝐸𝐶𝐶𝑅𝐼𝑆𝑃 . The specifications for a continuous 
and recursive 𝑃𝐷𝑃𝐿 are as follows:  

 

XH = 𝑃𝐷𝑃𝐿 XL and XL = 𝑃𝐷𝑃𝐿 XH, are the two equations 
that represent the performance states of a 𝑃𝐷𝑃𝐿 , which 
would be at a high or low level.     (22) 

 

𝑆𝑃𝐸𝐶𝐵𝑈 ⊲ Xn ⊳ 𝑃𝐷𝑃𝐿; which also means that if the state 
of 𝑃𝐷𝑃𝐿 is XL then the business understanding processes 
of  𝑆𝑃𝐸𝐶𝐵𝑈  are revisited, otherwise the processes 𝑃𝐷𝑃𝐿 is 
conducted.       (23) 

 

4.1.5.4. TDSP 
 

Specification-11: Let a high-level formal 
specification of a TDSP process model be as follows: 

 

𝑆𝑃𝐸𝐶𝑇𝐷𝑆𝑃 =  𝑆𝑃𝐸𝐶𝐵𝐷𝑈  .  𝑆𝑃𝐸𝐶𝑀𝑀𝐷𝑃  .  𝑆𝑃𝐸𝐶𝐶𝐴     (24) 

where the sub-specifications such as, business and 
data understanding (𝑆𝑃𝐸𝐶𝐵𝐷𝑈), modeling and model 

deployment (𝑆𝑃𝐸𝐶𝑀𝑀𝐷𝑃), and customer acceptance 
(𝑆𝑃𝐸𝐶𝐶𝐴) are abstracted and sequentially composed.  

 
Specification-12: The modeling and model 

deployment sub-specification (𝑆𝑃𝐸𝐶𝑀𝐷𝐷𝑃) encapsulates 
the feature engineering (𝑃𝐹𝐸), modeling training (𝑃𝑀𝑇), 
model evaluation (𝑃𝑀𝐸), model deployment (𝑃𝐷𝑃𝐿), and 
performance monitoring (𝑃𝑃𝑀) inner processes where 
sequential composition and encapsulation operations 
are applied as follows: 

 

𝑆𝑃𝐸𝐶𝑀𝑀𝐷𝑃 =
 𝜕{𝑃𝐹𝐸,   𝑃𝑀𝑇,𝑃𝑀𝐸 , 𝑃𝐷𝑃𝐿, 𝑃𝑃𝑀}(𝑃𝐹𝐸   .  𝑃𝑀𝑇  .  𝑃𝑀𝐸  .  𝑃𝐷𝑃𝐿 .  𝑃𝑃𝑀)

        (25) 
 

Specification-13: Let (𝑃𝑃𝑀) be a performance 
monitoring process, and XH (high level) and XL (low level) 
are the constants that represent the performance states 
(Xn) of an ML model of 𝑆𝑃𝐸𝐶𝑇𝐷𝑆𝑃 . The specifications for a 
continuous and recursive (𝑃𝑃𝑀) are as follows:  

 

XH = 𝑃𝑃𝑀  XL and XL = 𝑃𝑃𝑀  XH, are the two equations 
that represent the performance states of a 𝑃𝐷𝑃𝐿 , which 
would be at a high or low level.     (26) 

 

𝑆𝑃𝐸𝐶𝑀𝑀𝐷𝑃  ⊲ Xn ⊳  𝑃𝑃𝑀; which also means that if the 
state of 𝑃𝑃𝑀  is XL then the modeling and model 
deployment processes (𝑆𝑃𝐸𝐶𝑀𝑀𝐷𝑃) are revisited, 
otherwise the processes 𝑃𝑃𝑀  is conducted    (27) 

 

4.1.5.5. Scrum 
 

Specification-14: A sprint execution process (𝑃𝑆𝐸) 
conducts the software processes such as analysis (𝑃𝐴𝑁𝐿), 
plan (𝑃𝑃𝐿), design (𝑃𝐷𝑆𝑁), development (𝑃𝐷𝑉𝐿) and test 
(𝑃𝑇𝑆𝑇) sequentially as follows:. 

 

𝑃𝑆𝐸   = 𝑃𝐴𝑁𝐿  .  𝑃𝑃𝐿  .  𝑃𝐷𝑆𝑁 .  𝑃𝐷𝑉𝐿  .  𝑃𝑇𝑆𝑇     (28) 

 

Specification-15: The Scrum process model 
(𝑆𝑃𝐸𝐶𝑆𝑐𝑟𝑢𝑚) executes the sprint processes iteratively 
and incrementally as follows: 

 

𝑆𝑃𝐸𝐶𝑆𝑐𝑟𝑢𝑚 =
 𝜕{𝑃𝑆𝑝𝑟𝑛𝑡−1,   𝑃𝑆𝑝𝑟𝑖𝑛𝑡−2,… ,… , 𝑃𝑆𝑝𝑟𝑖𝑛𝑡−𝑛  } 𝑃𝑆𝑝𝑟𝑖𝑛𝑡−1 .  𝑃𝑆𝑝𝑟𝑖𝑛𝑡−2, … ,  𝑃𝑆𝑝𝑟𝑖𝑛𝑡−𝑛

        (29) 

where the sequential and encapsulation operations 
are applied to the sprint processes. 

 

Specification-16: Let the Scrum process model 
(𝑆𝑃𝐸𝐶𝑆𝑐𝑟𝑢𝑚) be as follows: 

 
𝑆𝑃𝐸𝐶𝑆𝑐𝑟𝑢𝑚 =

 𝜕{𝑃𝑆𝑃,   𝑃𝑆𝐸,   𝑃𝑆𝑅𝑉 , 𝑃𝑆𝑅𝑇 , 𝑃𝑃𝐺  } 𝑃𝑆𝑃  .  𝑃𝑆𝐸  .  𝑃𝑆𝑅𝑉  .  𝑃𝑆𝑅𝑇  .  𝑃𝑃𝐺

        (30) 

where the sequential and encapsulation operations 
are applied to the Scrum processes such as, sprint 
planning (𝑃𝑆𝑃), sprint execution (𝑃𝑆𝐸), sprint review 
(𝑃𝑆𝑅𝑉), sprint retrospective (𝑃𝑆𝑅𝑇) and product backlog 
grooming (𝑃𝑃𝐺). 
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Specification-17: Let XPB be a constant that 
represents the number of backlog items in a product 
backlog: 

 

𝑃𝑆𝑃  ⊲ XPB ⊳ √ , which means that if XPB > 0 then the 
sprint planning process (𝑃𝑆𝑃) is revisited otherwise the 
Scrum process terminates successfully.    (31) 

 

4.1.5.6. Kanban 
 

Specification-18: A Kanban software process (𝑃𝐾𝑆) 
includes the software processes such as analysis (𝑃𝐴𝑁𝐿), 
design (𝑃𝐷𝑆𝑁), development (𝑃𝐷𝑉𝐿) and test (𝑃𝑇𝑆𝑇) 
iteratively and incrementally: 

 

𝑃𝐾𝑆   = 𝑃𝐴𝑁𝐿  .  𝑃𝐷𝑆𝑁  .  𝑃𝐷𝑉𝐿 .  𝑃𝑇𝑆𝑇      (32) 

 

Specification-19: Let the Kanban process model 
(𝑆𝑃𝐸𝐶𝐾𝑎𝑛𝑏𝑎𝑛) be as follows: 

 

𝑆𝑃𝐸𝐶𝐾𝑎𝑛𝑏𝑎𝑛 =
 𝜕{𝑃𝑃𝐵,   𝑃𝑉𝑊,   𝑃𝐿𝑊 , 𝑃𝑆𝐷 , 𝑃𝑀𝑀  } 𝑃𝑃𝐵  .  𝑃𝑉𝑊 .  𝑃𝐿𝑊 .  𝑃𝑆𝐷 .  𝑃𝑀𝑀

        (33) 

where the sequential and encapsulation operations 
are applied to the Kanban processes such as, build and 
update product backlog (𝑃𝑃𝐵), visualize workflow (𝑃𝑉𝑊), 
limit work-in-process (𝑃𝐿𝑊), select and develop backlog 
item (𝑃𝑆𝐷), measure and manage workflow (𝑃𝑀𝑀). 

 

Specification-20: Let XPB be a constant that 
represents the number of items in a product backlog: 

 

𝑃𝑃𝐵  ⊲ XPB ⊳  √ ; which means that if XPB > 0 then the 
product backlog process (𝑃𝑃𝐵) is revisited otherwise 
Kanban process terminates successfully.    (34) 

 

4.1.5.7. Hybrid methods 
 

Specification-21: Let a high-level formal 
specification of a hybrid process model be as follows: 

 

𝑆𝑃𝐸𝐶𝐻𝑦𝑏𝑟𝑖𝑑 =  𝑆𝑃𝐸𝐶𝑃𝑙𝑎𝑛−𝐷𝑟𝑖𝑣𝑒𝑛  ∥  𝑆𝑃𝐸𝐶𝐴𝑔𝑖𝑙𝑒      (35) 

where the specifications for plan-driven process 
model (𝑆𝑃𝐸𝐶𝑃𝑙𝑎𝑛−𝐷𝑟𝑖𝑣𝑒𝑛) and agile process model 
(𝑆𝑃𝐸𝐶𝐴𝑔𝑖𝑙𝑒) are abstracted and parallel composition is 

applied. 
 

4.2. Phase-2 (DSR Cycle-1) 
 

At this phase, the focus was on creating ME content 
packages related to ML, SE, PM methods, and the 
healthcare domain of BUHA. The primary output of this 
phase is the development of a method base and an ME 
framework. The method parts of selected PM methods 
were created using EPFC. These parts were designed to 
align with the method goals and the characteristic 
requirements of the MLESP. 

 
4.2.1. Step-1 (Establishment of EPFC as a method 

base): 
 

The sub-steps for establishing EPFC and the method 
base include: 

 

 Defining the specific practices, processes, patterns, 
tasks, roles, work products, and guiding elements related 
to ML, 
 Identifying and specifying the practices associated 
with ML, CRISP-DM, TDSP, Scrum, and Kanban, 
 Defining the SE practices, processes, patterns, tasks, 
roles, work products, and guiding elements relevant to 
the SE domain, 
 Identifying and specifying the healthcare and 
diagnostic practices, processes, patterns, tasks, roles, 
work products, and guiding elements specific to the 
healthcare domain, 
 Determining how the method will be decomposed 
into smaller parts, such as fragments, chunks, or 
components. This step involved deciding the granularity 
level at which method parts would be defined, 
 Creating the actual method parts (fragments, chunks, 
or components) within the method base according to the 
specifications provided in the previous steps. 

 

4.2.2. Step-2 (Creating ME content packages for SE, 
ML, PM, and healthcare): 

 

The ME content packages, and corresponding 
artifacts (screenshots and tables) are given in the 
appendices section of the paper, which are represented 
by figures and tables (See appendices). 

 

4.3. Phase-3 (DSR Cycle-2) 
 

4.3.1. Step-1 (Identification of PA specifications 
related to the method goals): 

 

It is important to remind that at Phase-1, PA 
specifications and the PM method goals provided not 
only the formal and rigorous foundation but also the 
acceptance and validation criteria for the tailored PM 
method. Table 4 presents the PA specifications (goals, 
related method, equations and terms) that are directly 
related to the method goals, which are also specified in 
the previous sections. Note that the textual descriptions 
of the method parts and components are retrieved from 
the PA specifications of available PM methods. 

 

4.3.2. Step-2 (Transforming textual descriptions to 
corresponding method components) 

 

The textual descriptions retrieved from the PA 
specifications PM method are transformed to the 
corresponding ME components (principles, roles, tasks 
and products) of agile and plan-driven PM approaches as 
shown in Table 5. 

 

The PA specifications in Table 4 and the 
corresponding ME components given in Table 5 led to the 
design and implementing of a hybrid PM method. As 
indicated below, the PA implementations of the plan-
driven process model (𝐼𝑀𝑃𝑃𝑙𝑎𝑛−𝐷𝑟𝑖𝑣𝑒𝑛) and agile process 
model (𝐼𝑀𝑃𝐴𝑔𝑖𝑙𝑒) are abstracted and the parallel 

composition operation is applied as follows: 
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𝐼𝑀𝑃𝐻𝑦𝑏𝑟𝑖𝑑 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑀𝑜𝑑𝑒𝑙 =  𝐼𝑀𝑃𝑃𝑙𝑎𝑛−𝐷𝑟𝑖𝑣𝑒𝑛  ∥   𝐼𝑀𝑃𝐴𝑔𝑖𝑙𝑒    

(30) 

 
which means that the plan-driven requirements 

approach, and the customized agile practices are 
integrated to form a hybrid process model for ML PM. 
Therefore, the requirements process of ML (RQ), the data 
processes of CRISP-DM (Business understanding (BU), 
data acquisition and understanding (DU)), and TDSP 

(Business and data understanding (BDU), and feature 
engineering (FE)) allow implementing the Phase-1 as a 
plan-driven phase as formulated below: 

 
 

𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−1 (𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝑃𝑙𝑎𝑛−𝑑𝑟𝑖𝑣𝑒𝑛)) =

 𝜕{𝑃𝑅𝑄,   𝑃𝐵𝑈,   𝑃𝐷𝑈 , 𝑃𝐵𝐷𝑈 . 𝑃𝐹𝐸}(𝑃𝑅𝑄   .  𝑃𝐵𝑈  .  𝑃𝐷𝑈  .  𝑃𝐵𝐷𝑈  .  𝑃𝐹𝐸 ) 

        (37) 

Table 4. Identification of PA specifications related to the method goals. 

Method 
goal 

Related 
PM 
method 

Equation 
number 

Related PA specifications of available PM 
methods 

Textual descriptions retrieved 
from the PA specifications 

MG-2 

ML (14) 
𝑆𝑃𝐸𝐶𝑀𝐿

=  𝑆𝑃𝐸𝐶𝑅𝑄 .   𝑆𝑃𝐸𝐶𝐷𝑃 .  𝑆𝑃𝐸𝐶𝑀𝐷 .  𝑆𝑃𝐸𝐶𝑀𝐷𝑃𝑀 

Requirements (RQ), data (DP), 
model development (MD), model 
deployment, and performance 
monitoring (MDPM) 

ML (15) 
𝑆𝑃𝐸𝐶𝐷𝑃 =  𝜕{𝑃𝐷𝐴,   𝑃𝐷𝑃,   𝑃𝐸𝐷𝐴,   𝑃𝐹𝐸 }(𝑃𝐷𝐴 ∥  𝑃𝐷𝑃 ∥

 𝑃𝐸𝐷𝐴 ∥  𝑃𝐹𝐸 )  

Data acquisition (PDA), data 
processing (PDP), exploratory data 
analysis (PEDA), and feature 
engineering (PFE) 

Plan-
Driven 

(12) 𝑆𝑃𝐸𝐶𝑃𝑙𝑎𝑛−𝐷𝑟𝑖𝑣𝑒𝑛 =  𝑃𝐴𝑁𝐿 .  𝑃𝑃𝐿  .  𝑃𝐷𝑆𝑁 … 
Analysis (ANL), planning (PL), 
design (DSN) 

CRISP-
DM 

(20) 𝑆𝑃𝐸𝐶𝐶𝑅𝐼𝑆𝑃 = 𝑆𝑃𝐸𝐶𝐵𝑈 .  𝑆𝑃𝐸𝐶𝐷𝑈 … 
Business understanding (BU), data 
acquisition and understanding (DU) 

TDSP (24) 𝑆𝑃𝐸𝐶𝑇𝐷𝑆𝑃 =  𝑆𝑃𝐸𝐶𝐵𝐷𝑈 …  
Business and data understanding 
(BDU)  

MG-3 Agile (13) 𝑆𝑃𝐸𝐶𝐴𝑔𝑖𝑙𝑒 =  𝑆𝑃𝐸𝐶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−1 .  𝑆𝑃𝐸𝐶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑛 
Iterative and incremental 
development (Iteration-1/n) 

MG-3/6 Scrum (29) 𝑆𝑃𝐸𝐶𝑆𝑐𝑟𝑢𝑚 =  𝑃𝑆𝑝𝑟𝑖𝑛𝑡−1 …  𝑃𝑆𝑝𝑟𝑖𝑛𝑡−𝑛  
Iterative and incremental 
development (Sprint- 1/n) 

MG-4/7 Kanban (33) 𝑆𝑃𝐸𝐶𝐾𝑎𝑛𝑏𝑎𝑛 =   𝑃𝑃𝐵 .  𝑃𝑉𝑊 .  𝑃𝐿𝑊 .  𝑃𝑆𝐷 .  𝑃𝑀𝑀 
Quick feedback loop and work-in-
progress limit (Kanban principles) 

MG-
2/3/4 

Hybrid (35) 𝑆𝑃𝐸𝐶𝐻𝑦𝑏𝑟𝑖𝑑 =  𝑆𝑃𝐸𝐶𝑃𝑙𝑎𝑛−𝑑𝑟𝑖𝑣𝑒𝑛  ∥  𝑆𝑃𝐸𝐶𝐴𝑔𝑖𝑙𝑒 
Combination of plan-driven and 
agile process models 

Table 5.  Agile and plan-driven method components (principles, roles, and products) pertaining to the goals of the 
new PM method. 

CRISP-DM (Plan-Driven) TDSP (Plan-Driven) Scrum (Agile) Kanban (Agile) 

Principles 

- - Scrum principles Kanban principles 

Roles 

- Project Manager, Data 
Scientist, Data Engineer, 
Application Developer 

Product Owner, Scrum Team  

Tasks 

Business understanding, data 
preparation 

Data acquisition and 
understanding, feature 
engineering 

Sprint activities  

Products 

Data reports (description, 
exploration, quality, cleaning), 
deployment, monitoring and 
maintenance plans, final report 

Charter document, data 
dictionary 

Product backlog, release plan, 
sprint burndown and release 
burndown charts 

Kanban task board, 
visualized workflow 
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where the sequential composition and 
encapsulation operations are applied to the processes of 
Phase-1 such as, 𝑃𝑅𝑄 , 𝑃𝐵𝑈 , 𝑃𝐷𝑈 , 𝑃𝐵𝐷𝑈  and 𝑃𝐹𝐸  . 

 
𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−2 (𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 (𝐴𝑔𝑖𝑙𝑒)) =

 𝜕{ 𝐼𝑀𝑃𝑆𝑐𝑟𝑢𝑚 , ( 𝐼𝑀𝑃𝐶𝑅𝐼𝑆𝑃−𝐷𝑀 ∥  𝐼𝑀𝑃𝑆𝐸 )}(𝐼𝑀𝑃𝑆𝑐𝑟𝑢𝑚   . ( 𝐼𝑀𝑃𝐶𝑅𝐼𝑆𝑃−𝐷𝑀  ∥

 𝐼𝑀𝑃𝑆𝐸 ))        (38) 

where the sequential and parallel composition and 
encapsulation operations are applied to the processes of 
Phase-2. Scrum encapsulates the ML modeling processes 
(model training, model testing, and model evaluation), 
the data processes of CRISP-DM and the SE practices 
(software analysis, software design, software 
development, and software testing). 

 
𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−3 (𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ) =

 𝜕{𝑃𝐷𝐷𝑃,   𝑃𝑃𝑀,}(𝑃𝐷𝑃𝐿  .  𝑃𝑃𝑀  )     (39) 

where 𝑃𝐷𝑃𝐿 is a deployment and delivery process 
and 𝑃𝑃𝑀  is a performance monitoring process. XH (high 
level) and XL (low level) are the constants that represent 
the performance states (Xn) of a deployed ML model.  

 
XH = 𝑃𝑃𝑀  XL and XL = 𝑃𝑃𝑀  XH, are the two equations 

that represent the performance states of a 𝑃𝑃𝑀 , which 
would be at a high or low level. 𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−2 ⊲ Xn ⊳ 
𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−3 , which means that if the state of 𝑃𝑃𝑀  is XL then 
𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−2 is revisited, otherwise 𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−3  is 
executed       (40) 

 
𝐼𝑀𝑃𝑃ℎ𝑎𝑠𝑒−4 (𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ) =

 𝜕{𝑃𝑆𝑀𝑂 ∥   𝑃𝑆𝑀𝐴,}(𝑃𝑆𝑀𝑂  ∥  𝑃𝑆𝑀𝐴  )     (41) 

 
which means that Phase-4 encapsulates the 

software monitoring process (𝑃𝑆𝑀𝑂) and software 

maintenance process ( 𝑃𝑆𝑀𝐴  ) where the parallel 

composition operation is applied. It is possible to state 
that the method goals, PA specifications, the BUHA 
stakeholder concerns and the domain-specific 
requirements (PM, ML, SE, healthcare) can rationalize 
the adoption of a hybrid PM approach. Table 6 presents 
the textual definitions of the phases and processes of the 
proposed hybrid PM method. 

 

4.3.3. Step-3 (Composition of a New Phased-based 
PM Method): 

 

The agile and plan-driven method components in 
Table 5 are composed to form a phase-based PM process 
model as given in Table 6. 

 

As can be seen from Table 6 and Figure 10, the hybrid 
PM method consists of four phases: Phase-1 
(Requirements Engineering Phase (REP)), Phase-2 
(Development Phase (DP)), Phase-3 (Deployment and 
Delivery Phase (DDP)), and Phase-4 (Continuous 
Monitoring and Maintenance Phase (CMMP)). 

 

The REP phase is plan-driven, the DP and DDP phases 
are agile, and the MMP phase is continuous. Some of the 
tasks of CRISP-DM and Scrum are customized for the ML 
processes. For example, the activities and tasks of a 
Scrum sprint are not time-boxed. Thus, the model 
training and evaluation tasks of CRISP-DM are iterated in 
the sprints according to the results of the ML 
experimentation processes (model training, test, and 
evaluation). Both agile and Kanban principles guide the 
project life cycle. The method base and the screen shot of 
the hybrid PM method for MLESP is given in Appendices 
(Figure A.6). 

 

Figure 10. The process model for the new PM method. 
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4.3.4. Step-4 (Validation of the New PM Method): 
 
The new hybrid PM method is both an "ideal-typical 

method” and a "situational method". As such, its process 
model provides a foundational understanding of how the 
development of an MLESP should ideally proceed. 
Therefore, the scope and limitations confined us validate 
the requirements processes (phase 1) of the new PM 
method. The use case-based scenario analysis technique 
was employed for checking the consistencies with the 
requirements and the ME components as the PM tasks, 
roles and responsibilities. The specified requirements 
were also evaluated for correctness and completeness. 

 
4.3.4.1. Scenario 

 

The main stakeholders and users are the 
administration, IT staff, medical staff (doctors, 
physicians, nurses, medical assistants, etc.), ML 
engineers, and patients. BUHA administration, with its 
financial viewpoint, aims to improve volume-based care 
and profitability by increasing the number of patients. 
From a medical viewpoint, doctors and medical 
assistants focus on enhancing diagnosis processes and 
accuracy. By holding a technical viewpoint, IT managers 
and staff prioritize the quality and availability of medical 
and IT operations, including the HEIS. While ML 
engineers share some technical concerns with IT staff, 
their primary focus is on ML processes, i.e. data quality 
and availability, data processing, and modeling 
processes. Finally, the patients are concerned with 
diagnostic accuracy and the quality of healthcare 
services. 

 

4.3.4.2. Use Case 
 

Although used interchangeably, use cases and use 
case diagrams are different. Use case diagrams provide a 
high-level, visual overview of requirements. On the other 
hand, use cases are narrative descriptions documenting 
user-system interactions and system requirements from 
an external perspective. They are relatively easy to write, 
read, and understand compared to other tools. A use case 
is defined as a series of interactions between external 
users/actors and the system in question, simply detailing 
“who (user/actor) does what (interaction) with the 
system, for what purpose (goal)”. The use case 
descriptions to validate ML-enabled illness and disease 
diagnosis are given in Table 7. 

 
Figure 11 presents the use case diagram for illness 

and disease diagnosis. The “illness and disease diagnosis” 
boundary isolates external actors from internal use 
cases. The doctor, patient, and medical assistant are 
concrete actors, while staff is an abstract actor enabling 
inheritance. The doctor is a direct actor who uses the 
system and requests the ML service, while the patient is 
an indirect actor providing necessary diagnostic 
information and a primary actor in the “patient 
admission” use case. Medical staff, the appointment 
office, and the ML service are secondary actors who 
provide assistance. The “performing diagnosis” use case 
includes “physical examination,” “reviewing clinical 
history,” “diagnostic testing,” and “consulting with other 
clinicians.” The “machine learning process” use case 
extends the “performing diagnosis” use case as a special 
form of it. 

 
 
 

Table 6. Phases of the proposed hybrid PM method. 

CRISP-DM 
(Customized) 

TDSP (Customized) Scrum (Customized) Software Engineering 

Phase-1: Requirements Engineering (REP) (Plan-Driven) 

Business understanding 
Data acquisition & 
understanding 

Product backlog and 
prioritizing 

Software requirements 

Data preparation Feature engineering Release planning  

Phase-2: Development (DP) (Agile) 

Model training  Sprint planning Software analysis 

Model testing  Sprint execution Software design 

Model evaluation  
Sprint review and sprint 
retrospective 

Software development 

   Software testing 

Phase-3: Deployment and Delivery (DDP) (Agile) 

Model deployment Deployment  Software integration 

   Software deployment 

Phase-4: Monitoring and Maintenance (MMP) (Continuous) 

   Software monitoring 

   Software maintenance 
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Table 7.  The use case to validate ML-enabled illness and disease diagnosis. 

Identification: UC-1: Illness and disease diagnosis by using an ML service. 

Goal: To improve the diagnosis process and its accuracy through an ML service. 

Description: The purpose of this use case is to describe the actors, functionalities, scenarios, elements, and conditions that are 
required for ML-driven illness and disease diagnosis. 

Actors: Medical staff (abstract), doctor (concrete, primary), physician (concrete, primary), medical assistant (concrete, 
secondary), patient (concrete, secondary), appointment office (concrete, secondary), ML service (concrete, secondary). 

Functionalities: The functionalities for illness and disease diagnosis when using ML service. 

Main scenario:  
Step-1: Patient admission, 
Step-2: Reviewing clinical history, 
Step-3: Physical examination, 
Step-4: Diagnostic testing, 
Step-5: Consulting with other clinicians, if necessary, 
Step-6: Requesting ML service for illness and disease diagnosis, 
Step-7: Completing illness and disease diagnosis. 

Pre-conditions: The patient is admitted; the ML service is running. 

Post-conditions: The illness and disease diagnosis processes are completed. 

Alternative scenarios: Conducting traditional diagnostic processes. 

Exceptions: 
Exception-1: The ML service is not working. 
Handling-1:  Conduct the traditional diagnostic processes. 
Exception-2: The doctor’s and the ML service’s diagnoses do not correlate. 
Handling-2: (a) Consult with other clinicians if necessary, and (b) perform individual decision-making. 

Metrics: The accuracy level of the ML service. 

Relationships: It has relationships with the use cases for manual or automated ML processes. 

Additional knowledge: An application programming interface (API) is needed for integrating the ML application into the current 
HEIS. 

Figure 11. The use case diagram for illness and disease diagnosis. 
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Figure 12 presents the use case diagram for the ML 
process. The ML engineer is a direct, concrete, and 
primary actor in the “manual ML process” use case but 
serves as a secondary actor when monitoring the 
“automated ML pipeline process.” Both the “manual ML 
process” and “automated ML pipeline process” use cases 
extend the main “ML process” use case. This use case 
includes the “data extraction,” “data analysis,” “data 
preparation,” “model training,” “model evaluation,” 
“model validation,” and “model deployment” use cases. 

 

 
5. Discussion 

 

5.1. Why adopting a method base and ME approach 
for tailoring PM methods? 
 

It's widely recognized that the actual 
implementation of a method in real projects often 
deviates from the ideal process models outlined in 
manuals [11]. The contemporary PM environments, 
offering both cloud and self-managed deployment 
options, focus on version control, software development, 
task management, and issue tracking. In this study, the 
proposed ME framework for ML can offer an intellectual 
knowledge base that encompasses a wide range of 
contents, including method practices, templates, 
descriptions, guidelines, and documents [5]. This 
knowledge base serves as the foundation for knowledge 
management, reference, and training. Additionally, it 
functions as a web-based content management system, 
enabling knowledge sharing to enhance PM processes. As 
previously discussed, team members may also encounter 
challenges in workflow management during a project 
[12, 21]. Therefore, the proposed framework addresses 
this by allowing the presentation of ME elements in 
various display formats. Furthermore, The ME 
framework facilitates the organization of PM processes 
not only in the workflow format but also in a work 
breakdown structure (Appendix 2). 

 

Developing an in-house method for PM can require 
a sense of ownership within an organization and teams. 

However, this approach can come with its own set of 
challenges, including knowledge management training 
[49], and adapting PM methods to suit specific contextual 
factors. A review of the literature reveals two primary 
approaches to method tailoring: The Contingency Factor 
Approach (CFA) and the Method Engineering Approach 
(MEA) [13, 50]. The CFA operates on the assumption that 
tailoring is necessary regardless of the selected PM 
method. It argues that various context features or factors 
(project team, internal and external environments, prior 
knowledge, etc.) play a pivotal role in determining the 

tailoring process. However, the CFA faces key challenges: 
(a) The team bears the primary responsibility for the 
tailoring process; (b) tailoring often occurs in an ad hoc 
manner; and (c) there is a lack of standardization and 
integrated platforms for tailoring. As a result, the MEA 
has emerged as the preferred approach in the majority of 
research studies, getting 69.7% preference, offering a 
structured and systematic approach to method tailoring, 
and thus, addressing the shortcomings associated with 
the CFA [50]. 

 

Establishment of a shared understanding among 
team members is essential. In the domain of software 
development, it's common practice for developers to 
require access to various sources or versions of the same 
project product and information. However, software 
development organizations and teams often lack formal 
mechanisms for in-house training and educating 
themselves on development PM processes and 
standards. Instead, they often tend to rely on ad hoc 
approaches to PM, formed by their past experiences and 
tacit knowledge. Functioning as an ME framework, the 
proposed PM framework can provide guidance, reusable 
templates, process patterns required for designing and 
developing tailored PM models, specifically for ML 
projects. The incorporation of the SPEM 2.0 meta-model 
specification within EPFC offers a critical advantage, 
which enables the separation of method content from 
development processes, while facilitating the formal 
descriptions of ME elements [33-35]. Consequently, 
these capabilities can contribute to the design and 

Figure 12. The use case diagram ML process. 
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development of customized PM lifecycle models that can 
be ideally suited for ML projects. 

 

By combining the strengths of both ME, agile, and 
plan-driven PM approaches, the proposed ME 
framework aims to provide a toolkit that enables 
informed decision-making on project outcomes. It is 
evident that as the landscape of PM continues to evolve, 
a flexible and hybrid approach, such as the one proposed 
in this paper, may be well-suited to meet the challenges 
of today's dynamic and diverse ML PM environments. 
While this study addresses these challenges and 
requirements of ML, SE, and healthcare domains, it 
would also align with the findings of other studies that 
highlight the plan-driven, agile, and exploratory nature of 
ML projects. Therefore, the method base and the ME 
framework can bridge the gap between these domains 
and contribute to the practical adoption and 
implementation of various PM approaches. 

 
5.2. Why a hybrid PM method? 

 

This study also highlights the evolving nature of 
software development methods and the need for a 
holistic approach that considers a range of factors as well 
as methods and practices for ML-driven software 
applications. The arguments related to the adoption of a 
hybrid PM approach align with those of other studies 
[30], such as reinforcing the importance of considering 
the plan-driven, iterative, and exploratory nature of ML 
projects. Traditional methods, such as the plan-driven 
(waterfall) stress structure and predictability. In 
contrast, agile approaches focus on adaptability and 
flexibility. Agile PM methods, which gained popularity for 
their adaptability and responsiveness, may not be a one-
size-fits-all solution, particularly requiring a significant 
level of uncertainty and regulatory constraints as for ML 
and healthcare domain. Recognizing the limitations and 
strengths of each approach, the proposed hybrid PM 
method can emerge as an alternative PM method. It can 
ensure compliance with regulatory frameworks, which is 
critical for healthcare and finance. It also integrates agile 
risk management approaches with traditional risk 
assessment and mitigation strategies and thus enhances 
the project's ability to identify and respond to risks 
effectively. 

 

One of our observations is that neither PM methods 
nor SE practices may explicitly assure or impede agility. 
SE practices can have a substantial impact on the degree 
of agility [47]. This may reinforce the idea that agile 
principles may be rooted in SE practices, such as 
continuous integration, automated testing, and iterative 
and incremental development. This aligns with our 
argument for combining different methods to achieve 
agility while recognizing that no single method or 
practice can guarantee agility and project success.  

 

It is argued that some known PM models like CRISP-
DM and TDSP can face challenges in meeting the domain-
specific requirements of SE, ML, and healthcare 
simultaneously. Therefore, we emphasize the 
importance of tailoring PM approaches to specific 
contexts and requirements. This also aligns with the 

broader industry trend of adapting methodologies to suit 
the unique characteristics of projects. Tailoring process 
models is a pragmatic response to the changing demands 
of these domains. Our argument is also verified by 
Haakman et al.'s [51] case study, which identified gaps in 
current lifecycle models when developing AI-based 
systems.  

 

Ramasamy et al.'s [52] study also underlines the 
iterative and exploratory nature of ML projects, a 
fundamental characteristic shared by many ML projects. 
The hybrid PM method, with its agile and iterative 
characteristics, can be well-suited to managing projects 
with such characteristics. Additionally, our proposed ME 
framework can enable the seamless integration of ML 
workflow management and environments into SE 
processes. This concept aligns with Lwakatare et al.'s 
[16] suggestions, which emphasize the need for 
effectively integrating ML workflows into SE 
environments [53]. As a result, the proposed PM method 
in this study can address this integration challenge, 
contributing to the efficiency and effectiveness of 
workflow management in ML projects within SE 
contexts.  

 
The argument for a hybrid PM also finds strong 

support in different domains and applications. For 
example, [54] underscores the effectiveness of 
combining base and meta-learners in hybrid systems, 
demonstrating the advantages of integrating diverse 
methods for robust and reliable outcomes. Similarly, [55] 
proposes a predictive ML framework for healthcare, 
pointing out the importance of structured PM 
approaches to ensure the successful implementation and 
deployment of models in critical sectors. [56] further 
underscores the complexities of managing imbalanced 
datasets in ML for fraud detection, indicating the 
necessity of adaptable strategies that can address 
technical and operational challenges. From a software 
engineering perspective, [57] argues for tailored 
methods to ensure the successful execution of ML 
projects. [58] emphasizes the growing role of ML in 
healthcare and the need for frameworks that align 
technological solutions with sector-specific standards. 
[59] explores ML-based diagnostic systems, underlining 
the importance of structured approaches to manage 
technical, ethical, and operational dimensions. [60] 
adopts a formal approach and refers to the importance of 
algebra. Additionally, the Internet of Things (IoT) is one 
of the application domains where ML PM requires the 
adoption of hybrid PM methods, as the convergence of 
IoT and ML introduces complex data flows, real-time 
processing demands, and integration challenges [61, 62]. 
Collectively, these studies reinforce the argument that 
adopting a hybrid PM approach can provide the 
necessary flexibility and structure to manage the 
dynamic and complex nature of ML projects across 
various domains. 

 
6. Validity and Reliability 

 

In terms of construct validity, we based our design 
research on foundational theories and models of ME, PM, 
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ML, PA, and SE. By aligning research constructs with 
existing literature, theory-guided interventions ensured 
that our designs and developed artifacts were 
theoretically sound. We followed a well-defined 
structured and iterative process in each DSR cycle, 
including the identification of issues and the application 
of ME techniques. This structured approach was to 
minimize the risk of confounding effects of design actions 
for the artifacts. In terms of internal validity, the 
participation, intervention, and interpretation of the 
researcher and stakeholders may lead to subjectivity, 
which may be regarded as one of the criticized attributes 
of DSR. Therefore, PA was employed to decrease this 
subjectivity and increase the internal validity. The active 
involvement of the researcher in DSR cycle helped 
validate and ensure that the changes to the artifacts were 
attributed to the interventions made. However, the 
researcher played a dominant participant role and 
guided the study and there were potential biases. 
Therefore, the employment of formal methods, visual 
and textual representation techniques helped address 
these internal validity concerns. 

 
7. Limitations 

 

As discussed previously, the hybrid PM method 
proposed in this study is both an "ideal-typical method” 
and a "situational method". It is worth underlining the 
fact that real-world projects require the adaptation of the 
ideal method to suit the specific situation. However, 
conducting empirical research to assess the effectiveness 
and adaptability of a PM method (method-in-action) is a 
resource-intensive endeavor that can span extended 
periods. While this study successfully laid the conceptual 
and rigorous foundations for the method base, the ME 
framework and the hybrid PM method, yet there is a need 
for practical validation through real-world case studies, 
especially in contexts that converge ML, SE, and other 
domains. The effort, informed by longitudinal and well-
designed case studies and industry collaboration, will 
enhance our understanding of how our framework and 
hybrid PM method can perform and adapt in dynamic 
and multifaceted project environments. 

 
The method-in-action limitation can be addressed 

by adding Statistical Thinking (ST) and quality-related 
tools into the mixed approach for ML PM [63]. ST’s focus 
on understanding variation and process improvement 
can align well with managing complex ML processes. This 
addition can also enable teams to detect, assess, and 
reduce inconsistencies in each step of an ML project. 
Thus, this integration would promote proactive 
adjustments and risk mitigation, enhancing reliability 
and consistency in ML and SE projects, especially in 
mission-critical domains like healthcare [64]. 

 
8. Conclusions and Future Directions 

 

In this paper, the outputs of a research study are 
presented that try to bridge the critical gaps in PM when 
dealing with the complicated relationships of ML, SE, and 
healthcare domains. We aim to provide a comprehensive 
solution that could harmonize the unique requirements 

of each domain while accommodating the dynamic and 
changing nature of the projects for MLESP. Through a 
meticulous process of DSR, ME, and PA, we formulate a 
hybrid PM method, method base and an ME framework. 
This approach embraces different knowledge domains as 
an opportunity for innovation in PM for ML. We believe 
that this study represents a promising and initial effort to 
integrate and enhance the SE and PM processes for ML 
applications within various domains. 

 

It is also important to note some research directions 
for future studies as follows: 
 Customization for diverse domains: ML projects span 
a wide spectrum of domains, from healthcare to finance. 
Future research should focus on tailoring the PM 
framework to suit specific domain requirements and 
challenges, ensuring its applicability across various 
sectors. 
 Comparative studies: Comparative studies that 
evaluate the hybrid PM method and the ME framework 
against other tailoring methods and approaches can 
provide valuable insights into its strengths and 
weaknesses, and they can inform further refinements.  
 Continuous improvement: While comprising the 
principles of agile methods, the hybrid PM method 
should continuously evolve and adapt. Regular updates 
and improvements should be based on feedback from 
practitioners and insights from ongoing research. 
 Tooling and automation: The development of 
supporting tools and platforms that automate various 
aspects of the ME and PM framework, and the hybrid PM 
method can enhance its usability. Investigating the 
feasibility of such tools and their integration into the ML 
process can be an important future direction. 
 Education and training: Preparing project managers 
and teams for the challenges of complex projects is 
essential. Future research can explore the development 
of training programs and educational materials that align 
with the principles of the proposed ME framework and 
the hybrid PM method. 

 

 In conclusion, ML, PM, ME, and PA knowledge 
domains are integrated to tackle the evolving challenges 
of complex and data-driven ML projects. Our intention to 
engineer a robust and adaptable PM method for ML led 
us to develop an ME framework for PM rooted in ME 
principles and environments. This framework integrates 
the complexities of ML with well-known PM methods and 
SE practices. It also provides a structured yet flexible 
approach to address the complexities of data-driven 
projects. Therefore, this study has the potential to 
contribute not only to ML PM and BUHA but also to 
advancing process management within mission and 
safety-critical domains like healthcare. By addressing 
current limitations and accommodating the needs of the 
proposed solution, we intend to inspire researchers and 
practitioners with an effective toolset for a successful PM. 
The future holds research prospects for the application 
of this approach to ML PM in diverse contexts. 
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Table A.1. ME elements of ML 

# List of Tasks List of Roles List of Work Products 

1 Problem definition ML project manager ML training data  

2 Data acquisition ML engineer ML test data 

3 Data processing Data engineer ML training model 

4 Feature engineering Data scientist ML pipeline 

5 Exploratory data analysis  ML deployed model 

6 Model training and testing   

7 Model evaluation and validation   

8 Model deployment   

9 Performance monitoring   

Table A.2.  ME elements of CRISP-DM 

# List of Tasks List of Roles List of Work Products 

1 Business understanding Not defined Project plan 

2 Data understanding - Data description report, data exploration report 

3 Data preparation - Data quality report, data cleaning report 

4 Modeling - Learning model, test plan 

5 Evaluation - Deployment plan 

6 Deployment - Monitoring and maintenance plan 

7 - - Final report 

Table A.3.  ME elements of TDSP 

# List of Tasks List of Roles List of Work Products 

1 Business understanding Project manager Charter document 

2 Data acquisition and understanding Project lead Data dictionary 

3 ML modeling   

3.1 Feature engineering Solution architect Data quality report 

3.2 Model training Data scientist ML Pipeline  

3.3 Model evaluation Data engineer Solution architecture 

4 ML deployment Application developer Exit report 

Table A.4.  ME elements of Scrum 

# List of Tasks List of Roles List of Work Products 

1 Product backlog and prioritizing Product owner Product backlog 

2 Release planning Scrum master Sprint backlog 

3 Sprint planning Scrum team Task board 

4 Sprint execution  Sprint burndown chart 

5 Daily scrum  Potentially shippable product increment 
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6 Sprint review  Release burndown chart 

7 Sprint retrospective   

Table A.5. ME elements of Kanban 

# List of Tasks List of Roles List of Work Products 

1 Standard software development 
processes 

Defined if required Kanban task board 

# Kanban Principles 

1 Visualize 

2 Limit work in process 

3 Manage flow 

4 Make process policies explicit 

5 Implement feedback loops 

6 Improve collaboratively and evolve experimentally 

Figure A.1. ME elements of ML in method base. 
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Figure A.2. ME elements of CRISP-DM in method base. 

Figure A.3. ME elements of TDSP in method base. 
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Figure A.4. ME elements of Scrum in method base. 

Figure A.5 ME elements of Kanban in method base. 
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