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Analytical results for a linear hardening elasto-plastic spring
investigated via a hemivariational formulation

Dedicated to Professor Paolo Emilio Ricci, on occasion of his 80th birthday, with respect and friendship.

LUCA PLACIDI*, ANIL MISRA, ABDOU KANDALAFT, MOHAMMAD MAHDI NAYEBAN,
AND NURETTIN YILMAZ

ABSTRACT. We investigate the linear hardening phenomena with a method that is not standard in the literature,
i.e. with a hemivariational method. As a result, we do not introduce any flow rules, and the number of assumptions
is reduced to the generalized variational principle with proper definition of a new set of kinematic descriptors and,
as a function of them, with a new definition of the energy functional. The variational framework guarantees the
rationality of the deduction. Analytical derivation of the force displacement hysteretic loop is also derived and, finally,
the dissipation energy is furnished with respect to either the final value of the dissipation energy potential or the
corresponding area of the hysteretic loop.
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1. INTRODUCTION

Linear hardening behavior of a class of materials is well-known in the literature [7, 21], and
the methods for its study are also explored in many aspects [74, 75]. However, we will exam-
ine the possibility of a new approach with some advantages. The first is that the number of
assumptions is reduced, and the second is that analytical solutions [18, 78] are derived with
no use of flow rules. We need to say that elastic models can be derived in different ways,
i.e. by assuming the balance of forces, of moments and therefore of the corresponding Par-
tial Differential Equations (PDEs) and Boundary Conditions (BCs) as first principles or by as-
suming an energetic approach, where the assumptions are based on an action principle, and
the PDEs and BCs are derived as a consequence of these first assumptions [8, 27, 23, 36, 32].
In standard continuum elastic models, fundamental problems arise, see e.g. [19, 49, 50], as
well as the necessity of higher order gradient generalization [4, 35, 1] also for the dynamic
case [33, 57]. These kinds of generalizations are particularly important for materials with
microstructures, made e.g. with additive manufacturing techniques [10, 11, 12], for fiber-
reinforced composites [13, 29, 46, 52, 51, 69], for composite structure [34], and for biological
applications [43, 44, 76, 61, 2]. Thus, variational approaches have been developed also for mi-
crostructural materials [26, 28]. Also thermomechanical problems [53, 56, 70, 72] can be used
via a purely variational procedure [40]. Besides, the use of 3D printers has improved the inves-
tigation of metamaterials, made with a microstructure that can be designed, as pantographic
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materials [15, 24, 25, 31, 80], where higher order gradient is essential for the modelling. Higher
order gradient elastic theories are therefore suitable for those materials with microstructure.
However, the number of constitutive parameters of a general higher order gradient theory is
so large that the problem of their identification is an open one, and deserves specific techniques
[38, 37]. In order to avoid the identification of a large number of parameters, one can use the
same strategy of Cauchy and Navier [14, 62] for homogeneous linear and isotropic materials
aimed to solve the elastic granular micromechanic problem [9] for anisotropic [30] and gener-
alized continuous [45, 47, 64, 63, 81, 82]. Granular micromechanic is ideal for concrete [16, 17]
and for any materials with a strengthening microstructure [20] with the necessity to model the
bond behavior [48]. Variational principles for elastic materials are therefore standard. For the
dissipative case, e.g. for the viscoelastic case [41, 42, 54], the variational strategy must be gen-
eralized [71, 5, 65]. For damage [83, 77, 79] and plasticity [3] such a strategy is also different.
Variational approaches in plasticity are not new [39, 22, 55]. The aim of this work is to use
a hemivariational procedure, conceived for granular micromechanics [59, 58, 60, 66, 67], for a
one degree of freedom problem with linear hardening behavior. Such a one degree of freedom
model can be used into two ways to construct a continuum model with the same linear harden-
ing behavior. The first is to build a discrete mode and use standard homogenization technique
[68, 73]. The second is to use granular micromechanics [66]. As an outlook of this work, we
will consider the fatigue problem [6].

2. FORMULATION OF THE PROBLEM

2.1. Definition of the Action functional and plastic kinematic descriptors. The action A

(2.1) A =

tfi∫
tin

{
U +W − Uext

}
dt

is a functional of the fundamental kinematical quantities u, λt, and λc, i.e. of the functions, û,
λ̂t and λ̂c,

(2.2) A = A
(
û, λ̂t, λ̂c

)
.

û, λ̂t, and λ̂c are all functions of time t (where tin is the initial time and tfi is the final time),

(2.3) u = û (t) , λt = λ̂t (t) , λc = λ̂c (t) , ∀t ∈ [tin, tfi] ,

and called, respectively, the displacement and plastic multipliers in tension and compression.
The plastic multipliers are also called, respectively, the tension and the compression plastic dis-
placement accumulations. The reason for these names is as follows. The elastic displacement
uel

(2.4) uel = u− upl,

is defined as the difference between the total displacement u and the plastic displacement upl,
that is defined as the difference between the tension and compression plastic accumulations,
i.e. between the two plastic multipliers, viz.,

(2.5) upl = λt − λc.

The values U , W , and Uext are the elastic, the dissipation, and the external energies which are
functionals of the fundamental kinematical fields,

U = U
(
û, λ̂t, λ̂c

)
, W = W

(
λ̂t, λ̂c

)
, Uext = Uext (û) .
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The explicit form of the functionals U , W and Uext is prescribed constitutively. Here we restrict
to the condition that the dissipation energy functionals depend only upon the plastic multipli-
ers and the external energy functional Uext only upon the total displacement.

2.2. Kinematic and thermodynamic restrictions of motion.

2.2.1. Boundary conditions in time. An initial datum on plastic multipliers must be assumed at
t = tin,

(2.6) λt0 = λ̂t (t = tin) , λc0 = λ̂c (t = tin) ,

as well as initial and final displacements,

(2.7) uin = û (tin) , ufi = û (tfi) ,

both at the initial t = tin and at the final t = tfi instants of times. Conditions (2.7) can also be
omitted in the present quasi-static formulation but they should be taken into account when the
kinetic energy in (2.1) is considered.

2.2.2. Definition of motion. A motion is defined as a family, fulfilling (2.6) and (2.7), of displace-
ments u = û (t) and of plastic multipliers λt = λ̂t (t) and λc = λ̂c (t) for those discrete values of
times defined as follows,

t = ti = tin + i∆t, ∀i = 0, . . . , N, tin = t0, tfi = tN = t0 +N∆t.

The increments, across two successive instants of times, of displacement

(2.8) ∆u = û (ti+1)− û (ti) ,

and of plastic multipliers

(2.9) ∆λt = λ̂t (ti+1)− λ̂t (ti) , ∆λc = λ̂c (ti+1)− λ̂c (ti) ,

at time t = ti are defined in (2.8) and (2.9).

2.2.3. Admissible variation of motion. The set AMt is that of kinematically admissible displace-
ments (2.3)1, fulfilling the (2.7) in the non-quasi-static case and any kinematical restrictions
imposed by the problem, e.g., by the external constraints, at time t. The set AVt is that of their
admissible variations,

u ∈ AMt, δû ∈ AVt.

Two examples are as follows. The first is for a force-control problem, where the displacement
u is not prescribed, the variation δû is arbitrary, and we have

AVt ≡ R, ∀t ∈ (tin, tfi)

for any values of time, in the non-quasi-static case different from the initial and the final ones
because of (2.7). The second is for a displacement-control problem, where the displacement is
prescribed, and the only admissible value for its variation δû is zero, i.e. δû = 0; as a conse-
quence the set of admissible variations

AVt = {0} , ∀t ∈ [tin, tfi]

is composed only of the zero value. The kinematical quantities λt and λc are assumed to be
irreversible and therefore can not reduce their values. Thus, their admissible variations are all
the positive numbers, viz.,

(2.10) δλ̂t ∈ R+, δλ̂c ∈ R+.

The kinematical irreversibility of the plastic multipliers justifies the relation of their names
with the accumulation of tension and compression plastic displacements. It is worth noting
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that the plastic displacement defined in (2.5) is not irreversible. The irreversibility conditions
on the two plastic multipliers that are assumed in (2.10), induce the necessity to generalize the
variational principle into a hemivariational principle, that is discussed in the next subsection.

2.3. The hemivariational principle. The variation δA of the action functional (2.2) is defined
with respect to the variations of the kinematic descriptors (2.3),

(2.11) δA = A
(
û+ δû, λ̂t + δλ̂t, λ̂c + δλ̂c

)
−A

(
û, λ̂t, λ̂c

)
,

and its increment ∆A is defined with respect to those increments defined in (2.8) and (2.9), that
yields

∆A = A
(
û+∆û, λ̂t +∆λ̂t, λ̂c +∆λ̂c

)
−A

(
û, λ̂t, λ̂c

)
.(2.12)

The hemivariational principle is formulated as follows: The following variational inequality
holds

(2.13) ∆A ≤ δA

for the solution (2.3) and for any admissible variations

(2.14) ∀δû ∈ AVt, ∀δλ̂t ∈ R+, ∀δλ̂c ∈ R+.

Finally, the only thermodynamic restriction, among the positive definiteness of the elastic en-
ergy functional U , involves the dissipation energy, that is assumed to be a non-decreasing func-
tion of time,

(2.15) ∆W
(
λ̂t, λ̂c

)
= W

(
λ̂t +∆λ̂t, λ̂c +∆λ̂c

)
−W

(
λ̂t, λ̂c

)
⩾ 0.

3. THE CASE OF AN ELASTO-PLASTIC LINEAR KINEMATIC HARDENING SPRING

3.1. Definition of the energy functionals. The elastic energy is assumed to be quadratic with
respect to the elastic displacement uel defined in (2.4) and proportional to the elastic stiffness
kel, i.e.,

(3.16) U = U
(
û, λ̂t, λ̂c

)
=

1

2
kelu

2
el =

1

2
kel (u− upl)

2
=

1

2
kel (u− λt + λc)

2
.

The dissipation energy is defined with the following incomplete quadratic form of the irre-
versible plastic kinematic descriptors,

(3.17) W = σ (λt + λc) +
1

2
h (λt − λc)

2
,

where σ is the initial plastic yielding point, and h is the hardening parameter. Positive defini-
tion of the numbers of the three constitutive coefficients of the model, i.e.,

kel > 0, σ > 0, h > 0,

guarantees not only the positive definiteness of the elastic energy functional U but also the
assumed thermodynamic restriction (2.15).

The external energy

(3.18) Uext = Uext (û) = Fu,

is defined with the external force F , that is a function of time,

(3.19) F = F̂ (t) .
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Thus, the action functional is given by the insertion of (3.16), (3.17) and (3.18) into (2.1)

A =

tfi∫
tin

[
1

2
kel (u− λt + λc)

2
+ σ (λt + λc) +

1

2
h (λt − λc)

2 − Fu

]
dt,(3.20)

and its variation is,

δA =

tfi∫
tin

{[kel (u− λt + λc)− F ] δû

+ [−kel (u− λt + λc) + σ + h (λt − λc)] δλ̂t + [kel (u− λt + λc) + σ − h (λt − λc)] δλ̂c}dt,

or, in compact form,

δA =

tfi∫
tin

{[kel (u− upl)− F ] δû+ [kel + h]
[
(λt − λty) δλ̂t + (λc − λcy) δλ̂c

]
}dt,(3.21)

where λty and λcy are the plastic yielding tension and the plastic yielding compression, respec-
tively, i.e.,

λty = λc +
kelu− σ

kel + h
,(3.22)

λcy = λt −
kelu+ σ

kel + h
.(3.23)

The increment ∆A of the action functional (2.12) is derived from (3.21),

∆A =

tfi∫
tin

{[kel (u− λt + λc)− F ]∆û+ [kel + h]
[
(λt − λty)∆λ̂t + (λc − λcy)∆λ̂c

]
}dt.(3.24)

3.2. Euler-Lagrange equations for the linear kinematic hardening spring. The variational
inequality (2.13) is valid for any admissible variations in (2.14). Let us define an arbitrary
function of time f ∈ AVt belonging to the admissible displacement variations AVt and calculate
the variational inequality (2.13) with the following admissible variation(

δû, δλ̂t, δλ̂c

)
=

(
f,∆λ̂t,∆λ̂c

)
,

and then with another admissible variation that is similar to the previous one but with opposite
f , i.e., (

δû, δλ̂t, δλ̂c

)
=

(
−f,∆λ̂t,∆λ̂c

)
,

both for arbitrary f ∈ AVt. Thus, we obtain two inequalities, that imply the following Euler-
Lagrange equation

(3.25) [kel (u− λt + λc)− F ] f = 0, ∀f ∈ AVt,

that, by assuming no restrictions on f ∈ AVt, we easily derive the standard form of the elasto-
plastic linear kinematic hardening spring response,

(3.26) kel (u− λt + λc) = kel (u− upl) = F.
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Thus, let us calculate the variational inequality (2.13) by assuming the following particular
admissible variation evaluated on the corresponding increment of the solution but doubling
that of the tension plastic multiplier,

(3.27)
(
δû, δλ̂t, δλ̂c

)
=

(
∆û, 2∆λ̂t,∆λ̂c

)
,

and then with another admissible variation that is similar to the previous one but keeping the
plastic multiplier in tension at zero,

(3.28)
(
δû, δλ̂t, δλ̂c

)
=

(
∆û, 0,∆λ̂c

)
.

It is easy to derive that the two obtained inequalities imply another Euler-Lagrange equation
for the plastic multiplier in tension in the form of the following KKT condition,

(3.29) [λt − λty]∆λt = 0.

In the same way we obtain the other plastic KKT conditions,

(3.30) [λc − λcy]∆λc = 0.

It is worth to be noted that the variations (3.27) and (3.28) are both admissible because the
increments on the solutions are always non-negative as it is prescribed in (2.14). Besides, a
variation δλ̂t = −∆λ̂t, for the same reason, is not admissible.

3.3. A resume of the governing equations. The governing equations of the present linear
hardening spring are given by the coupling effects of eqns. (3.26), (3.29) and (3.30) with the
insertion, respectively, of (2.5), (3.22) and (3.23),[

λt − λc −
kelu− σ

kel + h

]
∆λt = 0,(3.31) [

λc − λt +
kelu+ σ

kel + h

]
∆λc = 0,(3.32)

kel (u− λt + λc) = F.(3.33)

The explicit method consists of the following numerical strategy once the displacement history
u is prescribed for all the time steps. From (3.31), we evaluate λt by assuming the other mul-
tiplier λc at the previous time step. Thus, from (3.32), we evaluate λc by assuming the other
multiplier λt at the previous time step. Finally, we calculate the reaction F from (3.33) and
repeat this scheme for every time steps.

4. THE CYCLING LOADING OF THE ELASTO-PLASTIC LINEAR KINEMATIC HARDENING SPRING

4.1. The cyclic loading history. The cyclic loading history is prescribed in terms of the dis-
placement field and graphically represented in Fig. 1. The period of oscillation of the imposed
displacement is 4t. The oscillation range is 2u, where u is assumed to be larger than σ/kel.

We investigate, in the following six subsections of Section 4, the six phases of the loading
history. We will call these stages of the loading history as follows: elastic reversible one, plastic
irreversible one, elastic reversible two, plastic irreversible two, elastic reversible three, and
plastic irreversible three. We will later justify the names of these phases. It is worth noting here
that in the elastic phases, the dissipation energy is constant with respect to time, and in the
plastic phases, the dissipation energy is an increasing function with respect to time. Besides,
on the one hand, during the elastic phases, an eventual unloading process follows the loading
path (reversibility of the process), and on the other hand, during the plastic phases, an eventual
unloading process follows another path (irreversibility of the process).
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FIGURE 1. The cyclic loading history in terms of the imposed displacement u
vs the time t. Each period is divided into six phases. Three phases (red-thick
lines) are denoted elastic and three (green-dashed lines) are denoted plastic.

FIGURE 2. Elastic reversible phase one of the loading history in terms of the
imposed displacement u vs time t.

4.2. Elastic reversible phase one. At the beginning of the loading history (i.e. at t = tin = 0)
the displacement and both the plastic multipliers are null

(4.34) u (t = tin = 0) = λc (t = tin = 0) = λt (t = tin = 0) = 0.

Besides, the displacement u is imposed to evolve according to Fig. 1, and it is therefore limited,
in the elastic reversible phase one, to be

(4.35) u <
σ

kel
, ∀t ∈ [0,

σt

kelu
],

lower than the ratio σ/kel as remarked in Fig. 2. Besides, the plastic yielding tension and
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compression are at the beginning from (3.22), (3.23) and (4.34) both negative,

(4.36) λty (t = tin = 0) = − σ

kel + h
< 0, λcy (t = tin = 0) = − σ

kel + h
< 0.

On the one hand, from (3.23) and because u is an increasing function of time for this elastic
reversible phase one (see Fig. 2), the plastic yielding compression λcy is a decreasing function
of time, which guarantees that it is constrained to be negative for all the times in this initial part
of the loading history,

u̇ > 0, ⇒ λ̇cy = − kelu̇

kel + h
< 0, ⇒ λcy (t) < 0, ∀t ∈ [0,

σt

kelu
].

Thus, the KKT condition (3.30) is satisfied only by setting to zero the increment ∆λc and there-
fore also the values of the plastic multiplier in compression λc for all the times in this initial
part of the loading history,

(4.37) λc (t) = 0, ∀t ∈ [0,
σt

kelu
].

On the other hand, from (3.22) and because u is an increasing function of time for this elastic
reversible phase one (see Fig. 2), the plastic yielding tension λty is an increasing function of
time. However, from (3.22), (4.35) and (4.37), it remains negative for all times in this initial part
of the loading history,

λty (t) = λc +
kelu− σ

kel + h
=

kelu− σ

kel + h
< 0, ∀t ∈ [0,

σt

kelu
].

Thus, also the KKT condition (3.29) is satisfied only setting to zero the increment ∆λt and
therefore also the values of the plastic multiplier in tension for all the times in this initial part
of the loading history,

(4.38) λt (t) = 0, ∀t ∈ [0,
σt

kelu
].

The conditions (4.37) and (4.38) justify to call elastic this first part of the loading history. The
spring response has been derived from (3.26), (4.37) and (4.38), and takes the following simple
form

(4.39) kelu = F, ∀t ∈ [0,
σt

kelu
],

that is also represented in Fig. 3.
If, in an arbitrary moment of this elastic reversible phase we change the sign of the load-

ing velocity u̇ then the KKT conditions (3.29) and (3.30) will be both satisfied with the same
constant values of plastic multipliers (4.37) and (4.38) and therefore the response is the same
calculated in (4.39) and graphically reported in Fig. 3. This reversible behavior justifies the
name “reversible” of this phase of the loading history.

4.3. The plastic irreversible phase one. In the second part of the loading history, the displace-
ment u is imposed to evolve according to Fig. 1, and it is therefore limited, in the plastic
irreversible phase one, to be

σ

kel
< u < ū, ∀t ∈ [

σt

kelu
, t]

as represented in Fig. 4. Thus, the yielding compression from (3.23) is still a decreasing function
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FIGURE 3. Elastic reversible phase one response. We plot the reaction force F
vs the imposed displacement u.

FIGURE 4. The plastic irreversible phase one of the loading history in terms of
the imposed displacement u vs time t.

of time, and therefore, it remains negative,

(4.40) λcy < 0, ∀t ∈ [
σt

kelu
, t].

This means that the KKT condition (3.30) can be satisfied only setting to zero the increment
∆λc and therefore also the values of the plastic multiplier in compression for all the times in
this part of the loading history,

(4.41) λc (t) = 0, ∀t ∈ [
σt

kelu
, t].
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FIGURE 5. Plastic irreversible phase one response is highlighted with the
green-dashed line. We plot the reaction force F vs the imposed displacement
u.

Besides, the yielding tension from (3.22) and (4.41) becomes positive,

λty =
kelu− σ

kel + h
> 0, ∀t ∈ [

σt

kelu
, t],

and the KKT condition (3.29) is satisfied in terms of the plastic multiplier in tension by

(4.42) λt (t) = λty =
kelu− σ

kel + h
, ∀t ∈ [

σt

kelu
, t].

The spring response, according to (3.26), (4.41) and (4.42), is as follows,

kel (u− λt (t) + λc (t)) = kel

(
u− kelu− σ

kel + h

)
= F, ∀t ∈ [

σt

kelu
, t],

that means

(4.43) F = kel

(
hu+ σ

kel + h

)
=

kel
kel + h

σ +
hkel

kel + h
u, ∀t ∈ [

σt

kelu
, t],

that is a spring with a residual (with no displacement u = 0) force equal to

kel
kel + h

σ,

and a stiffness

(4.44)
hkel

kel + h
,

that is the equivalent stiffness of the series of two springs, one with stiffness kel and one with
stiffness h. The response is therefore represented in Fig. 5. As a matter of fact, from (4.42) the
final value of the plastic multiplier in tension is

(4.45) λt (t = t̄) =
kelū− σ

kel + h
> 0
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and from (4.43), the final value of the reaction force is

(4.46) F̂ (t = t̄) = F = kel
σ + hu

kel + h
.

In this phase, the dissipation energy is derived by the insertion of (4.41) and (4.42) into (3.17).
If, in an arbitrary moment t = t̃ at u = u

(
t = t̃

)
= ũ of this plastic irreversible phase, we

change the sign of the loading velocity u̇, then the KKT conditions (3.29) and (3.30) would both
be satisfied setting to zero the increments ∆λt and ∆λc, and therefore, the value of the plastic
multiplier in compression would be still the same of that already calculated in (4.41)

λc (t) = λ̃c = 0, ∀t > t̃,

and that in tension would be from (4.42)

λt (t) = λ̃t =
kelũ− σ

kel + h
, ∀t > t̃,

and therefore the response would be

kel

(
u− λ̃t + λ̃c

)
= kel

(
u− kelũ− σ

kel + h

)
= F, ∀t > t̃,

that is different from that calculated in (4.43). In particular, the tangent stiffness would be kel
and not the series reported in (4.44). This irreversible behavior justifies the name “irreversible”
of this phase of the loading history.

4.4. The elastic reversible phase two. In the third part of the loading history, the displacement
u is imposed to evolve according to Fig. 1. Thus, it changes the sign of its time derivative u̇,
and therefore, the spring is in an unloading phase. Besides, in this elastic reversible phase two,
it is limited to be

(4.47) ū = ū− 2
σ

kel
< u < ū, ∀t ∈ [t, t+ 2

σt

kelu
],

and it is graphically represented in Fig. 6. Thus, the yielding tension is from (3.22) a decreasing
function of time, and therefore, it is always lower than the final value λt (t = t̄) of the plastic
multiplier in tension calculated in (4.45), that is the last one taken during the previous plastic
irreversible one part of the loading history,

(4.48) λty < λt (t = t̄) =
kelū− σ

kel + h
, ∀t ∈ [t, t+ 2

σt

kelu
].

The KKT condition (3.29) is satisfied only setting to zero the increment ∆λt, and therefore, also
keeping constant the values of the plastic multiplier in tension for all the times in this part of
the loading history,

(4.49) λt (t) =
kelū− σ

kel + h
, ∀t ∈ [t, t+ 2

σt

kelu
].

Besides, the yielding compression is from (3.23) an increasing function of time,

(4.50) λcy =
kelū− σ

kel + h
− kelu+ σ

kel + h
=

kel (ū− u)− 2σ

kel + h
< 0, ∀t ∈ [t, t+ 2

σt

kelu
],

but it remains negative in the prescribed range (4.47) of the present third phase of the loading
history so that we still have that the KKT condition (3.30) can be satisfied only by setting to
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FIGURE 6. The elastic reversible phase two of the loading history in terms of
the imposed displacement u vs time t.

zero the increment ∆λc, and therefore, also the values of the plastic multiplier in compression
for all the times in this part of the loading history,

(4.51) λc (t) = 0, ∀t ∈ [t, t+ 2
σt

kelu
].

The spring response is, according to (3.26), (4.49) and (4.51), as follows,

(4.52) kel (u− λt (t) + λc (t)) = kel

(
u− kelū− σ

kel + h

)
= F = F̂ (t) , ∀t ∈ [t, t+ 2

σt

kelu
],

that is a spring with a residual (with no displacement u = 0) force equal to

kel

(
σ − kelū

kel + h

)
,

and the same initial elastic stiffness
kel.

The two plastic multipliers do not change their values, and this justifies calling elastic this part
of the loading history. The response is therefore represented according to Fig. 7. As a matter of
fact the final value of the reaction force is from (4.52)

F = F̂

(
t = t+ 2

σt

kelu

)
= F = F − 2σ.

If, in an arbitrary moment of this elastic reversible phase, we change the sign of the loading
velocity u̇, then the KKT conditions (3.29) and (3.30) will be both satisfied with the same con-
stant values of plastic multipliers (4.49) and (4.51), and therefore, the response is the same as
calculated in (4.52) and graphically reported in Fig. 7. This reversible behavior justifies the
name “reversible” for this phase of the loading history.
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FIGURE 7. Elastic reversible phase two response is highlighted with the red-
thick line. We plot the reaction force F vs the imposed displacement u.

FIGURE 8. The plastic irreversible phase two of the loading history in terms of
the imposed displacement u vs time t.

4.5. The plastic irreversible phase two. In the fourth part of loading history, the displacement
u is imposed to evolve according to Fig. 1. Besides, in this plastic irreversible phase two, the
spring is still in an unloading phase and it is limited to be

(4.53) −ū < u < ū− 2
σ

kel
, ∀t ∈ [t+ 2

σt

kelu
, 3t],

and it is graphically represented in Fig. 8.
The yielding tension is from (3.22) again a decreasing function of time (because the displace-

ment u is a decreasing function of time), and therefore, it continues to be always lower than the
value (that was constant in the previous stage) of the plastic multiplier λt in (4.49),

(4.54) λty < λt

(
t = t+ 2

σt

kelu

)
=

kelū− σ

kel + h
, ∀t ∈ [t+ 2kelu, 3t].
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Thus, the KKT condition is satisfied only setting to zero the increment ∆λt, and therefore also
the values of the plastic multiplier in tension for all the times in this part of the loading history,

(4.55) λt (t) =
kelū− σ

kel + h
, ∀t ∈ [t+ 2

σt

kelu
, 3t].

Besides, the yielding compression is from (3.23) an increasing function of time (because the
displacement u is a decreasing function of time),
(4.56)

λcy (t) =
kelū− σ

kel + h
− kelu+ σ

kel + h
=

kel (ū− u)− 2σ

kel + h
> λc

(
t+ 2

σt

kelu

)
= 0, ∀t ∈ [t+2

σt

kelu
, 3t],

but now it is positive (and therefore because of (4.51) greater than the plastic multiplier in com-
pression in the previous stage) in the prescribed range (4.53) of the fourth part of the loading
history so that the KKT condition condition (3.30) is satisfied by,

(4.57) λc (t) = λcy (t) =
kel (ū− u)− 2σ

kel + h
, ∀t ∈ [t+ 2

σt

kelu
, 3t].

The spring response is, according to (3.26), (4.55) and (4.57), as follows,

kel (u− λt (t) + λc (t)) = kel

(
u− kelū− σ

kel + h
+

kel (ū− u)− 2σ

kel + h

)
= F,

that means

(4.58)
kelh

kel + h
u− kel

σ

kel + h
= F̂ (t) , ∀t ∈ [t+ 2

σt

kelu
, 3t],

that is a spring with a residual (with no displacement u = 0) force equal to

−kel
σ

kel + h
,

and a stiffness (4.44), that is the equivalent stiffness of the series of two springs, one with
stiffness kel and one with stiffness h. The response is therefore represented according to Fig. 9.

As a matter of facts, from (4.57) the final value of plastic multiplier in compression is

(4.59) λc (t = 3t̄) =
kel (ū− u (t = 3t̄))− 2σ

kel + h
=

kel (ū− (−ū))− 2σ

kel + h
= 2

kelū− σ

kel + h
,

and from (4.58) the final value of the reaction response is

F̂ (t = 3t̄) =
kelh

kel + h
u (t = 3t̄)− kel

σ

kel + h
= − kelh

kel + h
ū− kel

σ

kel + h
= −kel

σ + hu

kel + h
= −F .

If, in an arbitrary moment t = t̃ at u = u
(
t = t̃

)
= ũ of this plastic irreversible phase, we

change the sign of the loading velocity u̇ then the KKT conditions (3.29) and (3.30) would both
be satisfied setting to zero the increments ∆λt and ∆λc, and therefore, the value of the plastic
multiplier in tension would be still the same of that already calculated in (4.55)

λt (t) = λ̃t =
kelū− σ

kel + h
, ∀t > t̃,

and that in compression would be from (4.57)

λc (t) = λ̃c =
kel (ū− ũ)− 2σ

kel + h
, ∀t > t̃,
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FIGURE 9. Plastic irreversible phase two response is highlighted with the
green-dashed line. We plot the reaction force F vs the imposed displacement
u.

and therefore, the response would be

kel

(
u− λ̃t + λ̃c

)
= kel

(
u− kelũ− σ

kel + h
+

kel (ū− ũ)− 2σ

kel + h

)
= kel

(
u− 2kelũ− kelū+ σ

kel + h

)
= F, ∀t > t̃,

that is different from that calculated in (4.58). In particular the tangent stiffness would be kel
and not the series reported in (4.44). This irreversible behavior justifies the name “irreversible”
of this phase of the loading history.

4.6. The elastic reversible phase three. In the fifth part of the loading history, the displace-
ment u is imposed to evolve according to Fig. 1. Thus, it changes the sign of its time derivative
u̇ and therefore the spring is again in a loading phase. Besides, in this elastic reversible phase
three it is limited to be

(4.60) −ū < u < −ū+ 2
σ

kel
, ∀t ∈ [3t, 3t+ 2

σt

kelu
],

and it is graphically represented in Fig. 10. The yielding compression is from (3.23) a decreasing
function of time (because the displacement u is an increasing function of time) so that it remains
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FIGURE 10. The elastic reversible phase three of the loading history in terms
of the imposed displacement u vs time t.

always lower than the last value (4.59) of the previous stage of the loading history,

λcy (t) < λcy (t = 3t̄) = λc (t = 3t̄) = 2
kelū− σ

kel + h
, ∀t ∈ [3t, 3t+ 2

σt

kelu
].

Thus, the KKT condition (3.30) for the plastic multiplier in compression is satisfied only set-
ting to zero the increment ∆λc and therefore it yields also constant the function of the plastic
multiplier in compression for all the times in this part of the loading history,

(4.61) λc (t) = 2
kelū− σ

kel + h
, ∀t ∈ [3t, 3t+ 2

σt

kelu
].

Besides, the yielding tension (because the displacement u is an increasing function of time) is
an increasing function of time but still lower than the previous value λt (t = 3t̄) of the plastic
multiplier in tension

λty = 2
kelū− σ

kel + h
+

kelu− σ

kel + h
< λt (t = 3t̄) =

kelū− σ

kel + h
, ∀t ∈ [3t, 3t+ 2

σt

kelu
].

Thus, the KKT condition (3.29) for the plastic multiplier in tension is satisfied only setting to
zero the increment ∆λt and therefore it yields also constant the function of the plastic multiplier
in tension for all the times in this part of the loading history,

(4.62) λt (t) = λt (t = 3t̄) =
kelū− σ

kel + h
, ∀t ∈ [3t, 3t+ 2

σt

kelu
].

From (4.61) and (4.62) we have that plastic multipliers are constant and this justifies to call
elastic the present fifth phase of the loading history. The spring response is, according to (3.26),
(4.61) and (4.62), as follows,

kel (u− λt (t) + λc (t)) = kel

(
u− kelū− σ

kel + h
+ 2

kelū− σ

kel + h

)
= F,

that means

(4.63) kelu+ kel

(
kelū− σ

kel + h

)
= F̂ (t) , ∀t ∈ [3t, 3t+ 2

σt

kelu
],

that is a spring with a residual (with no displacement u = 0) force equal to

kel

(
kelū− σ

kel + h

)
,
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FIGURE 11. Elastic reversible phase three response is highlighted with the red-
thick line. We plot the reaction force F vs the imposed displacement u.

and a stiffness
kel.

The response is therefore graphically represented in Fig. 11.
As a matter of facts the final value of the reaction force is from (4.63)

F̂

(
t = 3t+ 2

σt

kelu

)
= kel

(
−ū+ 2

σ

kel

)
+ kel

(
kelū− σ

kel + h

)
= 2σ − kel

hū+ σ

kel + h
= 2σ − F = −F .

If, in an arbitrary moment of this elastic reversible phase we change the sign of the loading
velocity u̇ then the KKT conditions (3.29) and (3.30) will be both satisfied with the same con-
stant values of plastic multipliers (4.61) and (4.62) and therefore the response is the same as
calculated in (4.63) and graphically reported in Fig. 11. This reversible behavior justifies the
name “reversible” for this phase of the loading history.

4.7. The plastic irreversible phase three. In the sixth part of the loading history the displace-
ment u is imposed to evolve according to Fig. 1. Besides, in this plastic irreversible phase three,
the spring is still in a loading phase and it is limited to be

(4.64) −ū+ 2
σ

kel
< u < ū, ∀t ∈ [3t+ 2

σt

kelu
, 5t],

and it is graphically represented in Fig. 12. The yielding compression is from (3.23) again
a decreasing function of time (because the displacement u is still an increasing function of
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FIGURE 12. The plastic irreversible phase three of the loading history in terms
of the imposed displacement u vs time t.

time), and therefore it is always lower than the final value in (4.61) of the plastic multiplier in
compression of the previous part of the loading history

(4.65) λcy < λc

(
t = 3t+ 2

σt

kelu

)
= 2

kelū− σ

kel + h
, ∀t ∈ [3t+ 2

σt

kelu
, 5t].

Thus, the KKT condition (3.30) is satisfied only setting to zero the increment ∆λc and therefore
it yields also constant the function of the plastic multiplier in compression for all the times in
this part of the loading history,

(4.66) λc (t) = 2
kelū− σ

kel + h
, ∀t ∈ [3t+ 2

σt

kelu
, 5t].

Besides, the yielding tension is from (3.22) an increasing function of time (because the displace-
ment u is still an increasing function of time),
(4.67)

λty (t) = 2
kelū− σ

kel + h
+
kelu− σ

kel + h
=

kel (2ū+ u)− 3σ

kel + h
>

kelū− σ

kel + h
= λt (t = 3t̄) , ∀t ∈ [3t+2

σt

kelu
, 5t].

It is greater than, because of (4.62), the value of the plastic multiplier in tension λt (t = 3t̄) at
the previous last instant of time of the fifth part of the loading history. Thus, the KKT condition
(3.29) is satisfied by,

(4.68) λt (t) = λty (t) =
kel (2ū+ u)− 3σ

kel + h
, ∀t ∈ [3t+ 2

σt

kelu
, 5t].

The spring response is, according to (3.26), (4.66) and (4.68), as follows,

F = kel (u− λt (t) + λc (t)) = kel

(
u− kel (2ū+ u)− 3σ

kel + h
+ 2

kelū− σ

kel + h

)
,

that means

(4.69)
kelh

kel + h
u+ kel

σ

kel + h
= F̂ (t) , ∀t ∈ [3t+ 2

σt

kelu
, 5t],

that is a spring with a residual (with no displacement u = 0) force equal to

kel
σ

kel + h
,
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FIGURE 13. Plastic irreversible phase three response is highlighted with the
green-dashed line. We plot the reaction force F vs the imposed displacement
u.

and a stiffness (4.44), that is the equivalent stiffness of the series of two springs, one with
stiffness kel and one with stiffness h. The response is therefore represented according to Fig.
13.

As a matter of facts, from (4.68) the final value of plastic multiplier in tension is

(4.70) λt (t = 5t̄) =
kel (2ū+ u (t = 5t̄))− 3σ

kel + h
=

kel (2ū+ ū)− 3σ

kel + h
= 3

kelū− σ

kel + h

and from (4.69) the final value of the reaction response is

F̂ (t = 5t̄) =
kelh

kel + h
u (t = 5t̄) + kel

σ

kel + h
=

kelh

kel + h
u+ kel

σ

kel + h
= kel

σ + hu

kel + h
= F .

If, in an arbitrary moment t = t̃ at u = u
(
t = t̃

)
= ũ of this plastic irreversible phase, we

change the sign of the loading velocity u̇ then the KKT conditions (3.29) and (3.30) would both
be satisfied setting to zero the increments ∆λt and ∆λc and therefore the value of the plastic
multiplier in compression would be still the same of that already calculated in (4.66)

λc (t) = λ̃c = 2
kelū− σ

kel + h
, ∀t > t̃,

and that in tension would be from (4.68)

λt (t) = λ̃t =
kel (2ū+ ũ)− 3σ

kel + h
, ∀t > t̃,
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FIGURE 14. Measures for calculating the dissipated area of the hysteretic loop.

and therefore the response would be

kel

(
u− λ̃t + λ̃c

)
= kel

(
u− kel (2ū+ ũ)− 3σ

kel + h
+ 2

kelū− σ

kel + h

)
= kel

(
u− kelũ− σ

kel + h

)
= F, ∀t > t̃,

that is different from that calculated in (4.69). In particular the tangent stiffness would be kel
and not the series reported in (4.44). This irreversible behavior justifies the name “irreversible”
of this phase of the loading history.

4.8. Dissipated energy per unit cycle. The dissipated energy per unit cycle can be calculated
into two ways. The first is simply by measuring the area within the hysteretic loop

The area of the external rectangle Re is

Re = 2F2σ = 4σF .

The areas A above and bottom the hysteretic area Hy are the same so that

Hy = Re − 2A = Re − 2 (Rs + Tl + Ta) .

Such areas are composed by two triangles and one small rectangle Rs with area

Rs =
(
2F − 2σ

) 2σ

kel
.
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Let us consider the below area. The below triangle Tl is

Tl =
1

2

(
2u− 2σ

kel

)(
2F − 2σ

)
,

the above triangle Ta is

Ta =
1

2

(
2σ

kel

)
(2σ) .

Combining the previous equations, we obtain

Hy = 4σF − 2

[(
2F − 2σ

) 2σ

kel
+

1

2

(
2u− 2σ

kel

)(
2F − 2σ

)
+

1

2

(
2σ

kel

)
(2σ)

]
= 4σ

(
u− F

kel

)
,

that, from (4.46) we have

Hy = 4σ

(
kelu− σ

kel + h

)
.

Another way is to calculate the dissipation energy (3.17) at the displacement within the plastic
irreversible phase three (4.64)

u =
σ

kel
.

From (4.66) we have

λc = 2
kelū− σ

kel + h
,

and from (4.68)

λt =
kel

(
2ū+ σ

kel

)
− 3σ

kel + h
,

that implies that the two accumulations are the same and the dissipation(3.17) is

W = 4σ
kelū− σ

kel + h
= Hy,

that is consistent with the area Hy of the hysteretic cycle.

4.9. Evolution of the plastic multipliers. In the previous subsections, we have calculated an-
alytically, among the reaction force evolution F , also both the plastic multipliers λt and λc.
Besides, a graphical evolution of the hysteretic loop is also furnished. In this subsection, we
want to give an analogous graphical evolution also of the plastic multipliers λt and λc and, be-
cause of (2.5) also of the plastic displacement upl. In Fig. 15, we show such an evolution versus
time. We observe that for elastic phases both λt and λc are constant. As a consequence, also
the plastic displacement upl is constant. Besides, the investigated plastic phases are 3. During
the first and the third plastic phase, only λc is constant, and λt linearly evolves. During the
second plastic phase only λt is constant, and λc linearly evolves. As a consequence, during the
first and the third plastic phase, the plastic displacement upl linearly increases, and during the
second plastic phase, it linearly decreases.
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FIGURE 15. Evolutions of the plastic multipliers λt (blue line) and λc (red line)
and of plastic displacement upl = λt − λc (green line) are shown as a function
of time.

5. CONCLUSION

A hemivariational derivation of the linear hardening spring is derived analytically. Three
kinematical descriptors have been used, i.e. one displacement u and two plastic multipliers λt

and λc. The two plastic multipliers are interpreted as the plastic displacement accumulation in
tension and in compression, and the plastic displacement upl is therefore simply assumed to
be the difference upl = λt − λc between the two plastic multipliers. On the one hand, variation
of displacement δu is assumed to be arbitrary. On the other hand, mono-lateral constraints
λ̇t ≥ 0 and λ̇c ≥ 0 are assumed on both the plastic multipliers, i.e. their variations δλt and δλc

can only be positive δλt ≥ 0 and δλc ≥ 0 because they can only increase with time. This is
the reason why a hemivariational principle has been used. The last assumptions concern only
the functional form of the elastic energy U , that is quadratic with respect to the elastic part
uel = u − upl of the displacement function, of the dissipation energy W , that is assumed to be
quadratic with respect to the plastic displacement upl and on the external energy Uext, that is
assumed to be linear with the displacement u. Besides, the elastic energy is also assumed to
be proportional with respect to the elastic stiffness kel, the dissipation energy is assumed to be
proportional to the hardening coefficient h, and the external energy is proportional to the dual
of the displacement, that is the external force F . Thus, only two constitutive coefficients kel
and h have been assumed and no flow rules has been introduced. Models for linear harden-
ing phenomena are present in the literature. These models are equivalent to the present one.
However, in this approach, the generalization of the response is easier because it is connected
only to the form of the dissipation energy. Thus, we finally observe that linearity of the hard-
ening behaviour explored in this paper has been achieved by considering a quadratic term in
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the dissipation energy (3.17). This has had the consequence of a linear evolution of the plas-
tic multipliers with respect to the imposed displacement. Thus, adding higher order terms of
plastic multipliers in the form of the dissipation energy would modify such a linear hardening
behavior. For example, a quartic dissipation energy would imply a cubic hardening behavior.
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