
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Published online: 19.02.2025

DOI : 10.15672/1533205

Research Article

The unit-Cauchy quantile regression model with
variates observed on (0, 1): percentages,

proportions, and fractions

Talha Arslan∗1,2, Keming Yu2

1Department of Econometrics, Van Van Yüzüncü Yıl University, 65080 Van, Türkiye.
2Department of Mathematics, Brunel University London, UB83PH London, United Kingdom.

Abstract
In this study, a new parametric quantile regression model is introduced as an alterna-
tive to the beta regression and Kumaraswamy quantile regression model. The proposed
quantile regression model is obtained by reparametrization of the unit-Cauchy distribu-
tion in terms of its quantiles. The model parameters are estimated using the maximum
likelihood method. A Monte-Carlo simulation study is conducted to show the efficiency of
the maximum likelihood estimation of the model parameters. The implementation of the
proposed quantile regression model is shown by using real datasets. Quantile regression
models based on unit-Weibull, unit generalized half normal, and unit Burr XII are also
considered in the applications. The application results show that the proposed quantile
regression model is preferable over its rivals when several comparison criteria are taken
into account. In addition, the fitting plots indicate that the proposed quantile regression
model fits extreme observations on the right tail better than its strong rivals, which is
important in quantile regression modeling.
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1. Introduction
Researchers from different scientific areas usually aim to explore phenomena by using

the data extracted from them. In this context, statistical distributions are widely used
in modeling data from different fields. The normal distribution is traditionally the most
famous one used for modeling real-valued data. In addition to the wide usage of the
normal distribution, it has a deficiency in modeling data having atypical observations. In
this regard, distributions having heavy tail(s) are used for modeling purposes, and Cauchy
distribution is one of the well-known ones. Cauchy distribution looks similar to a normal
distribution, i.e., its probability density function (pdf) is symmetric around the center.
However, it has much heavier tails than the normal distribution. The basic theory and
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conditions of the Cauchy distribution are not given here for brevity; see [14, 15, 17] for
details.

Real-valued distributions, such as normal, Cauchy, Laplace, and some skew extensions,
cannot model all kinds of data. For example, specific experiments (different indices, rates,
etc.) or observations from real life (infant mortality rate, human development index,
etc.) may have a bounded range on the unit interval (0, 1) and should be modeled unit
distribution. The power, beta, Johnson [9], Topp-Leone [37], Kumaraswamy (Kum) [16]
distributions are the well-known early examples of the unit distributions. Later, new
unit distributions have been introduced; for example, Mazucheli et al. [19] and Korkmaz
[13] proposed unit-Weibull (UW) and unit-generalized half normal (UGHN) distributions,
respectively. Recently, Arslan [1] proposed a general definition for a family of unit distri-
butions which includes the unit-Cauchy distribution (UC) having the pdf

fZ(z; α, σ) = α

πσ
(z (1 − zα))−1

(
1 +

(
− 1

σ
log

(
z−α − 1

))2
)−1

(1.1)

and the cumulative distribution function (cdf)

FZ(z; α, σ) = 0.5 + 1
π

arctan
(

− 1
σ

log
(
z−α − 1

))
. (1.2)

Here, z ∈ (0, 1), α > 0, and σ > 0. The cdf of the UC distribution, given in (1.2), can be
readily inverted to yield the quantile function (qf) of the UC distribution

κ(p) = F −1
Z (p; α, σ) = (1 + exp (−σ tan (π(p − 0.5))))− 1

α , p ∈ (0, 1). (1.3)

Note that the UC distribution given in (1.1) is an extended version of the unit distribution
given in [30]; see also [31].

Unit distributions are essential in the construction of regression models when the re-
sponse variable takes a value between 0 and 1, that is, the response variable follows a unit
support distribution. In this context, the beta regression model, proposed by [10] and
[6], is one of the first attempts in which the mean response is considered as a function of
covariates. It is known that the mean of the data is not robust against outliers; there-
fore, it cannot represent the measure of central tendency efficiently when the response
variable includes anomalies. In such a case, the beta regression model, which is a mean
conditional model, cannot perform well as expected. In this regard, Ribeiro and Ferrari
[35] also pointed out that the maximum likelihood (ML) estimate of the beta regression
model is affected by outliers since scores equations of the corresponding parameters are
not bounded; therefore, they derived a robust estimation method to rehabilitate the beta
regression model in the context of robustness. Also note that the qf of the beta dis-
tribution cannot explicitly be formulated; thus, quantile-based reparametrization, e.g.,
median-based parametrization of it becomes intractable, which is another deficiency of
the beta regression model. Therefore, the UC distribution, given in (1.1), has an advan-
tage over the beta distribution, since its qf, given in (1.3), has a simple form that allows
a quantile-based analysis of the UC distribution. In addition, a median conditional re-
gression model based on the UC distribution can be readily obtained, and the resulting
quantile regression model will be more robust against outliers than beta regression.

In the literature, there are also different regression models alternative to beta regression.
In this context, Mitnik and Baek [24] proposed the Kum quantile regression model for a
bounded response to eliminate the deficiency of the beta regression model. In addition,
new quantile regression models based on the odd log-logistic unit omega, unit Lindley, UW,
UGHN, exponential-geometric and unit Burr XII (UBXII) distributions were introduced
by [3, 20, 21, 23, 28, 34] respectively. See [22] for a comprehensive overview of parametric
quantile regression models.
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Based on the conclusion given above, the UC distribution can be a strong alternative
to the beta distribution in not only modeling univariate data but also the context of
regression model. To the best of authors’ knowledge, beside the robustness property
of Cauchy distribution, its unit case has not been considered in the context of quantile
regression model. In this regard, the motivation for this study comes from introducing a
new quantile regression model due to the attractive properties of the UC distribution and
the manageable form of its qf, which allows the reparametrization of the pdf given in (1.1)
in terms of quantiles. Therefore, in this study, the UC distribution is reparametrized by
its quantiles, and the resulting distribution is called RUC. Then, a new quantile regression
model is introduced based on the RUC distribution in which the model parameters are
estimated using the ML method. In addition, a Monte Carlo simulation study is conducted
to show the efficiencies of the ML estimation of the model parameters. Not least of all,
three real datasets are used to show the implementation of the proposed quantile regression
model.

The paper is structured as follows. In Section 2, the RUC distribution is defined, its
parameters are named, characteristic measures of it are obtained based on its qf, and an
estimation of its parameters is provided. In Section 3, the new quantile regression model is
derived, say the RUC quantile regression model, and ML inference is investigated. Section
4 is reserved for model diagnostic criteria. The application of the RUC quantile regression
model is provided in Section 5. The paper ends with some concluding remarks.

2. The RUC distribution
Let Z ∼ UC(α, σ) and κ(p; α, σ), the p -th quantile of Z, be denoted as κ to simplify

the notation. Then, the following equation

α = log (1 + exp (−σ tan (π (p − 0.5))))
log

(
1
κ

) (2.1)

is obtained after some straightforward algebraic manipulation. By using the parametriza-
tion in (2.1), the pdf of the RUC distribution is expressed as

fZ(z; κ, σ) = 1
πσ

(
log

(1
κ

))−1
log (1 + exp (−σ tan (π (p − 0.5))))(

z

(
1 − z

(
(log( 1

κ ))−1 log(1+exp(−σ tan(π(p−0.5))))
)))−1

×

1 +
(

− 1
σ

log
(

z
−
(
(log( 1

κ ))−1 log(1+exp(−σ tan(π(p−0.5))))
)

− 1
))2−1

,

(2.2)

where κ ∈ (0, 1) denotes the quantile parameter (also can be called location parameter),
σ > 0, and p ∈ (0, 1) is quantile order and assumed to be known.

When p = 0.5, the pdf given in (2.2) is reduced to be a median-parametrized RUC
distribution, and its pdf and cdf turn out to be, respectively,

fZ(z; κ, σ) = 1
πσ

log(2)
(

log
(1

κ

))−1 (
z

(
1 − zlog(2)(log( 1

κ ))−1
))−1

1 +
(

− 1
σ

log
(

z
−
(

log(2)(log( 1
κ ))−1

)
− 1

))2−1 (2.3)

and

FZ(z; κ, σ) = 0.5 + 1
π

arctan
(

− 1
σ

log
(

z
−
(

log(2)(log( 1
κ ))−1

)
− 1

))
. (2.4)
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Also, by using the well-known definition of hazard rate function (hrf), the hrf of the RUC
distribution is

hZ(z; κ, σ) = fZ(z; κ, σ)
1 − FZ(z; κ, σ)

,

where fZ(·) and FZ(·) are the pdf and cdf of the RUC distribution, respectively. In the
following, a random variable Z having pdf in (2.3) is denoted by Z ∼ RUC(κ, σ).

The plots for the pdf, cdf, and hrf of the RUC distribution are provided in column 1,
column 2, and column 3, respectively, in Figure 1 for illustration.
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Figure 1. The plots for the pdf, cdf, and hrf of the RUC distribution for different
parameter settings.

It could be seen from Figure 1(a) and Figure 1(d) that the density plots of the RUC
distribution can be symmetric, skewed left or right based on the different values of the
parameters σ and κ. The RUC density plots have J, reversed J, U and bell shapes as
well. Also, the plots for the hrf of the RUC distribution have the forms J, monotonically
increasing, decreasing-increasing(bathtub), increasing-decreasing-increasing (tilde) for the
particular values of the parameters; see Figure 1(c) and Figure 1(f).

Remark 2.1. The support space of the pdf in (2.3) can be extended from (0, 1) to (u, l)
using the transformation Y = l + (u − l)Z, where l and u denote the lower and upper
limits which come from the nature of the random variable Y ; that is, l and u are assumed
to be known. Thus, the pdf of the Y is

fY (y; l, u, κ, σ) = 1
πσ

log(2)
(u − l)

(
log

(1
κ

))−1
(y − l

u − l

)1 −
(

y − l

u − l

)log(2)(log( 1
κ ))−1−1

1 +

− 1
σ

log

(y − l

u − l

)−
(

log(2)(log( 1
κ ))−1

)
− 1




2
−1

.

Proposition 2.2. The pdf of RUC distribution in (2.3) is symmetric when κ = 0.5.
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Proof. To show that the corresponding pdf is symmetric when κ = 0.5 whatever the value
of parameter σ, is sufficient to show that fZ(0.5 − z; 0.5, σ) = fZ(0.5 + z; 0.5, σ). Using
the pdf given in (2.3), it is easy to put forth that

fZ(0.5 − z; 0.5, σ) = 1
πσ

((0.5 − z)(0.5 + z))−1
(

1 +
(

− 1
σ

(log(0.5 + z) − log(0.5 − z))
)2
)−1

=fZ(0.5 + z; 0.5, σ).

□

2.1. Quantile-based analysis
The quantile-based analysis of the RUC distribution can be carried out by using its qf

κ(p) = F −1
Z (p; κ, σ) = (1 + exp (−σ tan (π(p − 0.5))))

log(κ)
log(2) , p ∈ (0, 1). (2.5)

Remark 2.3. Let κp represent the p-th quantile of the sample, e.g., κ0.5 denotes the
sample median. Then, if p = 0.5 in (2.5), 2

log(κ)
log(2) = κ0.5, which means that the median

of the RUC distribution depends only on the parameter κ as expected; therefore, the
parameter κ can be estimated by using the sample’s median via straightforward calcu-
lation, that is, κ̃ = κ0.5. Also, the parameter σ can be estimated by using κ(p) and its
conterparts in the sample κp; one of the following equations σ̃ = − log

(
(κ0.75)

log(2)
log(κ̃) − 1

)
,

σ̃ = log
(

(κ0.25)
log(2)
log(κ̃) − 1

)
or σ̃ = log(2)

log(κ̃) log (κ0.75/κ0.25) can be used to estimate the pa-
rameter σ.

The qf of the RUC distribution, given in (2.5), has a simple form; therefore, a quantile-
based analysis of the RUC distribution can be easily performed. For example, the inter-
quantile range (IQR) of the RUC distribution

IQR = κ(0.75) − κ(0.25) =
(

exp
(

σ
log(1/κ)
log(2)

)
− 1

)
(1 + exp(σ))

log(κ)
log(2)

can be used to identify outliers in the data. Octile skewness measure (−1 ≤ κS ≤ 1)
proposed by [2], which is a member of the class of skewness measures introduced by [8],
of the RUC distribution

κS = (κ(0.875) − κ(0.5)) − (κ(0.5) − κ(0.125))
κ(0.875) − κ(0.125)

can be used to detect asymmetry in the data. Also, Moors’s [25] kurtosis measure (κK)
of the RUC distribution is

κK = κ(0.875) − κ(0.625) + κ(0.375) − κ(0.125)
κ(0.75) − κ(0.25)

.

The surface plots for the κS and κK of the RUC distribution are given, for an illustrative
purpose, in Figure 2(a)-2(b), respectively.
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(a) surface plot for the κS (b) surface plot for the κK

Figure 2. The surface plots for the κS and κK of the RUC distribution.

In Figure 2, it is clear that the pdf of the RUC distribution can be right skewed, left
skewed and symmetric when κ < 0.5, κ > 0.5, and κ = 0.5, respectively. The RUC
distribution can be used to model data that have various values of skewness and kurtosis,
which motivates practitioners to use it for statistical modeling.

Definition 2.4. Let X be a random variable having qf F −1
X . Then the quantile spread,

introduced by Townsend and Colonius [38], of X is

QSX(p) = F −1
X (1 − p) − F −1

X (p),

for 0 < p < 0.5. If X and Y are random variables with quantile spreads QSX(p) and
QSY (p), respectively, and QSX(p) ≤ QSY (p), for all 0 < p < 0.5, then X is called smaller
than Y in quantile spread order and it is denoted by X ≤QS Y .

Proposition 2.5. If X ∼ RUC(κ, σ1) and Y ∼ RUC(κ, σ2) then X is smaller than Y
in the quantile spread order (X ≤QS Y ) if and only if σ2 ≤ σ1. See Appendix-A for the
proof.

Corollary 2.6. Mitnik and Baek [24] used quantile spread order to identify the dispersion
parameter of a distribution; therefore, by using the following arguments in study of [24]
and the result given in Proposition 2.5, it can be said that the σ is a dispersion parameter
of the RUC distribution.

Remark 2.7. Random variates of the RUC distribution, having the pdf given in (2.3),
can be generated via the equation

z = (1 + exp (−σ tan (π(u − 0.5))))
log(κ)
log(2) (2.6)

where u is generated from uniform(0, 1).

3. Quantile regression
Quantile regression, which has been popular since the paper of [12], is utilized to deter-

mine the conditional distribution of a response variable given the values of the covariates.
See [3] for the characteristics and main advantages of quantile regression. As stated in [21],
there exist several approaches, such as the nonparametric approach, based on a pseudo-
likelihood through an asymmetric Laplace distribution, and the parametric approach based
on ML inference, in modeling quantiles conditional on covariates. In this context, Noufaily
and Jones [27] considered the generalized gamma distribution to obtain a fully parametric
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approach to quantile regression for the response variable in R+. See [11, 40–42] in which
detailed information about quantile regression is presented.

In this study, the new quantile regression model is formulated by using the pdf of RUC
distribution, given in (2.3), for bounded response variable. Therefore, this paper can be
classified into papers that use a fully parametric approach.

3.1. The RUC quantile regression model
Let z = (z1, z2, · · · , zn)⊤ be a vector of n independent observations of the variables

Zi ∼ RUC(κi, σ) for (i = 1, 2, · · · , n). Then, the proposed quantile regression model is
defined as

g(κi) = x⊤
i ξ = ηi

where ξ = (ξ1, ξ2, ξ3, · · · , ξk)⊤, ξ ∈ Rk, is the parameter vector associated with the co-
variates x⊤

i = (xi1, xi2, xi3, · · · , xik) which are assumed to be fixed and known; (k < n).
Here, g : (0, 1) → R is a strictly monotonic and twice differentiable link function that is
used the covariates to conditional of the response variable. In the literature, several link
functions are used for g(·). In the rest of this paper, the logit link function

g(κi) = log
(

κi

1 − κi

)
= x⊤

i ξ

is considered due to its useful interpretation of the regression coefficients as an odds ratio.
Therefore, the quantities κi are

κi =
exp

(
x⊤

i ξ
)

1 + exp
(
x⊤

i ξ
) . (3.1)

Note that data may have an asymmetric form and may include unusual observations.
In such cases, the median, a more robust measure against the presence of the anomalies
in the data than the mean, is usually used as a measure of the location of the data rather
than the mean; therefore, median-based regressions are preferable to mean-based ones,
e.g., beta regression. Therefore, in this study, the covariates are linked to a conditional
median of the response variable, i.e., the pdf given in (2.3) is considered in constructing
the proposed quantile regression model.

Remark 3.1. In this study, median conditional quantile regression model is consid-
ered. However, quantile regression models with conditional to the other quantiles, such
as 0.1, 0.25, 0.75 or 0.90, can definitely be obtained by using the pdf given in (2.2) and
estimated quantile curves associated with the considered quantiles cannot cross as a yield
of the parametric approach. This issue and its importance were also emphasized by [27].

3.2. The ML estimation for the RUC quantile regression model
From (2.3), the log L for (ξ, σ) is

log L(ξ, σ) =
n∑

i=1
log Li (κi, σ) ,

where

log Li (κi, σ) = log(2) − log π − log
(

log
( 1

κi

))
− n log σ − log(zi) − log

1 − z

log(2)
log( 1

κi
)

i


− log

1 +
(

− 1
σ

log
(

z
log(2)

log(κi)
i − 1

))2
 .
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After differentiating log Li (κi, σ) with respect to the parameters of interest, i.e., κi and
σ,

∂ log Li (κi, σ)
∂κi

= 1
κi log (κi)

+ log(2) log(zi)

κi (log(κi))2
(

z

log(2)
log(κi)
i − 1

)

+ 2
log(2) log(zi)z

log(2)
log(κi)
i log

(
z

log(2)
log(κi)
i − 1

)

κi (log(κi))2
(

z
log(2)

log(κi)
i − 1

)σ2 +
(

log
(

z
log(2)

log(κi)
i − 1

))2


= ai + biżi (1 + z̈i)

and

∂ log Li (κi, σ)
∂σ

= − 1
σ

+ 2
σ

(
log

(
z

log(2)
log(κi)
i − 1

))2

σ2 +
(

log
(

z
log(2)

log(κi)
i − 1

))2

= − 1
σ

+ 2
σ

(
z̈i

(
z

− log(2)
log(κi)

i log
(

z
log(2)

log(κi)
i − 1

)))
are obtained. Here,

ai = 1
κi log (κi)

, bi = log(2)
κi (log (κi))2 , żi = log (zi)

z
log(2)

log(κi) − 1
, and z̈i = 2

z
log(2)

log(κi)
i log

(
z

log(2)
log(κi) − 1

)

σ2 +
(

log
(

z
log(2)

log(κi) − 1
))2

To sum up, the differential total is given by

∂ log L(ξ, σ)
∂ξj

=
n∑

i=1

∂ log Li (κi, σ)
∂κi

dκi

dηi

∂ηi

∂ξj
, (j = 1, 2, 3, · · · , k)

and
∂ log L(ξ, σ)

∂σ
=

n∑
i=1

∂ log Li (κi, σ)
∂σ

.

Note that dκi

dηi
= 1

g′ (κi)
= κi (1 − κi) and ∂ηi

∂ξj
= xij ; therefore, the score equations for

the parameters of the RUC quantile regression model are

∂ log L(ξ, σ)
∂ξj

=
n∑

i=1
(ai + biżi (1 + z̈i)) (κi (1 − κi)) xji = 0, (j = 1, 2, 3, · · · , k)

and
∂ log L(ξ, σ)

∂σ
=

n∑
i=1

si = 0,

where si =
(

z̈i

(
z

− log(2)
log(κi)

i log
(

z
log(2)

log(κi)
i − 1

)))
− 1.

As a result, the score vector’s components can be expressed in matrix form as

Uξ(ξ, σ) = X⊤Kc and Uσ (ξ, σ) = s⊤1n,
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where X is an (n × k) matrix whose i-th row is x⊤
i , s = (s1, s2, s3, · · · , sn)⊤, and 1n is n-

dimensional vector of 1’s, K = diag {κ1 (1 − κ1) , κ2 (1 − κ2) , κ3 (1 − κ3) , · · · , κn (1 − κn)},
c = (a1 + b1ż1 (1 + z̈1) , a2 + b2ż2 (1 + z̈2) , a3 + b3ż3 (1 + z̈3) , · · · , an + bnżn (1 + z̈n))⊤.

The ML estimates of the model parameters vector, say
(
Ω̂ =

(
ξ̂⊤, σ̂

))
, are simultaneous

solutions of the nonlinear system Uξ(ξ, σ) = Uσ(ξ, σ) = 0 which cannot be obtained
explicitly; thus, Ω̂ should be obtained by using numerical optimization methods.

The asymptotic distribution of (Ω̂ − Ω) is the multivariate normal distribution with
zero mean vector and variance-covariance matrix H−1, that is, (Ω̂−Ω) ∼ Nk+1

(
0, H−1),

where H−1 is the inverse of the expected information matrix. Therefore, hypothesis testing
for the parameters can be conducted under the normal distribution. In an application,
the observed information matrix, obtained numerically by the software, is usually used
instead of the expected information matrix for easy calculation.

3.3. Monte-Carlo simulation
In this section, the performance of the ML method in estimating the parameters of

the RUC quantile regression model is investigated via a Monte-Carlo simulation study.
The simulations are conducted for ⌊100, 000/n⌋ Monte-Carlo runs, where ⌊·⌋ denotes
the integer value function, and the sample size, n, is considered 30 (small), 50 (mod-
erate), and 100 (large). The parameter vector Ω = (ξ0, ξ1, σ) of the model is taken to
be (−0.5, −1.5, 1.0), (1.2, 2.5, 1.0), (−1.5, 2.8, 1.0), and (1.5, −1.2, 1.0). These values were
arbitrarily chosen, that is, no specific reason for choosing them, and simulations are per-
formed in software MATLAB2015b.

The simulation structure is given below:
i. Set the values for the sample size n and the parameters ξ0, ξ1, and σ.
ii. Generate random variates for xi1 ∼ uniform(−3, 3), (i = 1, 2, 3, · · · , n).
iii. Set i = 0
iv. Generate zi ∼ RUC(κi, σ) from (2.6), where κi = exp(ξ0 + ξ1xi1)/(1 + exp(ξ0 +

ξ1xi1)).
v. Obtain the estimates for ξ̂0, ξ̂1, and σ̂.
vi. If the log L

(
ξ̂0, ξ̂1, σ̂

)
attains its global maximum, then i = i + 1 and

ξ̂i
0 = ξ̂0, ξ̂i

1 = ξ̂1, σ̂i = σ̂.

vii. Repeat steps (iv) - (vi) for ⌊100, 000/n⌋.
For each generated sample, the ML estimates of the parameters are obtained using

the optimization tool “fminsearch”, which is available in software MATLAB2015b. Then,
simulated bias, variance, and MSE values of the ML estimators of the parameters are cal-
culated. The results of the Monte-Carlo simulation study for the RUC quantile regression
model are reported in Table 1.
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Table 1. The simulated bias, variance, and MSE values of the ML estimators of
the parameters of the RUC quantile regression model.

(ξ0, ξ1, σ) n Bias Variance MSE
ξ̂0 ξ̂1 σ̂ ξ̂0 ξ̂1 σ̂ ξ̂0 ξ̂1 σ̂

(-0.5, -1.5, 1.0) 30 -0.0064 0.0847 0.0185 0.0384 0.2180 0.1014 0.0384 0.2251 0.1017
50 0.0077 0.0658 0.0226 0.0204 0.1397 0.0432 0.0205 0.1439 0.0437
100 0.0088 0.0638 0.0186 0.0093 0.0821 0.0204 0.0094 0.0860 0.0207

(1.2, 2.5, 1.0) 30 -0.0534 -0.2325 0.0246 0.0979 0.9305 0.0745 0.1007 0.9842 0.0750
50 -0.0276 -0.1755 0.0170 0.0633 0.5803 0.0406 0.0640 0.6108 0.0409
100 -0.0203 -0.1713 0.0201 0.0394 0.4516 0.0199 0.0398 0.4805 0.0203

(-1.5, 2.8, 1.0) 30 -0.0664 -0.2467 0.0201 0.2636 0.7512 0.0776 0.2679 0.8118 0.0780
50 -0.0525 -0.2123 0.0249 0.1740 0.4836 0.0407 0.1766 0.5284 0.0413
100 -0.0240 -0.2221 0.0211 0.1205 0.3241 0.0193 0.1210 0.3731 0.0197

(1.5, -1.2, 1.0) 30 -0.1482 -0.0275 0.0124 0.0959 0.1296 0.0797 0.1178 0.1303 0.0799
50 -0.1267 -0.0014 0.0181 0.0622 0.0903 0.0423 0.0782 0.0902 0.0426
100 -0.0935 -0.0032 0.0149 0.0351 0.0516 0.0212 0.0438 0.0516 0.0214

It can be seen from Table 1 that the simulated bias, variance and MSE values for the
ML estimators of the model parameters are slight for the moderate and large sample sizes.
Also note that the ML estimators of the model parameters are asymptotically unbiased,
and the MSE values of them decrease when the sample size increases, as the theory says.

4. Model diagnostic
After the estimation of the model parameters, residual analysis should be performed

to verify the suitability of the regression model fitted. In real-life applications, different
models may also be considered, and their modeling performances are compared to ensure
that the selected model performs better than its possible rivals. In this step, the models
considered in the comparisons should already pass the model adequacy check; otherwise,
comparisons may not make sense.

4.1. Model adequacy
The randomized quantile residuals proposed by [5]

êi = Φ−1
(
F
(
zi; Ω̂

))
and Cox-Snell residuals introduced by [4]

r̂i = − log
(
1 − F

(
zi; Ω̂

))
are analyzed to check if the regression model suits the data set. Here, F (·) is the cdf of
the RUC distribution, given in (2.4), evaluated in Ω̂ and Φ−1(·) is the quantile function of
the standard normal distribution.See [29, 43] for using randomized quantile residuals and
Cox-Snell residuals in the context of beta regression.

Note that if êi and r̂i follow the standard normal distribution and the exponential
distribution with the scale parameter one (standard exponential distribution), respectively,
the corresponding regression model is well-adjusted; otherwise, the corresponding model
may not give reliable results. The Shapiro-Wilk (SW) and Kolmogorov-Simirnov (KS)
tests can be used to check the goodness of fit of êi and r̂i to the standard normal and
standard exponential distribution, respectively.
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4.2. Model comparison
In the literature, several information criteria, such as the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC), are used to compare models. The for-
mulas for AIC and BIC are −2 log L(Ω̂) + 2k and −2 log L(Ω̂) + k log(n), respectively,
where k is the number of parameters in the corresponding model and n is the number
of observations in the sample. It is clear from their formulas that when the number of
parameters in the models is equal, the value of log L(Ω̂) can only be used to determine
which model reflects more information than others from the corresponding samples. Also,
note that the AIC and BIC criteria are generally preferred to compare nested models,
and Raftery [33] stated that the significant difference in the BIC of the models should be
greater than 2.0.

In addition, the proportion of explained variation in the response variable by the regres-
sion model can be considered a model comparison criterion. In this context, the generalized
pseudo-R2 (R2

G

)
, defined by [26],

R2
G = 1 − exp

(
− 2

n
(log Lfit − log Lnull)

)
can be used for comparing not only nested but also non-nested models. Here, log Lfit and
log Lnull represent the log-likelihood of the fitted regression model and the log-likelihood
for the null model, without covariates, respectively. A higher value of R2

G means a better
explanation of the variation in the response variable.

Likelihood ratio tests can also be used to compare models. Vuong [39] proposed to use
the following likelihood ratio statistics

V uong = 1
ω̂

√
n

n∑
i=1

log
f
(
zi; xi, δ̂

)
g
(
zi; xi, θ̂

)
for testing whether there is any significant difference in two non-nested models. Here,

ω̂ =

 1
n

n∑
i=1

log
f
(
zi; xi, δ̂

)
g
(
zi; xi, θ̂

)
2

−

 1
n

n∑
i=1

log
f
(
zi; xi, δ̂

)
g
(
zi; xi, θ̂

)
2

1/2

is the standard deviation of the 1
n

∑n
i=1 log f(zi;xi,δ̂)

g(zi;xi,θ̂) . Note that when n goes to infinity,
the distribution of Vuong statistics converges to the standard normal distribution.

5. Data modeling
In this section, real datasets from the related literature are modeled using the RUC

quantile regression model. Also, the beta regression model proposed by [6] and the UW,
UGHN, Kum, and UBXII quantile regression models introduced by [21,23,24,34], respec-
tively, were included in the study to strengthen the application section. See Appendix B
for the pdf of the model considered. The ML method is used to obtain estimates of the
parameters of the corresponding regression models.

The modeling performances of the beta, Kum, UW, UGHN, UBXII, and RUC quan-
tile regression models are compared to each other. In the comparisons, adequacy of the
corresponding model is assessed by using the SW and KS tests, which show whether the
randomized residuals and Cox-Snell residuals follow the standard normal and standard
exponential distributions, respectively.

After the model adequency check, the R2
G and Vuong statistics are used to determine

which model explains the variation in the response variable better than the others, and
Vuong statistics are used to determine whether the compared models are equivalent, i.e.,
to check if there exist statistical differences between the compared models. Note that
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the Vuong statistics are obtained for the RUC quantile regression model against others.
Furthermore, values of log L and BIC of the beta, Kum, UW, UGHN, UBXII and RUC
quantile regression models are provided.

Note that all computations were performed via the software R [32]. The ML estimates
of the beta, Kum, UW, UGHN, UBXII, and RUC regression models along with the cor-
responding p-values were computed by using the ‘‘maxBFGS’’ function which is available
in the ‘‘maxLik’’ package proposed by [7].

5.1. Application-I: Modeling of tuna data
In this section, the tuna dataset taken from [35] is considered. The data set includes 77

observations of longliner catches of the tropical tuna percentage (TTP) and the sea surface
temperature (SST) in the corresponding points, where the observations were obtained, of
the southern Indian Ocean in the year 2000. Here, the TTP is considered a response
variable, and the SST is taken to be a covariate; in other words, the TTP is assumed to be
a function of the SST. Ribeiro and Ferrari [35] replaced the value of observation 46 from
1 to 0.99 since observations at the boundary of the unit interval make it problematic in
beta regression. Here, the following regression structure

logit(κi) = ξ0 + ξ1xi1, (i = 1, 2, 3, · · · , 77)
is considered for κi.

The ML estimates of the parameters, with an associated value p in parentheses, of the
beta, Kum, UW, UGHN, UBXII and RUC quantile regression models along with the log L,
BIC, SW (p-value), KS (p-value), Vuong statistics (p value) and R2

G values are tabulated
in Table 2 and Table 3.

Table 2. The ML estimates of the parameters of the employed regression models
in modeling tuna data (the associated p-values are given in parentheses).

ξ̂0 ξ̂1 σ̂

Beta -5.039 (<0.01) 0.145 (<0.01) 7.781 (<0.01)
Kum -7.529 (<0.01) 0.235 (<0.01) 1.131 (<0.01)
UW -7.360 (<0.01) 0.223 (<0.01) 3.246 (<0.01)

UGHN -7.728 (<0.01) 0.238 (<0.01) 2.291 (<0.01)
UBXII -7.138 (<0.01) 0.216 (<0.01) 1.313 (<0.01)
RUC -7.058 (<0.01) 0.209 (<0.01) 0.217 (<0.01)

Table 3. Model diagnostic results of the employed models in modeling tuna data
(the associated p-values are given in parentheses).

Model Adequency Model Comparison

SW KS Vuong R2
G log L BIC

Beta 0.595 (<0.01) 0.253 (<0.01) 1.448 (0.074) 0.324 69.808 -126.584
Kum 0.682 (<0.01) 0.179 (0.013) 1.857 (0.032) 0.341 71.071 -129.111
UW 0.810 (<0.01) 0.144 (0.072) 0.820 (0.206) 0.526 89.134 -165.237

UGHN 0.809 (<0.01) 0.167 (0.024) 1.370 (0.085) 0.519 86.365 -159.699
UBXII 0.811 (<0.01) 0.142 (0.081) 1.546 (0.061) 0.388 82.706 -152.381
RUC 0.962 (0.021) 0.111 (0.278) — 0.639 98.722 -184.413

From Table 2, it is clear that the covariate “SST” has a statistically significant positive
effect on the response variable “TTP” in the beta, Kum, UW, UGH, UBXII and RUC
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regression models. Furthermore, the results of the adequacy of the model, given in Table
3, show that only the randomized quantile residuals of the RUC regression model follow
the standard normal distribution at a 1% significant level; see also Figure 3 in which
Q-Q plots are provided for the randomized quantile residuals of the models considered.
This conclusion can also be extended for the Cox-Snell residuals in which only the RUC
regression model meets the criterion at a significant level 10%. Also, Ribeiro and Ferrari
[35] spotted that observation 46 is an outlier and stated that the beta regression model
with ML estimates has a lack of fit because of it; therefore, they proposed robust estimation
approaches which are not affected by the outliers.
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Figure 3. Normal Q-Q plot for the quantile residuals of the corresponding fitted
models to the TTP.

The RUC quantile regression model explains the variation in the TTP better than its
rivals since it has the highest R2

G value; see also Figure 4, in which the fitting performances
of the considered regression models are illustrated. Furthermore, the RUC quantile re-
gression model is not equal to the beta, Kum, UGHN, and UBXII regression models (at a
10% significant level) when the corresponding Vuong statistics are considered. The RUC
quantile regression model also has the highest log L and the lowest BIC values.
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Figure 4. Scatter plot of the pairs (SST, TTP) along with the fitted regression
lines of the corresponding models.

In summary, from Table 2, Table 3, Figure 3 and Figure 4, it can be said that the RUC
quantile regression model performs better modeling performance than its rivals when not
only goodness-of-fit statistics are taken into account, but also information criteria results
are taken into account.

5.2. Application-II: Modeling of health insurance coverage data
In this section, the health insurance coverage (HIC) data includes information on 80

cities in the state of São Paulo, Brazil, in 2010, from Maluf et al. [18], is modeled using
beta, Kum, UW, UGH, UBXII, and RUC regression models. The HIC index is assumed to
be a function of the percentage of the total population who lives in the city’s urban zone
(URB) and the per capita gross domestic product (GDP), i.e., the HIC index is considered
a response variable, and the URB and GDP are stand for covariates.

In this study, the following regression structure
logit(κi) = ξ0 + ξ1xi1 + ξ2xi2, (i = 1, 2, 3, · · · , 80)

is considered for κi.
The ML estimates of the parameters, with associated p-value in the parentheses, of

the beta, Kum, UW, UGHN, UBXII, and RUC quantile regression models along with
the log L, BIC, SW (p-value), KS (p-value), Vuong statistics (p-value), and R2

G values are
tabulated in Table 4 and Table 5.

Table 4. The ML estimates of the parameters of the employed regression models
in modeling the HIC data (the associated p-values are given in parentheses).

ξ̂0 ξ̂1 ξ̂2 σ̂

Beta -4.281 (<0.01) 3.269 (<0.01) 0.010 (<0.01) 7.398 (<0.01)
Kum -4.595 (<0.01) 3.344 (<0.01) 0.011 (<0.01) 1.246 (<0.01)
UW -5.853 (<0.01) 4.908 (<0.01) 0.006 (<0.01) 2.944 (<0.01)

UGHN -5.838 (<0.01) 4.874 (<0.01) 0.006 (<0.01) 2.265 (<0.01)
UBXII -4.554 (<0.01) 3.203 (<0.01) 0.011 (<0.01) 1.421 (<0.01)
RUC -6.922 (<0.01) 5.999 (<0.01) 0.011 (<0.01) 0.245 (<0.01)
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Table 5. Model diagnostic results of the employed models in modeling the HIC
data (the associated p-values are given in parentheses).

Model Adequacy Model Comparison

SW KS Vuong R2
G log L BIC

Beta 0.775 (<0.01) 0.138 (0.085) 0.999 (0.159) 0.289 53.384 -89.241
Kum 0.735 (<0.01) 0.149 (0.052) 1.125 (0.106) 0.244 50.358 -83.187
UW 0.920 (<0.01) 0.078 (0.690) 0.358 (0.360) 0.377 66.012 -114.495

UGHN 0.933 (<0.01) 0.089 (0.523) 0.429 (0.334) 0.361 66.057 -114.586
UBXII 0.836 (<0.01) 0.120 (0.183) 0.832 (0.203) 0.304 59.352 -101.176
RUC 0.978 ( 0.185) 0.062 (0.904) — 0.594 69.083 -120.639

The results of the analysis show that the covariates “URB” and “GDP” statistically
significantly affect the response variable “HIC” in the beta, Kum, UW, UGH, UBXII and
RUC regression models. Note that the estimates of parameters ξ̂0 and ξ̂1 differ, while
ξ̂2 remain more or less the same for each of the models considered. From Table 5, the
randomized residuals from only the RUC quantile regression model follow the standard
normal distribution, and it shows that only the RUC quantile regression model meets
the model adequacy criterion. See also Figure 5 in which Q-Q plots are provided for the
randomized quantile residuals of the models considered. In contrast to the SW test, the
results of the KS test show that only the beta regression and Kum quantile regression
models perform a lack of fit (at a 10% significant level) to the Cox-Snell residuals.
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Figure 5. Normal Q-Q plot for the quantile residuals of the corresponding models
fitted to the HIC.

Maluf et al. [18] stated that the city with an atypical value for HIC, around 0.98,
could be an outlier when the beta regression model is taken into account. This conclusion
can be extended when the Kum, UW, UGHN, and UBXII quantile regression models are
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considered; see Figure 5. In addition, Maluf et al. [18] show that the ML estimates of
the beta regression model are not robust against outliers; therefore, they proposed robust
estimation approaches.

The quantile regression of RUC has the highest value R2
G, which means that it explains

the variation in the HIC better than the other considered models; see Figure 6 in which the
fitting performances of the beta, UW, and RUC regression models are illustrated. In addi-
tion, it can be said that the Vuong statistics are in favor of the quantile regression model
RUC at significant levels 16%, 11%, 0.36%, 0.33%, and 0.20% when the beta, Kum, UW,
UGHN, and UBXII regression models are taken as rivals, respectively. Furthermore, the
RUC quantile regression model reflects more information from the corresponding samples
than the beta, Kum, UW, UGHN and UBXII regression models, since it has the highest
log L and lowest BIC values.

Figure 6. Scatter plot of the pairs (URB, GDP, HIC) along with the fitted surface
plots of the beta, UW, and RUC regression models.

As a result, from Table 4, Table 5, Figure 5 and Figure 6, it can be said that the RUC
quantile regression model performs better modeling performance than its rivals when not
only goodness-of-fit statistics are taken into account, but also information criteria results
are taken into account.

5.3. Application-III: Modeling of risk survey data
In this section, the data of the Schmitand and Roth risk survey [36] are analyzed.

In their study, unit risk management costs are assumed to be a function of the firm’s
retention strategy, whether or not the firm uses a captive insurer; the log of the firm’s size
and the firm’s industry risk; the firm’s centralization strategy; the degree to which the
firm employs analytical tools in performing the risk management function. Therefore, the
response variable (z) and the covariates (x1, x2, x3, x4, x5, and x6) associated with z are
defined, respectively, as follows:

• Firm-specific ratio of premiums plus uninsured losses divided by total assets (FIRM-
COST)

and
• Firm-specific ratio of the summation of per occurrence retention levels (ASSUM),
• Whether or not the firm uses a captive insurer (CAP),
• Log of the firm’s total asset value (SIZELOG),
• Industry average of premiums plus uninsured losses divided by total assets (IND-

COST),
• Importance of the local manager in choosing local retention levels (CENTRAL),
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• Importance of analytical tools in making risk management decisions (SOPH).
Note that the covariates x1 and x5 were measured by the corporate risk manager, and the
covariate x4 was obtained from the 1985 Cost of Risk Survey; see Schmitand and Roth [36]
and Mazucheli et al. [21] for details. Recently, Mazucheli et al. [21] utilized the regression
structure

logit(κi) = ξ0 + ξ1xi1 + ξ2xi2 + ξ3xi3 + ξ4xi4 + ξ5xi5 + ξ6xi6, (i = 1, 2, 3, · · · , 73)
for κi and showed that the unit-Weibull (UW) quantile regression model is preferable over
the beta and Kumaraswamy (Kum) regression models.

The data set from the risk survey is analyzed by embedding the same regression struc-
ture into the RUC quantile regression model. The ML estimates of the parameters (p-
value) of the beta, Kum, UW, UGHN, UBXII and RUC quantile regression models along
with the values log L, BIC, SW (p-value), KS (p-value), Vuong statistics (p-value) and R2

G
are tabulated in Table 6 and Table 7.

Table 6. The ML estimates of the parameters of the employed regression models
in modeling risk survey data (the associated p-values are given in parentheses).

ξ̂0 ξ̂1 ξ̂2 ξ̂3

Beta 1.888 (0.107) -0.012 (0.383) 0.178 (0.443) -0.511 (<0.01)
Kum 2.539 (0.089) -0.036 (0.038) 0.596 (0.118) -0.798 (<0.01)
UW 3.471 (<0.01) -0.008 (0.595) 0.128 (0.610) -0.804 (<0.01)

UGHN 3.142 (<0.01) -0.001 (0.921) 0.045 (0.848) -0.757 (<0.01)
UBXII 2.274 (0.179) -0.027 (0.142) 0.297 (0.408) -0.782 (<0.01)
RUC 4.000 (<0.01) -0.016 (<0.01) 0.053 (0.797) -0.894 (<0.01)

ξ̂4 ξ̂5 ξ̂6 σ̂

Beta 1.236 (<0.01) -0.012 (0.889) -0.004 (0.861) 6.331 (<0.01)
Kum 5.256 (<0.01) -0.028 (0.816) -0.027 (0.389) 0.978 (<0.01)
UW 1.439 (<0.01) -0.024 (0.777) -0.002 (0.916) 3.353 (<0.01)

UGHN 1.248 (<0.01) -0.017 (0.824) -0.003 (0.875) 2.680 (<0.01)
UBXII 4.870 (<0.01) -0.051 (0.647) -0.012 (0.682) 1.058 (<0.01)
RUC 2.035 (<0.01) -0.238 (<0.01) 0.019 (0.298) 0.204 (<0.01)

Table 7. Model diagnostic results of the employed models in modeling risk survey
data (the associated p-values are given in parentheses).

Model Adequency Model Comparison

SW KS Vuong R2
G log L BIC

Beta 0.677 (<0.01) 0.217 (<0.01) 1.914 (0.028) 0.272 87.723 -141.122
Kum 0.901 (<0.01) 0.120 (0.227) 1.981 (0.024) 0.425 98.827 -163.330
UW 0.902 (<0.01) 0.078 (0.737) 0.513 (0.304) 0.468 111.111 -187.899

UGHN 0.932 (<0.01) 0.087 (0.613) 0.333 (0.369) 0.500 113.679 -193.033
UBXII 0.918 (<0.01) 0.099 (0.449) 1.305 (0.096) 0.399 106.517 -178.711
RUC 0.981 (0.320) 0.076 (0.771) — 0.532 116.729 -199.134

From the results of the SW test given in Table 7, the randomized quantile residuals
only from the RUC quantile regression model follow the standard normal distribution
while the other models fail. Therefore, it can be said that only the fitting of the RUC
quantile regression model is acceptable. This conclusion is also supported by the Q-Q
plots, shown in Figure 7, for the randomized quantile residuals of the models considered.
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However, when the KS test for the Cox-Snell residuals is taken into account, only the beta
regression model shows a lack of fit to the corresponding data set.

−2 −1 0 1 2

0
2

4
6

Beta regression

Normal quantiles

R
e
s
id

u
a
ls

15

−2 −1 0 1 2

−
2

−
1

0
1

2
3

4

Kum quantile regression

Normal quantiles

R
e
s
id

u
a
ls

15

−2 −1 0 1 2

−
2

0
2

4

UW quantile regression

Normal quantiles

R
e
s
id

u
a
ls

15

−2 −1 0 1 2

−
2

0
2

4

UGHN quantile regression

Normal quantiles

R
e
s
id

u
a
ls

15

−2 −1 0 1 2

−
2

−
1

0
1

2
3

4

UBXII quantile regression

Normal quantiles

R
e
s
id

u
a
ls

15

−2 −1 0 1 2

−
1

0
1

2

RUC quantile regression

Normal quantiles

R
e
s
id

u
a
ls

15

Figure 7. Normal Q-Q plot for the quantile residuals of the corresponding models
fitted to the FIRMCOST.

The RUC quantile regression model explains the variation in “FIRMCOST” better than
its rivals; therefore, the RUC quantile regression model is one step ahead of its rivals based
on the R2

G criterion. Moreover, the Vuong test shows that the RUC quantile regression
model is not equivalent to the beta, KUM, and UBXII regression models at a 10% sig-
nificant level. In addition, if the UW and UGHN quantile regression models are taken as
rivals, the Vuong statistics favor the RUC quantile regression model at significant levels
30% and 37%, respectively. Furthermore, the RUC quantile regression model has higher
log L and smaller BIC values than the beta, Kum, UW, UGHN, and UBXII regression
models; therefore, it can be said that the RUC quantile regression model is also preferable
to its rivals when information criteria are considered.

Not least of all, the results of the analysis show that the covariates “SIZELOG” and
“INDICOST” have statistically significant negative and positive impacts, respectively, on
the response variable “FIRMCOST”. In contrast, the remaining covariates in the beta,
Kum, UW, UGH, and UBXII quantile regression models do not statistically significantly
affect the “FIRMCOST”. In contrast, the covariates “ASSUM” and “CENTRAL” are also
statistically significant in the RUC quantile regression model.

Ribeiro and Ferrari [35] conducted a comprehensive analysis of the data from the risk
survey and spotted atypical observations in the data set. They showed that the ML
estimates of the parameters of the beta regression model are highly affected by anomalies
in the data set. Similarly to Ribeiro and Ferrari [35], the scatter plots for the pairs (x3, z)
and (x4, z) along with the fitted regression lines of the beta, Kum, UW, UGHN, UBXII
and RUC regression model are produced – by setting values of the remaining covariates
at their sample median value – to show the effects of the outliers on the regression lines;
see Figure 8.
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Figure 8. Scatter plots of the pairs (SIZELOG, FIRMCOST) and (INDICOST,
FIRMCOST) along with the fitted regression lines of the corresponding models.

Note that the RUC quantile regression model considered in this study performs more
or less the same fitting performance as the robust beta regression counterparts given in
Ribeiro and Ferrari [35]; see Figure 8 in this study and Figure 13 in Ribeiro and Ferrari
[35].

6. Conclusion
In this study, the RUC distribution is obtained by reparametrizing the UC distribution

and quantile-based analysis of the RUC distribution is performed to show some of its
characteristic measures. Then, a new quantile regression model is derived based on the
RUC distribution, and the ML method is used in estimating the parameters of the RUC
quantile regression model. In addition, a Monte Carlo simulation study is conducted to
show the efficiencies of the ML estimation of the model parameters, and simulation results
show that the corresponding estimates are asymptotically unbiased with small variances.
Furthermore, implementation of the RUC quantile regression model is shown by modeling
the three datasets, which were previously modeled via the competitive regression model
by the several authors. Last but not least, modeling performance of the RUC quantile
regression model is compared with its strong rivals’ by means of the several criteria, and
comparison results show that the RUC quantile regression model stands one step ahead
from not only the beta regression model but also the other competetive models which were
recently introduced.
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Appendix A. Quantile spread order
The proof of Proposition 2.5 is provided below:

Proof. By using the qf in (2.5), quantile spread of X and Y are

QSX(p) =κ−1(1 − p) − κ−1(p)

= (1 + exp (−σ1 tan (π(0.5 − p))))
log(κ)
log(2) − (1 + exp (−σ1 tan (π(p − 0.5))))

log(κ)
log(2)

and

QSY (p) =κ−1(1 − p) − κ−1(p)

= (1 + exp (−σ2 tan (π(0.5 − p))))
log(κ)
log(2) − (1 + exp (−σ2 tan (π(p − 0.5))))

log(κ)
log(2) ,

for 0 < p < 0.5, respectively. Therefore,

QSX(p) ≤ QSY (p) ⇔

(1 + exp (−σ1 tan (π(0.5 − p))))
log(κ)
log(2) − (1 + exp (−σ1 tan (π(p − 0.5))))

log(κ)
log(2)

≤ (1 + exp (−σ2 tan (π(0.5 − p))))
log(κ)
log(2) − (1 + exp (−σ2 tan (π(p − 0.5))))

log(κ)
log(2) ;

⇔ (1 + exp (−σ1 tan (π(0.5 − p))))
log(κ)
log(2) − (1 + exp (−σ2 tan (π(0.5 − p))))

log(κ)
log(2) ≤ 0;

⇔ (1 + exp (−σ2 tan (π(p − 0.5))))
log(κ)
log(2) − (1 + exp (−σ1 tan (π(p − 0.5))))

log(κ)
log(2) ≤ 0.

Then,

(1 + exp (−σ1 tan (π(0.5 − p))))
log(κ)
log(2) − (1 + exp (−σ2 tan (π(0.5 − p))))

log(κ)
log(2) ≤ 0

⇔ (1 + exp (−σ1 tan (π(0.5 − p))))
log(κ)
log(2) ≤ (1 + exp (−σ2 tan (π(0.5 − p))))

log(κ)
log(2)

⇔ −σ1 tan (π(0.5 − p)) ≤ −σ2 tan (π(0.5 − p)) ⇔ −σ1 ≤ −σ2 ⇔ σ2 ≤ σ1.

Additionally,

(1 + exp (−σ2 tan (π(p − 0.5))))
log(κ)
log(2) − (1 + exp (−σ1 tan (π(p − 0.5))))

log(κ)
log(2) ≤ 0

(1 + exp (−σ2 tan (π(p − 0.5))))
log(κ)
log(2) ≤ (1 + exp (−σ1 tan (π(p − 0.5))))

log(κ)
log(2)

⇔ −σ2 tan (π(p − 0.5)) ≤ −σ1 tan (π(p − 0.5))
⇔ σ2 tan (π(0.5 − p)) ≤ σ1 tan (π(0.5 − p)) ⇔ σ2 ≤ σ1.

As stated above, QSX(p) ≤ QSY (p) if and only if σ2 ≤ σ1. Therefore, the proof for the
quantile spread order X ≤QS Y is complete immediately if and only if σ2 ≤ σ1. □
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Appendix B. The unit distributions considered in the application section
In the application section, the beta, Kum, UW, UGHN, UBXII distributions having

the pdf

fBeta(z; κ, σ) = Γ(σ)
Γ(κσ)Γ ((1 − κ)σ)

zκσ−1 (1 − z)(1−κ)σ−1 ,

fKum(z; κ, σ) = σ log(0.5)
log (1 − κσ)

zσ−1 (1 − zσ)
log(0.5)

log(1−κσ) −1
,

fUW (z; κ, σ) = σ

z
0.5
( log(z)

log(κ)

)σ ( log(0.5)
log(κ)

)( log(z)
log(κ)

)σ−1
,

fUGHN (z; κ, σ) =
√

2
π

σΦ−1(0.25)
log(z)

( log(z)
log(κ)

)σ

exp
(

−1
2

(
Φ−1(0.25)

)2
( log(z)

log(κ)

)2σ
)

,

and

fUBXII(z; κ, σ) = (log (0.5)−σ))
(
log

(
(1 − z)−1))σ−1

(1 − z) log (1 + (log ((1 − κ)−1))σ)

×
(
1 +

(
log

(
(1 − z)−1

))σ) log(0.5)
log (1 + (log ((1 − κ)−1))σ)

−1
,

respectively, are considered. Here, z ∈ (0, 1), κ ∈ (0, 1), σ > 0, Γ(·) represents the gamma
function, and Φ−1(·) represents the quantile function of the standard normal distribution.


