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Research Article

Abstract − In this study, we present and explore extended beta matrix functions (EBMFs)
and their key properties. By utilizing the beta matrix function (BMF), we introduce novel
extensions of the Gauss hypergeometric matrix function (GHMF) and Kummer hyperge-
ometric matrix function (KHMF). We delve into their integral representations, recurrence
relations, transformation properties, and differential formulas. Additionally, we investigate
their statistical applications, mainly focusing on the beta distribution, and derive expressions
for the mean, variance, and moment-generating functions. Furthermore, we apply EBMFs to
develop the Appell matrix function (AMF) and Lauricella matrix function (LMF) and their
integral forms.

Keywords Beta matrix function, Gauss and Kummer hypergeometric matrix functions, Appell and Lauricella matrix
functions

Mathematics Subject Classification (2020) 33B15, 33E20

1. Introduction

Special matrix functions are a dynamic and intriguing area [1–14] with significant applications in
mathematics and physics. When these functions are generalized from scalar to matrix arguments,
they offer deeper insights and broaden the scope of their applications. Matrix versions of special func-
tions enhance the utility of their scalar counterparts by extending their relevance to multidimensional
and more complex problems. This generalization plays a crucial role in engineering, physics, statis-
tics, and mathematics fields, providing powerful tools for addressing matrix-related challenges and
advancing theoretical and practical research. Special matrix functions represent a critical extension of
classical special function theory, enabling matrices to be manipulated in ways similar to numbers. This
capability proves particularly valuable in applications of fields such as quantum mechanics, statistical
mechanics, and signal processing, where matrices are frequently encountered.

The extended beta function is a matrix version of the classical beta function, which arises in various
areas of mathematics and physics. Recent studies [1–3, 10, 11, 15] have focused on analyzing the
matrix beta function and exploring its convergence regions, integral representations, and differential
properties. Similarly, the extended Gauss hypergeometric and Kummer hypergeometric functions
are matrix generalizations of their classical counterparts and have been the subject of considerable
study in recent years [1–3, 7, 10, 15, 16]. Building on these foundational works, this paper discusses
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the extended beta matrix functions (EBMFs) and their integral representations, recurrence relations,
transformation formulas, and differential properties. We also research their applications in statistics.
We also define and investigate the integral representations of the extended Appell matrix function
(EAMF) and the extended Lauricella matrix function (ELMF).

2. Preliminaries

Throughout this paper, the vector space of r-square matrices with complex entries is designated Cr×r.
Spectrum is the set of all the eigenvalues of a matrix P ∈ Cr×r and represented by the symbol σ(P).
A matrix P in Cr×r is called a positive stable matrix (PSM) if ℜ(λ) > 0, for all λ ∈ σ(P), where ℜ(z)
represents the real part of a complex number z.

The expression Γ(P) for a PSM P in Cr×r is as follows [11]:

Γ(P) =
∞∫

0

e−ℓℓP−Idℓ

Furthermore, if P + κI is invertible, for all κ ∈ Z+ ∪ {0}, then the reciprocal gamma matrix function
(GMF) is defined as [11]:

Γ−1(P) = P(P + I) · · · (P + (n − 1)I)Γ−1(P + nI), n ≥ 1

If P ∈ Cr×r is a PSM and n ≥ 0 is an integer, then the GMF can also be defined in the form of a
limit as [11]:

Γ(P) = lim
n→∞

(n − 1)!(P)−1
n nP

The Pochhammer symbol [12] for P ∈ Cr×r is defined as:

(P)n =

 I, n = 0

P(P + I)...(P + (n − 1)I), n ≥ 1

Therefore,
(P)n = Γ−1(P)Γ(P + nI), n ≥ 1

If P and Q are PSMs in Cr×r and PQ = QP, then the beta matrix function (BMF) is defined as [11]:

B(P, Q) = Γ(P)Γ(Q)Γ−1(P + Q) =
1∫

0

ℓP−I(1 − ℓ)Q−Idℓ (2.1)

Let P, Q, and H be PSMs in Cr×r and H + κI be invertible, for all κ ∈ Z+ ∪ {0}. Then, the Gauss
hypergeometric matrix function (GHMF) is [12]:

2F1(P, Q; H; z) =
∞∑

n=0
(P)n(Q)n(H)−1

n

zn

n! (2.2)

The series in (2.2) converges absolutely for |z| < 1, and for z = 1 if α(P) + α(Q) < β(H), where
α(P) = max {ℜ(z) | z ∈ σ(P)}, β(P) = min {ℜ(z) | z ∈ σ(P)}, and β(P) = −α(−P).

Furthermore, if QH = HQ and Q, H, and H − Q are PSMs, then for |z| < 1, an integral form of (2.2)
is defined as [12]:

2F1(P, Q; H; z) =

 1∫
0

(1 − zℓ)−PℓQ−I(1 − ℓ)H−Q−Idℓ

× Γ−1(Q)Γ−1(H − Q)Γ(H)

Let P, Q, and A be PSMs and commuting matrices in Cr×r. Then, the EBMF B(P, Q; A) is defined
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by Abdalla and Bakhet [2] as follows:

B(P, Q; A) =
1∫

0

ℓP−I(1 − ℓ)Q−I exp
(

− A
ℓ(1 − ℓ)

)
dℓ

They generalized the GHMF and Kummer hypergeometric matrix function (KHMF) using EBMF.
Let P, Q, H, H − Q, and A be PSMs in Cr×r such that QH = HQ, HA = AH, and QA = AQ. The
extended GHMF (EGHMF) and the extended KHMF (EKHMF) are defined as [1]:

F (A)(P, Q; H; z) =

∑
m≥0

(P)mB(Q + mI, H − Q; A)zm

m!

× Γ(H)Γ−1(Q)Γ−1(H − Q)

and

ΦA(Q; H; z) =

∑
m≥0

B(Q + mI, H − Q; A)zm

m!

× Γ(H)Γ−1(Q)Γ−1(H − Q)

respectively.

Verma et al. [17] have introduced another extension of BMF. Let P, Q, A, and C be PSMs and
commuting matrices in Cr×r. Then, the EBMF B(P, Q; A, C) is defined as [17]:

B(P, Q; A, C) =
1∫

0

ℓP−I(1 − ℓ)Q−I exp
(

−A
ℓ

− C
(1 − ℓ)

)
dℓ (2.3)

Moreover, they introduced EGHMF and EKHMF by (2.3) as follows [17]:

F (A,C)(P, Q; H; z) =

∑
m≥0

(P)mB(Q + mI, H − Q; A, C)zm

m!

× B(Q, (H − Q))−1

and

Φ(A,C)(Q; H; z) =

∑
m≥0

B(Q + mI, H − Q; A, C)zm

m!

× B(Q, (H − Q))−1

respectively.

Inspired and motivated by EBMF, GHMF, and KHMF, we introduce their extensions and discuss these
extensions’ integral representations, differential formulae, recurrence relations, and transformation
formulae.

3. An Extension of EBMF

Let P, Q, A, and C be PSMs and commuting matrices in Cr×r and η, µ ∈ C. Then, we introduce an
extension of EBMF (EOEBMF) Bη,µ(P, Q; A, C) as follows:

Bη,µ(P, Q; A, C) =
1∫

0

ℓP−I(1 − ℓ)Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ (3.1)

By applying Schur decomposition [18] and substituting ln ℓ < ℓ and ln(1 − ℓ) < (1 − ℓ), for 0 < ℓ < 1,
respectively, we obtain

B(α(P) + i − κ, α(Q) + j − l; α(A), α(C)) < ∞

Thus, an EOEBMF Bη,µ(P, Q; A, C) exists.
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Theorem 3.1. The EOEBMF satisfies the following integral representations:

Bη,µ(P, Q; A, C) = 2
π/2∫
0

(cos u)2P−I(sin u)2Q−I exp
(
−Asec2ηu − Ccsc2µu

)
du (3.2)

Bη,µ(P, Q; A, C) =
∞∫

0

uP−I(1 + u)−P−Q exp
(
−A(1 + u−1)η − C(1 + u)µ

)
du (3.3)

and

Bη,µ(P, Q; A, C) = 2I−P−Q
1∫

−1

(1 + u)P−I(1 − u)Q−I × exp
(
−2ηA(1 + u)−η − 2µC(1 − u)−µ

)
du (3.4)

Proof. Substituting ℓ = cos2 u into (3.1) yields (3.2) after minor simplifications. Similarly, substi-
tuting ℓ = u

1+u into (3.1) results in (3.3). Finally, replacing ℓ = 1+u
2 in (3.1) provides (3.4).

Remark 3.2. If η = µ = 1 in (3.2), (3.3), and (3.4), respectively, then the result in [17] is obtained.

Theorem 3.3. The EOEBMF satisfies the following properties:

Bη,µ(P, Q + I; A, C) + Bη,µ(P + I, Q; A, C) = Bη,µ(P, Q; A, C) (3.5)

Bη,µ(P, I − Q; A, C) =
∞∑

n=0

(Q)n

n! Bη,µ(P + nI, I; A, C) (3.6)

and
Bη,µ(P, Q; A, C) =

∞∑
n=0

Bη,µ(P + nI, Q + I; A, C) (3.7)

Proof. From (3.1),

Bη,µ(P, Q + I; A, C) + Bη,µ(P + I, Q; A, C) =
1∫
0

[ℓP−I(1 − ℓ)Q] exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

+
1∫
0

[ℓP(1 − ℓ)Q−I ] exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

=
1∫
0

ℓP−I(1 − ℓ)Q−I [(1 − ℓ) + ℓ)] exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

=
1∫
0

ℓP−I(1 − ℓ)Q−I exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

= Bη,µ(P, Q; A, C)

Hence, the proof of (3.5) is done. Moreover,

Bη,µ(P, I − Q; A, C) =
1∫

0

ℓP−I(1 − ℓ)I−Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

By using the relation (1 − ℓ)−Q =
∞∑

n=0

(Q)n

n! ℓn in [12],

Bη,µ(P, I − Q; A, C) =
1∫
0

ℓP−I
∞∑

n=0

(Q)n

n! ℓn exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

=
∞∑

n=0

(Q)n

n!

1∫
0

ℓP+(n−1)I exp
(
− A

tη − C
(1−ℓ)µ

)
dℓ

=
∞∑

n=0

(Q)n

n! Bη,µ(P + nI, I; A, C)



Journal of New Theory 49 (2024) 16-29 / Certain Results on Extended Beta and Related Functions Using Matrix Arguments 20

Thus, the proof of (3.6) is done. Similarly, by substituting its series representation for (1 − ℓ)−I in
(3.1),

Bη,µ(P, Q; A, C) =
1∫

0

(1 − ℓ)Q
∞∑

n=0
ℓP+(n−1)I exp

(
− A

ℓη
− C

(1 − ℓ)µ

)
dℓ

The result (3.7) is obtained by using (3.1) and altering the integration and summation orders.

4. Application of EOEBMF

Many researchers [2,11,17,19,20] have investigated different generalizations and extensions of BMFs,
showcasing their potential applications in various domains. In this section, we analyze an application
of the EOEBMF in (3.1) within the realm of statistics. Specifically, we define the beta distribution
and derive its mean, variance, and moment-generating function using the EOEBMF.

For P, Q, A, and C be commutative PSMs in Cr×r and ℜ(η), ℜ(µ) > 0. Define the beta distribution
as:

u(ℓ) =

 [Bη,µ(P, Q; A, C)]−1ℓP−I(1 − ℓ)Q−I exp
(
− A

ℓη − C
(1−ℓ)µ

)
, 0 < ℓ < 1

0, otherwise
(4.1)

For any matrix R ∈ Cr×r, the moment of a random variable X is as follows:

E
(
XR

)
= Bη,µ(P + R, Q; A, C)[Bη,µ(P, Q; A, C)]−1

If R = I, then the mean of the beta distribution is as follows:

ρ = E
(
XI
)

= Bη,µ(P + I, Q; A, C)[Bη,µ(P, Q; A, C)]−1

Therefore, the variance of the distribution is defined as:

σ2 = E(X2I) −
{

E(XI)
}2

= Bη,µ(P + 2I, Q; A, C[Bη,µ(P, Q; A, C)]−1 −
{
Bη,µ(P + I, Q; A, C)[Bη,µ(P, Q; A, C)]−1}2

Besides, the moment generating matrix function of the distribution in (4.1) is as follows:

M (ℓ) =
∞∑

κ=0

ℓκ

κ!E(XκI) = [Bη,µ(P, Q; A, C)]−1
∞∑

κ=0
Bη,µ(P + κI, Q; A, C)ℓκ

κ!

The cumulative distribution of (4.1) is defined as:

F (x) =
x∫

0

u(ℓ)dℓ = Bx,η,µ(P, Q; A, C)[Bη,µ(P, Q; A, C)]−1

where F (1) = I and Bx,η,µ(P, Q; A, C) is the incomplete BMF defined as:

Bx,η,µ(P, Q; A, C) =
x∫

0

ℓP−I(1 − ℓ)Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

5. Graphical and Numerical Comparison of the Classical and Generalized
Matrix-Variate Beta Distributions

The classical beta distribution involving the BMF in (2.1) is defined as:

u(ℓ) =

 [B(P, Q)]−1ℓP−I(1 − ℓ)Q−I , 0 < ℓ < 1

0, otherwise
(5.1)
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Consider P =
(

2 0.5
0.5 3

)
, Q =

(
3 0.2

0.2 4

)
, A =

(
1 0.1

0.1 2

)
, C =

(
1.5 0.3
0.3 2.5

)
, and η = µ = 2.

In Figure 1, taking P and Q matrices, compute the eigenvalues of P − I and Q − I, and using in (5.1)
to compute and plot the classical beta distribution over the range 0 < ℓ < 1 for 2 × 2 matrices.

Moreover, in Figure 2, taking P, Q, A, and C matrices and η = µ = 2, compute the eigenvalues of
P − I, Q − I, A, and C and using in (4.1) to compute and plot the generalized beta distribution
with parameters A, C, η, and µ. In Figure 3, we compare our generalized beta distribution with the
classical beta distribution in matrices.
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Figure 1. Classical beta distribution for 2 × 2 matrices P and Q
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Figure 2. Generalized beta distribution with parameters A, C, η, and µ
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Figure 3. (a) Classical beta distribution and (b) Generalized beta distribution with exponential
terms

Both distributions are normalized using a simplified approach based on the scalar beta function. In
Figure 1, the distribution is closely related to the scalar classical beta distribution, generalized to
matrix arguments P and Q.

The simpler matrix beta distribution directly relates to random matrix theory, which has applications
in signal processing, wireless communications, and finance. The simpler form is also used for matrix-
variate generalizations of Bayesian analysis or weighting in optimization problems, particularly in
multivariate or matrix-based Bayesian methods. However, the flexibility to model more complex
real-world phenomena is restricted because it lacks additional factors like essential terms.

However, in our result, we provided the additional terms exp
(
− A

ℓη − C
(1−ℓ)µ

)
introduce exponential

decay, which can allow for greater flexibility in fitting data or modeling more complex systems. This
distribution could be used in more advanced Bayesian frameworks where the priors need to account
for additional penalization or constraints, often seen in hierarchical models or models with specific
tail behavior. The exponential terms can capture the behavior that decays rapidly, which is helpful
in stochastic modeling, particularly in systems with non-linear dynamics or time-varying processes.
In areas like financial modeling or signal processing, where matrix-valued variables may represent
volatility or correlation, the exponential decay allows better control over tail risks or sensitivity.
The exponential terms provide much more flexibility in controlling the shape and behavior of the
distribution. This is particularly useful in real-world applications where tail behavior, constraints,
or penalizations are needed. Parameters like A, C, η, and µ offer additional degrees of freedom for
fine-tuning the distribution, making it more adaptable to complex data or phenomena.

6. EGHMF and EKHMF

The main aim of this section is to introduce extensions of GHMF and KHMF. Let P, Q, H, H − Q,
A, and C be positive stable and commuting matrices in Cr×r. Extensions of GHMF and KHMF, i.e.,
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EGHMF and EKHMF, are defined as follows:

F (A,C)
η,µ (P, Q; H, z) =

∑
m≥0

(P)mBη,µ(Q + mI, H − Q; A, C)zm

m!

× B(Q, H − Q)−1 (6.1)

and

Φ(A,C)
η,µ (Q; H; z) =

∑
m≥0

Bη,µ(Q + mI, H − Q; A, C)zm

m!

× B(Q, H − Q)−1 (6.2)

respectively.

Theorem 6.1. For PSMs P, Q, H, H − Q, A, and C in Cr×r, the EGHMF and EKHMF have
following integral representation, respectively.

F (A,C)
η,µ (P, Q; H, z) =

1∫
0

(1−zℓ)−P exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
ℓQ−I(1−ℓ)H−Q−Idℓ×B(Q, H − Q)−1 (6.3)

and

Φ(A,C)
η,µ (Q; H; z) =

 1∫
0

ℓQ−I(1 − ℓ)H−Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

× B(Q, H − Q)−1 (6.4)

Proof. Using (6.1),

F (A,C)
η,µ (P, Q; H, z) =

∑
m≥0

(P)mBη,µ(Q + mI, H − Q; A, C)zm

m!

× B(Q, H − Q)−1

Using (3.1),

F A,C
η,µ (P, Q; H, z) =

∑
m≥0

(Pm)

 1∫
0

ℓQ+(m−1)I(1 − ℓ)(H−Q)−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

 zm

m!

× B(Q, (H − Q))−1

Moreover, the following matrix identity is valid:

(1 − zℓ)−P =
∞∑

m=0
(P)m

(zℓ)m

m!

Thus,

F (A,C)
η,µ (P, Q; H, z) =

1∫
0

(1 − zℓ)−P exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
ℓQ−I(1 − ℓ)(H−Q)−Idℓ × [B(Q, (H − Q))]−1

Similarly, by (6.2), (6.4) is obtained.

Theorem 6.2. Let A, C, P, Q, H, and H − Q be PSMs in Cr×r such that QH = HQ. Then, the
following differential equations are satisfied by EGHMF and EKHMF, respectively:

dn

dzn
F (A,C)

η,µ (P, Q; H; z) = (P)nF A,C
η,µ (P + nI, Q + nI; H + nI; z)(Q)n(H)−1

n

and
dn

dzn
ΦA,C

η,µ (Q; H; z) = ΦA,C
η,µ (Q + nI; H + nI; z)(Q)n(H)−1

n (6.5)
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Proof. From (6.1),

d
dz F A,C

η,µ (P, Q; H; z) = d
dz

∞∑
n=0

(P)nBη,µ(Q + nI, H − Q; A, C)[B(Q, H − Q)]−1 zn

n!

=
∞∑

n=1
(P)nBη,µ(Q + nI, H − Q; A, C)[B(Q, H − Q)]−1 zn−1

(n−1)!

=
∞∑

n=0
(P)(n+1)Bη,µ(Q + (n + 1)I, H − Q; A, C)[B(Q, H − Q)]−1 zn

n!

= P
∞∑

n=0
(P + I)nBη,µ(Q + (n + 1)I, H − Q; A, C)[B(Q + I, H − Q)]−1 zn

n! (Q)(H)−1

= (P)1F
(A,C)
η,µ (P + I, Q + I; H + I; z)(Q)1(H)−1

1

Repeat this process n times. The differential formula appears as
dn

dzn
F (A,C)

η,µ (P, Q; H; z) = (P)nF (A,C)
η,µ (P + nI, Q + nI; H + nI; z)(Q)n(H)−1

n

Similarly, (6.5) is obtained by (6.2).

7. Transformation Formulae

In this section, we provide the transformation formulae for EGHMF and EKHMF.

Theorem 7.1. Let A, C, P, Q, H, and H − Q be PSMs in Cr×r and QH = HQ. Then, the following
formulae are satisfied by EGHMF:

F (A,C)
η,µ (P, Q; H; z) = (1 − z)−PF (A,C)

µ,η

(
P, H − Q; H; z

(z − 1)

)
(7.1)

F (A,C)
η,µ (P, Q; H; 1 − 1

z
) = zPF (A,C)

µ,η (P, H − Q; H; 1 − z) (7.2)

and
F (A,C)

η,µ (P, Q; H; z

z + 1) = (1 + z)PF (A,C)
µ,η (P, H − Q; H; −z) (7.3)

Proof. In (6.3), if ℓ is changed to (1 − ℓ), then

F
(A,C)
η,µ (P, Q; H; z) =

1∫
0

(1 − z(1 − ℓ))−P exp
(
− A

(1−ℓ)η − C
ℓµ

)
(1 − ℓ)Q−IℓH−Q−Idℓ[B(Q, H − Q)]−1

=
1∫
0

(1 − z + zℓ)−P exp
(
− A

(1−ℓ)η − C
ℓµ

)
(1 − ℓ)Q−IℓH−Q−Idℓ[B(Q, H − Q)]−1

= (1 − z)−P
1∫
0

(1 − zℓ
z−1)−P exp

(
− A

(1−ℓ)η − C
ℓµ

)
(1 − ℓ)Q−IℓH−Q−Idℓ[B(Q, H − Q)]−1

= (1 − z)−PF
(A,C)
µ,η

(
P, H − Q; H; z

z−1

)
To determine (7.2) and (7.3), we replace z in (7.1) with (1 − 1

z ) and z
1+z , respectively.

Setting z = 1 and allowing P to commute with Q and H provides the link between the EGHMF and
EBMF that is shown in (6.1):

F A,C
η,µ (P, Q; H, 1) =

 1∫
0

ℓQ−I(1 − ℓ)H−P−Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

× [B(Q, H − Q)]−1

=B(Q, H − P − Q; A, C)[B(Q, H − Q)]−1

(7.4)

Using (7.4), we can formulate a novel generalization of Kummer’s first theorem.
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Theorem 7.2. Let A, C, Q, H, and H − Q be PSMs in Cr×r such that QH = HQ. Then, Kummer’s
first theorem for new extension is provided as:

Φ(A,C)
η,µ (Q; H; z) = exp(z)Φ(A,C)

η,µ (H − Q; H; −z)

Theorem 7.3. Let A, C, P, Q, H, and H − Q be PSMs in Cr×r such that QH = HQ. Then, EGHMF
and EKHMF satisfy the following recurrence relations:

∆PF (A,C)
η,µ (P, Q; H; z) = zF (A,C)

η,µ (P + I, Q + I; H + I; z)QH−1 (7.5)

d

dz
F (A,C)

η,µ (P, Q; H; z) = P
z

∆PF (A,C)
η,µ (P, Q; H; z) (7.6)

Q∆QΦ(A,C)
η,µ (Q; H + I; z) + H∆HΦ(A,C)

η,µ (Q; H; z) = 0 (7.7)

and
d

dz
Φ(A,C)

η,µ (Q; H; z) = QH−1Φ(A,C)
η,µ (Q; H + I; z) − ∆HΦ(A,C)

η,µ (Q; H; z) (7.8)

where ∆P is the shift operator relative to P.

Proof. By using ∆P as the shift operator about P and the integral representation of the EGHMF
(6.1),

∆PF (A,C)
η,µ (P, Q; H; z) = F (A,C)

η,µ (P + I, Q; H; z) − F (A,C)
η,µ (P, Q; H; z)

=
( 1∫

0
(1 − zℓ)−P−I(1 − (1 − zℓ)) exp

(
− A

ℓη − C
(1−ℓ)µ

)
ℓQ−I(1 − ℓ)H−Q−Idℓ

)
× [B(Q, H − Q)]−1

Therefore,

∆PF (A,C)
η,µ (P, Q; H; z) = z

( 1∫
0

(1 − zℓ)−P−I exp
(

− A
ℓη − C

(1−ℓ)µ

)
ℓQ(1 − ℓ)H−Q−Idℓ

)
× [B(Q, H − Q)]−1 (7.9)

We can see from (6.1) that

F
(A,C)
η,µ (P + I, Q + I; H + I; z) =

( 1∫
0

(1 − zℓ)−P−I(1 − (1 − zℓ)) exp
(

− A
ℓ − C

(1−ℓ)

)
ℓQ−I(1 − ℓ)H−Q−Idℓ

)
×[B(Q + I, H − Q)]−1

(7.10)

From (7.9) and (7.10),

∆PF (A,C)
η,µ (P, Q; H; z) = zF (A,C)

η,µ (P + I, Q + I; H + I; z)QH−1

Another differential recurrence relation can be found using the EGHMF’s differentiation formula, as
illustrated in (7.6). The results in (7.7) and (7.8) can be obtained by using the same steps as the proof
in (7.5) and (7.6).

8. EAMF and ELMF

This section extends the Appell matrix function (AMF) and Lauricella matrix function (LMF) to
three variables. Specifically, we present the extended forms of the AMF, i.e., F

(η,µ)
1 (P, Q, Q′; H; z, w)

and F
(η,µ)
2 (P, Q, Q′; H, H′; z, w), and the LMF with three variables, F

3(η,µ)
D (P, Q, Q′, Q′′; H; z, w; v).

These extensions are formulated using the new EBMF [7, 16, 21]. Additionally, we provide integral
representations for these extended hypergeometric matrix functions.

Let P, Q, Q′, H, H − P, A, and C be PSMs in Cr×r such that P, H, A, and C commutes, HQ = QH,
and HQ′ = Q′H. Then, we define an extension of EAMF as:

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

) ∑
m,n≥0

Bη,µ(P+(m+n)I, H − P; A, C)(Q)m(Q′)n
zmwn

m!n!
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where

Γ
(

H
P, H − P

)
= Γ(H)Γ−1(P)Γ−1(H − P)

Let P, Q, Q′, H, H′, H − Q, H′ − Q′, A, and C in Cr×r be commutative PSMs such that Q, Q′, H, H′,
A, and C commutes. We define the new extended Appell hypergeometric matrix function (EAHMF)
F

(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) as:

F (η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

∑
m,n≥0

(P)m+nBη,µ(Q + mI, H − Q; A, C)Bη,µ(Q′ + nI, H′ − Q′; A, C) zmwn

m!n!

×Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.1)

Suppose P, Q, Q′, Q′′, H, H − P, A, and C be PSMs in Cr×r such that P, H, and A commutes
with each other, HQ = QH, and HQ′ = Q′H. Then, we define the extension of the new Lauricella
hypergeometric matrix functions (LHMF) defined as:

F
3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) = Γ

(
H

P, H − P

) ∑
m,n,p≥0

Bη,µ(P + (m + n + p)I, H − P; A, C)(Q)m(Q′)n(Q′′)p
zmwnvp

m!n!p! (8.2)

We focus on identifying the integral representations of the three variable extensions of the AMF and
the LMF. We start by representing the integral of F

(η,µ)
1 (P, Q, Q′; H; z, w; A, C) determined in the

following theorem.

Theorem 8.1. Let P, Q, Q′, H, H − P, A, and C be PSMs in Cr×r such that P, H, A, and C commutes
with each other, HQ = QH, and HQ′ = Q′H. Then, the EAMF F

(η,µ)
1 (P, Q, Q′; H; z, w; A, C) can be

presented in the integral form as:

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

)(
1∫
0

uP−I(1 − u)H−P−I(1 − zu)−Q(1 − wu)−Q′

× exp
(
− A

uη − −C
(1−u)µ

)
du
) (8.3)

Proof. Using (3.1) in the EAMF F η,µ
1 (P, Q, Q′; H; z, w; A, C),

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

) ∑
m,n≥0

( 1∫
0

uP−I(1 − u)H−P−I exp
(

− A
uη − −C

(1−u)µ

)
×(Q)m(Q′)n

(zu)m(wu)n

m!n! du
) (8.4)

By the method discussed by Dwivedi and Sahai [21], the equality

(1 − z)−P =
∞∑

n=0
(P)n

zn

n! (8.5)

and (8.4),

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

)(
1∫
0

uP−I(1 − u)H−P−I exp
(
− A

uη − −C
(1−u)µ

)
×(1 − zu)−Q(1 − wu)−Q′

du
)

Remark 8.2. After replacing the values µ = η = 1 in (8.3), the results described in [17] are obtained.

Theorem 8.3. Let P, Q, Q′, H, H′, H − Q, H′ − Q′, A, and C be PSMs in Cr×r such that Q, Q′, H,
H′, A, and C commutes with each other. Then, the EAMF F η,µ

2 (P, Q, Q′; H, H′; z, w; A, C) defined in
(8.1) has the following integral representation:
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F
(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

( 1∫
0

1∫
0

(1 − zu − wv)−PuQ−I(1 − u)H−Q−IvQ′−I(1 − v)H′−Q′−I

× exp
(

− A
uη − C

(1−u)µ − A
vη − C

(1−v)µ

)
dudv

)
Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.6)

Proof. Using (3.1) and (8.1),

F
(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

∑
m,n≥0

( 1∫
0

1∫
0

(P)m+n
(zu)m(wv)n

m!n! uQ−I(1 − u)H−Q−IvQ′−I(1 − v)H′−Q′−I

× exp
(

− A
uη − C

(1−u)µ − A
vη − C

(1−v)µ

)
dudv

)
Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.7)

by the interchanging summation and integral in (8.7) via the dominated convergence theorem. More-
over, the following summation formula [22] is valid:∑

n≥0
f(N)(z + w)N

N ! =
∑

m,n≥0
f(m + n)zmwn

m!n!

Thus,

F
(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

(
1∫

0

1∫
0

∑
N≥0

(P)N
(zu+wv)N

N ! uQ−I(1 − u)H−Q−IvQ′−I(1 − v)H′−Q′−I

× exp
(

− A
uη − C

(1−u)µ − A
vη − C

(1−v)µ

)
dudv

)
Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.8)

Using (8.5) and (8.8), (8.6) is obtained.

Theorem 8.4. Suppose P, Q, Q′, Q′′, H, H − P, A, and C be PSMs in Cr×r such that P, H,
and A commutes with each other, HQ = QH, HQ′ = Q′H, and HQ′′ = Q′′H. Then, the ELMF
F

3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) in (8.2) provides the following integral representation:

F
3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) = Γ

(
H

P, H − P

)(
1∫
0

uP−I(1 − u)H−P−I exp
(
− A

uη − C
(1−u)µ

)
×(1 − zu)−Q(1 − wu)−Q′(1 − vu)−Q′′

du
) (8.9)

Proof. From (3.1) and (8.2),

F
3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) = Γ

(
H

P, H − P

) ∑
m,n,p≥0

(
1∫
0

uP−I(1 − u)H−P−I exp
(
− A

uη − C
(1−u)µ

)
×(Q)m(Q′)n(Q′′)p

(uz)m(uw)n(uv)p

m!n!p! du
)

By (8.5) and continuing in the same process as in Theorem 8.1, (8.9) is obtained.

9. Conclusion

In conclusion, the findings presented in this paper introduce new results that can potentially extend
other special matrix functions. We have developed an extension of the BMF and investigated the
GHMF and KHMF, exploring their key relationships and properties. Additionally, we extended the
AMF and LMF and derived their integral representations using the beta matrix function. We also
highlighted significant statistical applications of the EBMF. These generalized matrix functions have
wide-ranging applications, including quantum mechanics, describing the time evolution of quantum
systems, multivariate statistics, modeling multivariate distributions and hypothesis testing, control
theory, analyzing the stability and response of dynamic systems, and mathematical physics, solving
systems of differential equations with matrix arguments. The results from this study open several
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promising avenues for future research. Potential directions include extending other special matrix
functions, such as the Whittaker, Wright, and Fox-H matrix functions, as well as Jacobi and Laguerre
matrix polynomials. Researchers could also explore special integral transforms of these extended
matrix functions, including the Euler-Beta, Laplace, and k-transforms. With its exponential terms,
the generalized beta distribution provides additional flexibility and could be useful in machine learning,
especially in regularization and Bayesian frameworks. Researchers could explore using matrix-variate
beta distributions in deep learning models for regularization, uncertainty quantification, and matrix-
variate variational autoencoders.
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