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Keywords Abstract — This study investigates a discontinuous Sturm-Liouville boundary value problem
BVP, (BVP) on two intervals with functionals and transmission conditions in the direct sum of
Functional- Sobolev spaces. Moreover, it presents the differential operator generated by the problem under
transmission investigation. The definition space of this operator is the direct sum of Sobolev spaces, and

. the value space of the operator is the space obtained by adding the complex spaces where the
conditions, boundary conditions are evaluated about the direct sum of Sobolev spaces. This paper establishes
Isomorphism, the solvability of the problem and some important spectral properties of the operator, such as
Coerciveness, isomorphism, Fredholmness, and coerciveness concerning spectral parameters. In addition, the
Solvability conclusion section discusses how different original problems can be produced.
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1. Introduction

The discontinuous differential operator problems have recently drawn the attention of theoretical
researchers due to their potential applications in physics. For example, discontinuous problems and
additional transmission conditions are commonly seen in various disciplines, including solid mechanics,
magnetostatics, and electrostatics [1-3]. Many researchers have investigated the solvability and certain
spectral properties of nonlocal Sturm-Liouville problems [4-7]. In recent years, there has been a surge
in interest in generalizing classical boundary value problems for ordinary linear differential equations
because of its potential applications in physical sciences and applied mathematics.

The so-called functional boundary value problem is a significant specific case of the generalized
boundary value problems. Numerous authors have addressed these issues [3,5,8,9]. Some boundary-
value transmission problems that arise while analyzing nonclassical problems cannot be resolved
using typical methods for solving classical boundary-value problems. Boundary-value problems for
ordinary differential equations are often studied in classical theory for equations with continuous
coefficients and boundary conditions containing only the endpoints of the interval under consideration.
This study, however, discusses one nonclassical boundary-value problem for a second-order ordinary
differential equation with discontinuous coefficients and boundary conditions containing not only
endpoints of the considered interval but also a point of discontinuity and linear functionals.
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Namely, we consider a Sturm-Liouville diffraction defined on [—1,0) U (0, 1] given by
LN u = 7(z)u”" () + (o(x) — N)u(z) = f(x) (1.1)
with functional boundary-transmission conditions given by
Liu = agul™) (=1) + Brul™) (—0) + ™) (+0) + 6™ (1) + Fi = fi (1.2)

for k € {1,2,3,4}. Here, 7(x) is piecewise constant function such that for x € [-1,0), 7(z) = 71
where 71 # 0 and for =z € (0,1], 7(x) = 7o where 75 # 0, A complex parameter, for i € {1,2} and
ke {1,2,3,4}, 7;, ok, B, Mk, Ok, and fr are complex numbers, f(z) is complex-valued function, for
k € {1,2,3,4}, my are nonnegative integers, and o(x) is integrable function on [—1,0) U (0,1]. We
assume that |a| + |Bk| + |mk| + |0k| # 0, and Fy, is a linear functional in the space Ly(—1,1). After
applying the method of separation of variables to a variety of physical problems, such as heat and
mass transfer problems [1,3, 6, 10], diffraction problems [11], vibrating string problems (when the
string loaded additional with point masses) [8,12], and some special cases of the considered boundary
value problem (1.1)-(1.2) arise. Yakubov [3] and Mukhtarov [6] investigated discontinuity problems
with transmission conditions in mechanics. Triebel [13], Yakubov and Yakubov [14], Imanbaev and
Sadybekov [15], Shakhmurov [16], Aliyev [17], and Rasulov [18] studied the various spectral properties
of some nonlocal boundary-value problems for differential-operator equations. It should be noted
that [4,19-23] explored some novel problems with boundary values with nonlocal boundary conditions.

2. Preliminaries

This section presents some properties that are needed in the following sections.

Theorem 2.1. [24] Let T' € (X,Y) be semi-Fredholm. If A is a T-compact operator from X to Y,
then S =T+ A € (X,Y) is also semi-Fredholm with indS = indT.

Note 2.2. [14] Consider an ordinary differential equation with constant coefficients and with weight 1

on the whole axis
LoNu := ANu(z) + X" (@) + - + amu'™ (z) = f(x) (2.1)
where a; are complex numbers. Enumerate the roots of the equation
AmwW™ 4 G 4+ 1=0 (2.2)
by wj,j € {1,2,3,...,m}. Let numbers w; be p—separated. Denote

w 1= min {argwl, cyArg Wy, argWpt1 + m, ..., arg Wy, + 7T}

W := max {argwi, ..., arg Wy, G Wp41 + m, ..., Arg Wy, + 7}
and the value arg w; is chosen up to a multiple of 27, so that w —w < 7.

Theorem 2.3. [14] Let m > 1, a,, # 0 and the roots of (2.2) be p-separated. Then, for any € > 0 and
for all complex numbers A satisfying §—w+e < arg A < 37“ — w — &, the operator Lo(A) : u — Lo(A)u
from Wéﬁ(R) onto Wé;m(R),where an integer | > m, q € (1, 00), —% <y < %, is an isomorphism, and
for these A, the following estimates hold for a solution of (2.1):

l
>INl @y < CE) (Il + M 1L, L ry) 0 = 1,2
k=0

l
D Pl e
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Theorem 2.4. [14] Let the following conditions be satisfied:

i. {Ey, E©} is an interpolation couple

ii. yo,71 are real numbers, [ € {1,2,3,...} and 1 < pg, p1 < 0

110 sisin‘cegernumberOgsSl—l,’yo—i—s—i—piO > 0, and’yl—i—s—i—pi1 <l

. 'YO+5+* 1 _
w. 0=—"""—12 — and + = =24+ 2%
I+v0— 71—&—*—*1 Do + p1

Then, for u € W'(po, 0, Eo; 1,71, F1), the following inequality holds:

’u ’ (O)H(EO,E1)9, s¢ (H ”Lpo 70 ((0,1);E0) + Il HLPI 71 ((0,1); El))

Theorem 2.5. [14] Under the conditions of Theorem 2.4, for v € W(pgy, 0, Fo; p1, 71, E1), C, and
|A| — oo, the following inequalities hold:

I+y0+ =
€ (I3 [l (0, 1), o) A5l 10 (0. 1), )

.. l—s 1 s I+v0+2+ 1+
i N O oy < € (ATl 0 (01), Eo) + AP35 |, (0,0), B0)

where v > —%.

i |A[e

IOl

3. Solvability and Coerciveness of Problems for Homogeneous Equation with
Nonhomogeneous Boundary Transmission Conditions

This section first considers the following boundary value problem for the homogeneous differential
equation

Lo(Nu := 7(x)u”"(x) — Nu(x) =0 (3.1)
together with the nonlocal and nonhomogeneous boundary conditions, for k € {1,2,3,4},
Lygu = opeu™) (=1) + Bru™) (=0) + ™) (+0) + du™) (1) = fi (3:2)

For convenience, we use the following notations:

-

w1 i=—T; %, wWei=Ty Y, wW3i=—Ty %, wWi=T,

2

N
N|=
N|=

w :=min{argm, argme}, :=max{argry, argm}
m m m m
ot frwyt mws't drwy
m m m m
owy? Pawy? maws? dowy?
azw]™®  Pawy? maws® dzwy
aqwi™ Pawy™ naws™t Sqwy
and
B (w,w) :={Ae€C : t+w+e<argA<3rmr+w—c}

for real £ > 0 small enough.

For an integer k > 0 and real ¢ > 1, the direct sum of Sobolev spaces W(f(—l, O)—FW;“ (0,1) is defined
as Banach space of complex-valued functions u = wu(z) defined on [—1,0) U (0, 1] which belong to
k k . . .
Wi (=1,0) and W;(0,1) on intervals (—1,0) and (0, 1), respectively, with the norm
lellwe (1,000, = lu H Ll

k
wk(o,1)

Here, Wf(a, b) is a Sobolev space, i.e., the Banach space consisting of all the measurable functions u(z)
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that have generalized derivatives up to k-th order inclusive on the interval (a,b) with the finite norm

1
k q P}
|uHWk Z ( ‘ dx)

i=0
Theorem 3.1. If 6 # 0, then for all € > 0, there exists an R, > 0 such that for all A € B.(w,®),
for which |[A| > Rc, (3.1)-(3.2) has a unique solution u(z, \) that belongs to Wi*(—1,0)-+W;(0,1), for
arbitrary n > max{2, max {m1, ma, ms, ms} + 1}, and for these \’s, the coercive estimate

It can be observed that W) (a,b) = Ly(a,b).

n

4
n— n—m;—1
Z Al g HUHWk —1,0)U(0,1) <Cf(e Z Al 7a ’fj| (3.3)
k=0 j=1

is valid.

PRrROOF. For i € {1,2,3,4}, define four basic solutions u; = u;(z, A) of (3.1), given by

ENa—€) g
ui(x’A):{ 0, z¢l

where & = —1,8 =8 =0,& =1,11 = I, =[-1,0), and I3 = I; = (0, 1]. It can be observed that the

general solution of (3.1) can be written in the form

4
A) = Z crug(z, \) (3.4)
k=1
Substituting (3.4) into (3.2) yields a system of linear homogeneous equations concerning the variables
C1, Cy, (5, and Cy, given by
Sr = CL(wiA)™ (o, + Bre™) 4 Co(wa )™ (cpe™ 2 + Br) + Ca(wsA)™ (g + 0pe3?)
+C4(Cd4)\)mk (nkefw‘l)‘ + (Sk)

such that k € {1,2,3,4}. Since A € B:(w,w), it follows that

3T —
7T;_E<au1"g;(wi)\)< 7r2 g,

(3.5)

i€ {1,3}
and

—WT% < arg(wiA) < WT%, i€{2,4}

Consequently, for these A’s and for an arbitrary € > 0 small enough,
(1" Re(wid) < =M wplsin S, ke {1,2,3,4}

Hence, the determinant of (3.5) has the form

m m m m m m m m
4 arwy™t Brwyt mws't dqwy . ﬁlwl b aqwy !t 0wyt mwy
’ m m m m l+1 m m m
Z: i aowy? Bowg ? Maws ? dawy ? )‘/2( i | Pawi™? cowy™? dows 2 Mowy
A()\) = )\z_l ms3 ms3 ms ms +e =t ms3 m3 m3
aszw]? Bawy™® naws"® d3wy Baw™® agwy'® d3ws™ nawy
m. m. m. m. m. m. m. m.
gy Bawy' naws" dawy ! Bawy™ aqwy* dgws ™t nmawy !
= A" (04 r(N)

4

where m = >~ m,. It can be observed that r(\) — 0 if A € B.(w, ) and |A\| — oco. Since 6 # 0, there
=1

exists an . > 0 such that for all complex numbers A satisfying A € B.(w,®) and |A\| > ¢, we have
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A(A) # 0. Therefore, for these A’s, (3.5) has a unique solution

AA ZAM Ve, i€{1,2,3,4}

where A;;(\) denotes the algebraic complement of (i, k)-th element of the determinant A(X). The
determinant has the representation

> (m—my)
Ai(N) = (O + 131 (X)) AI7F

where 6, are complex numbers and 7;; — 0 as |A\| — oo in the angle B.(w,w). Then,

ZA m’cwz(k())fk,z € {1,2,3,4}

Thus, the solution of (3.1)-(3.2) has the form

(e, ) g BT e )

From this, it follows that for each integer n > 0

4
Hu(n) Z <|)\| — |fk|ZHul Mz, ) (3.6)

Further, by (3.4),

0
Hul(w’A)H%q(—l,O) = f edRe(wWi M) (z+1) 7,
-1

0
</ e— N |wi|sin(e/2)(z+1) 7
-1

= (—q|A] | sin (¢/2)) 7 (e oPllealsine/2) 1)

< Cle) A
as |A| = oo in the angle A € B.(w,w). In a similar way,
iz, Mg,y < CEV AT, i€ {2,3,4)

as |\| = oo in the angle A\ € B.(w, ). Substituting these inequalities in (3.6) yields

[u®], <03 et g

Ly(~1,1) P

which, in turn, provides us the needed estimation (3.3). [

4. Fredholmness of the Problem with General Functional-Transmission Con-
ditions

This section investigates the property of the differential operator of the problem, a Fredholm operator.
Let E and F be Banach spaces and F* be the adjoint of F'. The linear operator T : E — F is called a
Fredholm operator if the following conditions are satisfied:

i. The range R(T') = {Tu:u € D(T)} is closed in F.

it. kerT ={u € D(T) : Tu=0} and cokerT = {u* € F* : u*(Tu) = 0, for all thinspace u € D(T")}
are finite dimensional subspaces in E and F*, respectively.
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747. dim ker T" = dim coker T’

Suppose that n > max {2, max {mj, ma, m3, ms} + 1} and define a linear operator £ from W;*(—1,0)+
W(0,1) into Wr—2(—=1,0)+W~2(0,1) + C* by action low

L:u— Lu:= (L(Nu, Liu, Lou, Lyu, Lyu)

Theorem 4.1. Assume that the following conditions are satisfied:
i. T(x) =7 at z € [-1,0), 7(z) =2 at x € (0,1}, 1 # 0, 72 # 0, my > 0, and 6 # 0.
ii. o(x) is measurable function on [—1,0) U (0, 1].
iti. For k € {1,2,3,4}, the functionals F, in W;(—l,O)—i—Wq”(O, 1) are continuous.
Then, the linear operator
L:u— Lu:= (r(x)u"(x) + o(z)u, Lyu, Lou, Lyu, Lyu )
from W (—1,0)+W;(0,1) onto Wr—2(—1,d1)+W~2(0,1)+C* is bounded and Fredholm.

PROOF. The operator £ can be rewritten in the form £ = £ + Lo, where
Liu = (7(z)u"(z), u(—=1),u (=1),u(—0) — u(+0), v’ (=0) — u'(+0))
and
Lou = (o(x), Lyu — u(—-1), Lyu — u'(—1), Lau — u(—0) + u(+0), Lyu — u'(—0) 4+ u'(+0))

Let f € Ly(—1,1). Then, from the condition ¢ and %%— % = 1, it follows that 771(z) f(x) € L1(—1,1)N
L,(—1,1). By Schwartz inequality,

[t < (foroe)” ([l )
0 0 0

e . (4.1)
<o <fa:q(w) If(fc)\qdw>
0
< Clfll,0)
Consequently, a solution of the problem
(@) (@) = f(z), w€(-1,00U(0,1), u(-1)=h
' (=1) = ha, u(—=0)—u(+0) = hsz, u'(=0)—u(+0) = hy
has the form .
[ @ =) (W) f(y)dy + n1 +naz, @ € (~1,0)
u(@) =1,
({(ﬁ — )7 W) f(W)dy +ns +naz,  x€(0,1)
Accordingly, we obtain the solution to the problem as follows:
J (@ =) @) W)y + b+ (24 D v € (-1,0)
0 0
u(@) =9 [ (@ —y)r W) f(y)dy + (f (z = y)7 " (1) f(y)dy + hy — h4> z (4.2)
21 1 HARS (O, 1)
+ [(z —y)7 (y) f(y)dy + h1 + ha — hs,

0
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If f e Wr=2(=1,0)+W~2(0,1), then (4.2) implies u”(x) = 7! (z) f(x) and w2 (z) = 771 () f O (z)
such that t € {0,1,2,...,n — 2}.

Thus, from the condition i, (4.1), and Theorem 3.1, we obtain that the operator £y from W2 (-1, 0)+
W(0,1) onto W,'~2(—1,0)+W>~2(0,1)+C* is isomorphism. Further, it can be observed that the
linear operator Ly acts compactly from Wi (—1,0)+W7(0,1) onto Wr—2(—=1,0)+W,~2(0,1)+C*.
Consequently, we can apply Theorem 2.1 to the operator £ = £1 + Lo, from which it follows that the
operator £ is Fredholm. Besides, it is obvious that the operator £ is bounded. [J

5. Isomorphism and Coerciveness of the Principal Part of the Main Problem

Consider (1.1)-(1.2) without functionals, namely, the following problem
LoMNu = 1(z)u” (z) — Nu(z) = f(x) (5.1)

Liou := o™ (=1) + Bul™) (=0) + mpul™) (+0) + ™ (1) = fir, ke {1,2,3,4}  (5.2)
The operator corresponding to this problem is

Lou = (Lo(AN)u, Liou, Laou, Lzou, Laou)

Theorem 5.1. Let § # 0 and n > max {2, max {mq, ma, ms, ms} + 1}. Then, for all £ > 0, there
exists an - > 0 such that for all complex numbers X satisfying 7 + % +e < argA < 5+ % —¢, |A| > ¢,
the operator Lo(\) from W (—=1,0)+W7(0,1) onto W—2(—1,0)+Wr—2(0, 1)4+C* is an isomorphism,
and the following coercive estimate holds for the solution of (3.1)-(3.2)

k=0

= - n— . n—m;—31
DA lullyy < C(e) (\\f\\wg2 + A N, + AT \fj\) (5-3)
j=1

PROOF. It is obvious that the linear operator Lo()) is continuous from W, (=1,0)+W,(0,1) into
Wo=2(—1,0)+Wr=2(0,1)4C4

Let (f(x), f1, f2, f3, fa) € W;_Q(—l, 0)—FW;_2(O, 1)+C* be an element. We seek the solution u(z, \)
of (5.1)-(5.2) in the form of the sum u(x, A) = uy(z, \) + uz2(z, A) as follows. We denote the restriction
of f(x) on the interval I; by f;(z) such that j € {1,2} where I; = (—1,0) and I = (0,1). Let
fj € W7~2(R) be an extension of f; € W/~2(I;) such that the extension operator Sjf; := fj from
W7=2(I,) into W7~2(R) is bounded for j € {1,2} where R = (—o0, 00). First, consider the equations

7j(2)u" (x) = NT(z) = fi(z), weR

for j € {1,2}. By Theorem 2.3, we have that this equation has a unique solution @1, = 1,(., A) € Wz (R)
and for uy;(z, \), the restriction of @;;(z, \) on the interval I;, the estimate

kz—:() A"E lwiillwg ) <€) (”f”wg—z(lj) + A" ”fHLq(Ij)) , Je{L2} (5.4)

is valid for all complex numbers A satisfying A € B.(w,w). Consequently, u;(x,\) € Wg(—l,O)ﬂL
W7 (0,1) defined by
ull(l‘vA)? S (_170)

k) = { uz(x,\), @ € (0,1)

which satisfies (5.1). By using this solution, we construct the following boundary-value problem

7(x)u” (z) — Nu(z) =0, z € (—~1,0)U(0,1)
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Lkou:fkakoul('a)‘% ke {172a3a4}
By Theorem 3.1, for all A € B.(w, ), sufficiently large in modulus, this problem has a unique solution
up = ug(z, A) that belongs to W' (—1,0)+W/(0,1) and for these X’s the estimate

n 4

- n—m;—
DA fually < C(e) D0 7 ([ Ljowa| + [ 51) (5.5)
k=0 j=1

is hold. By Theorem 3.1 and considering Theorem 2.5, we have the following estimates, for all
A € B.(w,w) and n > max {2, max {my, mo, m3,ms} + 1}:

o I
AT Lo ] < AT 3 ugllems
=

2
n ) ) 5.6
§C<;Uﬂﬂmﬂ%waWmem> (5.6)

< ) (f -z + A2 11£ 1Ly
Thus, from (5.5) and (5.6),

n B . 4 Y
ZMWﬂmwﬁsaa0mwﬂ+w HNM+ZMVqu0 (5.7)
j=1

k=0

Moreover, the function u(z, A) defined as u(x, \) = ui(x, ) + ua(z, A) is the solution of (5.1)-(5.2).
Taking into account (5.4) and (5.7), for this solution, the needed estimation (5.3) is valid. Further,
from (5.3), it follows the uniqueness of the solution. Besides, by Theorem 4.1, the operator Lo is
Fredholm operator from W,"(—1,0)+W(0,1) into W,*~2(—1,0)+W,*~2(0,1)+C*. Isomorphism of this
operator follows from the fact that it is a Fredholm and a one-to-one operator. [

6. Solvability and Coerciveness of the Main Problem

This section researches the main problem (1.1)-(1.2).

Theorem 6.1. Let 6 # 0, n > max{2, max{my, ma, m3, m4}+1}, and the functionals F,, in W, (-1, 0)
—i—W;n 7(0,1) be continuous. Then, for all € > 0, there exists an ¢ > 0 such that for all complex numbers
A satisfying 5 + § + e <argA < § + % — ¢, |A\| > i, the operator

LN := (L(\)u, Lyu, Lyu, L3u, Lyu)

is an isomorphism from W;'(—1,0)4W;"(0,1) onto Wq"_Q(—l,O)jLW;_Q(O, 1)+C*, and for these \’s,
the following coercive estimate holds for the solution of (1.1)-(1.2)

j=1

n 4
n—k n— l—-mj—1
A llulyy < Cle) (IIfHW;2 AT g + D AT \fj\) (6.1)
k=0
where C(e) is a constant which depends only on €.

PrOOF. Let (f(z), f1, f2, f3, f1) be an element of W(;‘*2(—1, 0)4‘—W(?*2(0, 1)4-C*. Assume that there
exists a solution u = u(z, A) of (1.1)-(1.2) corresponding to this element. Then, this solution satisfies
the equalities

Lo(Mu = L(A\)u — o(z)u (6.2)

and
Liyou = Lgu — Fru, k€ {1, 2,3, 4} (6.3)
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By applying Theorem 5.1 to (6.2)-(6.3), we have that for this solution the following a priory estimate
is hold

n n— n— 4 nfmfl
kZO\/\I “lullys < C(e) (IIL(A)U—U(m)UIIW; + A" ILO ) = o(@)ull, + le/\\ T ILjU—ijI>
= =

4 1
< CO(e) <||f||an2 + "2l + llo(@)ullyn-z + "2 llo(@)ul , + Zl AT 5] (6.4)

v=

4 n—mj—+
+ 2 AT «<|fju|>>

In view of [14], for all { > 0,
[ullws < Cllullyan +CC) lull, (6.5)

By [25], for u € Wi(—1,0) + W(0, 1), the following estimate holds

n—m;j—x m; n
Al 607y < € (lullws + N Hlull ) (6.6)

From the conditions of Theorem 5.1, (6.5)-(6.6), and [14], it follows that
4 1
_92 —m—1
lo@)ully=2 + A" llo@)ull, + X A" (| Foul)
j:

n—2 n—2 4 n—m;—21
< C@) (Ilfllwg—2 + A" 1£llg) + ¢ (lellywp + 1A Huqu)+j§1w @ Jlully

n—2 1 g n—~k
<€) (W lhwg==+ " Ifly0) + T S A"l
Here, we use the following inequality:
-2 —1 [y -1
A g < CIAT A ullys

Substituting (6.6) into (6.4),

n 4 4
—92 —92 —ma— 1t _1 _k

> AT ully, < C(e) (Hf“”u s AT g+ D AT |fj\)+!)\| N Nl
w. X W,

k=0 a j=1 k=0 g

Thus, for A € B:(w,w) sufficiently large in modulus, we obtain a priori estimate (6.1). From this

estimate, it follows the uniqueness property of the solution of (1.1)-(1.2), i.e., the operator £()) is a

one-to-one operator. Moreover, by Theorem 4.1, the operator £()) from Wi (—1,0)4+W;(0,1) into

Wi=2(=1,0)+Wr=2(0,1)+C* is Fredholm. Consequently, the existence of a solution results in its

uniqueness. [

7. Conclusion

In this paper, the Sturm-Liouville boundary value problem with discontinuous coefficient differential
equations and the transition conditions of the discontinuity point in the boundary conditions and the
functional are considered. The solvability of this problem and the spectral properties of the differential
operator belonging to the problem, such as coerciveness, isomorphism, and being a Fredholm operator,
are investigated. Then, theorems related to the spectral properties of this problem are proved. The
problem in this study can be constructed in different ways, such as adding a linear operator or an
elliptic operator to the differential equation, putting interior points in the boundary conditions, taking
the differential equation to a higher order, taking more than one discontinuity point. Moreover, for each
of the mentioned problems, the subject of finding the asymptotic distributions of the eigenvalues of the
problem can be studied. Since each of the aforesaid problems will be original problems, completely
new theses, and new articles can be derived from each.
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