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ABSTRACT. The paper presents an overview of the existing literature concerning radial kernel meshfree meth-
ods for the numerical treatment of second-kind Fredholm integral equations. More in detail, it briefly recalls radial
basis function (RBF) interpolation and cubature to properly describe numerical methods for two-dimensional linear
Fredholm equations. The RBF approach allows us to consider the case when the involved functions are not known
analytically, but only as vectors of scattered data samples. The described methods do not require any underlying mesh
and hence are also independent on the geometry of the domain.
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1. INTRODUCTION

A huge variety of problems arising in mathematical physics, engineering and mechanics
can be described by Fredholm integral equations. Some examples are the rendering equa-
tion [31, 32] that generalizes a great variety of known rendering algorithms for computer graph-
ics, and Love’s equation [35] that arises in the electrostatic problem of a circular plate condenser
in an unbounded perfect fluid. Furthermore, solving a related Fredholm equation is the key in
broadband dielectric spectroscopy [45] to study molecular dynamics in complex systems such
as glass-forming liquids and liquid crystalline materials, the image deblurring problem [30],
the diffraction theory [41] and the study of microtearing modes [18] as an explanation for the
anomalous electron thermal transport in tokamak experiments. Many numerical procedures to
approximate the solution of Fredholm integral equations, such as projection and iterated pro-
jection methods, Nyström methods [14, 3, 29, 36, 38], discrete Galerkin methods [4] and Monte
Carlo methods [19, 17] are widely available in the current literature. However, most of these
methods are based on piecewise approximating polynomials or rely on zeros of orthogonal
polynomials. Hence, to guarantee accurate results, they require that all the involved functions
should be known in their analytical form or, at least, sampled at the zeros of orthogonal poly-
nomials. Another possible approach is to consider the case where the involved functions are
only known as samples over grids of equally spaced points. This research topic has been ap-
proached during the last twenty years and led to the development of some numerical methods
based on the generalized Bernstein operator [39, 40] and the constrained mock-Chebyshev op-
erator [16], respectively. Nonetheless, it is a common occurrence that in real-life applications
the available data are scattered and, consequently, all the previous accurate methods are not
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applicable. In this context, meshless methods, in particular those based on radial basis func-
tion (RBF) interpolation [6, 47], are an adequate tool to tackle this problem. RBF interpolation
has been extensively studied also to develop methods for the numerical treatment of partial
differential equations (PDEs) [20, 21, 8] or cubature formulae to approximate integrals start-
ing from scattered data [9, 12, 46]. It is worth noting that a huge variety of RBFs are scaled
in terms of a shape parameter and the task of finding the optimal one to increase the accu-
racy of the interpolation is still a key topic in the literature [10, 23, 27, 37]. Other approaches
can involve the use of variably scaled kernels [5, 43] or the construction of stable bases like
RBF-QR [24, 26], Hilbert-Schmidt SVD [13, 22], WSVD [7, 15], and greedy algorithms for the
convergence of RBF approximants [48]. More recently, meshless methods based on machine
learning have emerged as a novel approach for the numerical treatment of integral equations,
offering data-driven techniques that complement traditional strategies [28, 49].

This paper aims to collect recent results about the employment of RBF interpolation in the
context of the numerical treatment of Fredholm integral equations of the second kind, focusing
on the bivariate case in particular. To our knowledge, the literature about this topic is fragmen-
tary and not so wide. So we decided to gather all the known information about it, intending
to work on it in the future. We consider the following two-dimensional Fredholm integral
equation of the second kind

(1.1) f(x, y)− µ

∫
Ω

k(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ Ω,

where Ω ⊆ R2 is a bi-dimensional bounded domain, f is the unknown solution, g is the right-
hand side term, k is the kernel and µ is a non-zero real parameter.

The paper is structured as follows. Section 2 recalls some basic definitions and properties
about radial basis functions, while Section 3 is devoted to a RBF cubature rule for scattered
data. In Section 4, the available methods for the numerical treatment of Fredholm integral
equations are described. Finally, Section 5 concludes the paper.

2. RADIAL BASIS FUNCTIONS

Suppose that we are given a compact domain Ω ⊂ R2, a set X = {P1, . . . , PN} ⊂ Ω, of
scattered data Pi = (xi, yi), i = 1, . . . , N , and the corresponding data (or function) value set
F = {f1, . . . , fN} ⊂ R that is obtained by possibly sampling any (unknown) function f : Ω →
R.

Let κ : Ω×Ω → R be a given radial kernel. Starting from κ, we may define a RBF ϕ : R+ → R
that is strictly conditionally positive definite (SCPD) of order m by setting

(2.2) κ(P, Pi) = ϕi(P ) = ϕ(∥P − Pi∥2) = ϕ(r),

we can find a unique interpolating function ψ : Ω → R of the form

(2.3)

ψ(P ) =

N∑
i=1

ciκ(P, Pi) +

N+M∑
i=N+1

ciπi−N (P )

=

N∑
i=1

ciϕi(P ) +

N+M∑
i=N+1

ciπi−N (P ),

where {πk}Mk=1 generate a basis for the M =
(
m+1
m−1

)
-dimensional linear space P2

m−1 of bivariate
real valued polynomials of total degree less than or equal to m − 1, and ∥ · ∥2 is the Euclidean
norm. The coefficients c1, . . . , cN+M are determined by enforcing the interpolation conditions

ψ(Pi) = fi, i = 1, . . . , N.
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Since these conditions lead to a system of N linear equations in the N +M unknowns ci, one
usually adds the M additional conditions

N∑
i=1

ciπk(Pi) = 0, k = 1, . . . ,M,

to ensure a unique solution. Moreover, from theory it is known that a SCPD function of order
0 is strictly positive definite (SPD), and so in this case the polynomial part in (2.3) is omitted.
Solving the interpolation problem for a SCPD function ϕ of orderm leads to a symmetric linear
system

(2.4) Ac = b,

where

A =

[
A Q
QT O

]
, b =

[
f
0

]
.

The interpolation matrix A in (2.4) has entries

Aij = ϕ(∥Pi − Pj∥2), Qik = πk(Pi), i, j = 1, . . . , N, k = 1, . . . ,M,

and O is a M ×M zero matrix. Moreover, c = [c1, . . . , cN+M ]T , f = [f1, . . . , fN ]T and 0 is a
zero vector of length M . Note that for a SPD RBF ϕ the matrix reduces to A = A, and hence the
polynomial part vanishes. Recalling that every SCPD kernel has an associated normalized PD
kernel [44], from now on we confine our treatise to the case of SPD kernels.

In the literature, many kernels are dependent on a shape parameter ϵ > 0 such that, by
recalling (2.2), it is

κϵ(P, Pi) = ϕϵ(∥P − Pi∥2) = ϕϵ(r) = ϕ(ϵr).

In what follows, to simplify the notation, we refer to ϕϵ(∥P − Pi∥2) as ϕϵ,i(P ), ∀P, Pi ∈ Ω,
omitting the subscript ϵ when clear from context.

RBF ϕϵ(r) SCPD order
Gaussian C∞ (GA) e−ϵ2r2 0
Inverse quadratic C∞ (IQ) (1 + ϵ2r2)−1 0
Inverse Multiquadric C∞ (IMQ) (1 + ϵ2r2)−1/2 0
Multiquadric C∞ (MQ) (1 + ϵ2r2)1/2 1
Wendland C2 (W2) max(1− ϵr, 0)4(4ϵr + 1) 0
Wendland C4 (W4) max(1− ϵr, 0)6(35ϵ2r2 + 18ϵr + 3) 0
Matérn C0 (M0) e−ϵr 0
Matérn C2 (M2) e−ϵr(ϵr + 1) 0
TABLE 1. Some examples of well-known RBFs depending on a shape parameter.

3. A CUBATURE RULE ON SCATTERED DATA

A key role in the numerical treatment of integral equations of the type (1.1) is played by the
cubature rule used to approximate the integral operator

(3.5) (If)(x, y) =
∫
Ω

k(x, y, s, t)f(s, t)dsdt.
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A cubature rule for integrals of the type ∫
Ω

h(P )dP,

where h(P ) is an integrable function, can be obtained by replacing the function h with its RBF
interpolant (2.3), i.e.

(3.6)
∫
Ω

h(P )dP ≈
∫
Ω

ψ(P )dP =

N∑
i=1

ci

∫
Ω

ϕi(P )dP +

N+M∑
i=N+1

ci

∫
Ω

πi−N (P )dP.

Denoting by

I =

[∫
Ω

ϕ1(P )dP, . . . ,

∫
Ω

ϕN (P )dP,

∫
Ω

π1(P )dP, . . . ,

∫
Ω

πM (P )dP

]T
,

the moment vector and by < ·, · > the scalar product in R2, we have

(3.7)
∫
Ω

h(P )dP ≈
∫
Ω

ψ(P )dP =< c, I >=< A−1b, I >=< f ,w >=

N∑
i=1

wifi.

In fact, by symmetry of the matrix A and noting that Aw = I, the cubature formula (3.6) can
be easily rewritten in the usual form of a weighted sum of the sampled values.

By employing the cubature rule (3.7), the integral operator (3.5) is approximated as follows:

(3.8) (If)(x, y) ≈
N∑
i=1

wik(x, y, xi, yi)f(xi, yi).

The accuracy of the rule can be improved by choosing the optimal RBF shape parameter. For
a comprehensive study of the influence of the shape parameter scaling on the accuracy of the
RBF interpolation the reader can refer to [34] and the references therein.

A technique to estimate the optimal shape parameter is the leave one out cross validation
(LOOCV) method. The strategy underlying this algorithm is to minimize a cost function that
collects the errors for a sequence of partial fits to the data. More in detail, the data are split into
two sets:

• a training set of N − 1 data to obtain a “partial” interpolation;
• a validation set with the remaining data to compute the error.

After iterating this procedure N times (one for each given data), the cost function uses the
so-obtained vector of error estimates to determine the optimal shape parameter. More details
about the RBF moments computation and the LOOCV method can be found in [12, 11, 42].

4. METHODS FOR FREDHOLM INTEGRAL EQUATIONS

4.1. Method 1. The discrete collocation method introduced in [2] assumes that the unknown
solution of the Fredholm integral equation (1.1) is approximated by

f̃(x, y) =

N∑
j=1

cjϕj(x, y),

and hence consider the equation

R(x, y) = f̃(x, y)− µ

∫
Ω

k(x, y, s, t)f̃(s, t)dsdt− g(x, y),
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whereR(x, y) is the residual of the RBF approximation. Then, collocating at the points (xi, yi) ∈
X ⊂ Ω and requiring that

R(xi, yi) = 0, ∀ i = 1, . . . , N,

the following system is obtained

(4.9)
N∑
j=1

[
ϕj(xi, yi)− µ

∫
Ω

k(xi, yi, s, t)ϕj(s, t)dsdt

]
cj = g(xi, yi), i = 1, . . . , N.

To approximate the integrals in (4.9), the authors in [2] introduce a composite Gauss-Legendre
cubature rule in the case the domain Ω is of the type

(4.10) Ω = {(x, y) ∈ R2 : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)},

with a, b ∈ R and α, β continuous functions of x. They also consider the case when Ω is union
of domains of the type (4.10).

The rule is achieved recalling that for any function h(x, y) continuous on Ω of the type (4.10),
we have ∫

Ω

h(x, y)dxdy =

∫ b

a

∫ β(x)

α(x)

h(x, y)dxdy =

∫ b

a

H(x)dx,

with

H(x) =

∫ β(x)

α(x)

h(x, y)dy.

Hence, applying a composite mN -point Gauss-Legendre quadrature rule first to the integral
H(x) and then to the integral

∫ b

a
H(x)dx (both conveniently shifted into the interval [−1, 1]),

we get ∫
Ω

k(x, y, s, t)ϕj(s, t)dsdt ≈ GM
mN

(x, y),

GM
mN

(x, y) :=
1

2M

M∑
h=1

mN∑
k=1

wk
∆t(θhk )

2

M∑
ℓ=1

mN∑
ι=1

wιk(x, y, θ
h
k , η

ℓ
ι )ϕj(θ

h
k , η

ℓ
ι ),

where

(4.11)

∆t(s) =
β(s)− α(s)

M
,

θhk =
1

M

[
zk + 2h− 1

2

]
, h = 1, . . . ,M, k = 1, . . . ,mN ,

ηℓι =
1

M

[
zι + 2ℓ− 1

2

]
, ℓ = 1, . . . ,M, ι = 1, . . . ,mN ,

M is the number of subintervals employed and {zk, wk}mN

k=1 are the zeros and weights of the
mN -point Gauss-Legendre rule, respectively.

Finally, the linear system is

(4.12)
N∑
j=1

[
ϕj(xi, yi)− µGM

mN
(xi, yi)

]
cj = g(xi, yi), i = 1, . . . , N.
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4.2. Method 2. The spectral meshless radial point interpolation (SMRPI) method has been pro-
posed as a combination of meshless methods and spectral collocation techniques. More specifi-
cally, the point interpolation method with the help of RBFs is used to construct shape functions
Φi so that

(4.13) Φi(Pj) =

{
1, i = j,

0, i ̸= j,
i, j = 1, . . . , n.

Moreover, the shape functions satisfy the following partition of the unity property

(4.14)
n∑

i=1

Φi(P ) = 1.

In [25], the authors assume to work only with SPD RBFs. Hence, the function f at a point of
interest P ∈ Ω is expressed in the form

(4.15) f(P ) ≈ ψ(P ) =

n∑
i=1

ciϕi(P ).

The idea is that here the coefficients ci are determined taking into consideration a support
domain for the point of interest that includes n < N nodes of Ω. More precisely, the coeffi-
cients are determined by solving a linear system of the type (2.4), obtained by requiring that
equation (4.15) is satisfied at the n nodes surrounding the point of interest P in the support
domain. Note that the support domain DP ⊂ Ω is usually a disk of radius rP and centred at
the considered point of interest P .

Consequently, we have the following linear system

Ancn = fn,

with cn = [c1, . . . , cn]
T and fn = [f1, . . . , fn]

T and

An =


ϕ1(P1) ϕ1(P2) . . . ϕ1(Pn)
ϕ2(P1) ϕ2(P2) . . . ϕ2(Pn)

...
...

. . .
...

ϕn(P1) ϕn(P2) . . . ϕn(Pn)

 .

Since An is a symmetric positive definite matrix, it follows that

(4.16) cn = A−1
n fn.

Setting r(P ) = [ϕ1(P ), . . . , ϕn(P )]
T , equation (4.15) can be rewritten as

f(P ) ≈ rT (P )c.

By (4.16), we have

(4.17) ψ(P ) = rT (P )A−1
n fn = ΦT (P )fn =

n∑
i=1

fiΦi(P ),

being ΦT (P ) = rT (P )A−1
n = [Φ1(P ), . . . ,Φn(P )]. The n functions in the vector Φ(P ) are called

the radial point interpolation method (RPIM) shape functions corresponding to the nodal dis-
placements and satisfy the properties (4.13) and (4.14).
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Remark 4.1. We point out that the number n of nodes included in the support domain DP clearly
depends on the point of interest P . When necessary, to underline this dependence we write it as nP .
Moreover, we can rewrite the RPIM approximation of f as follows

ψ(P ) =

N∑
j=1

fjΦj(P ),

noting that for any
Pj ∈ Dc

P := {Pj : Pj /∈ DP }

we have Φj(P ) = 0.

The SMRPI method is constructed by replacing the unknown solution f(x, y) in (1.1) with
its RPIM approximation

(4.18) ψ(x, y) =

N∑
j=1

fjΦj(x, y).

This leads to
N∑
j=1

Φj(x, y)fj − µ

N∑
j=1

fj

∫
Ω

k(x, y, s, t)Φj(s, t)dsdt = g(x, y).

By Remark 4.1, the above integral can be rewritten as follows

(4.19)
N∑
j=1

Φj(x, y)fj − µ

N∑
j=1

fj

∫
DPj

k(x, y, s, t)Φj(s, t)dsdt = g(x, y),

where DPj is the support domain of the point Pj = (xj , yj). Collocating equation (4.19) at the
points of X ⊂ Ω, we obtain the following system of order N

N∑
j=1

[Φj(xi, yi)− µG(xi, yi)] fj = g(xi, yi), i = 1, . . . , N.

Approximating the integral by a suitable Gaussian cubature rule

(4.20) Gj(xi, yi) ≈
∫
DPj

k(xi, yi, s, t)Φj(s, t)dsdt, i = 1, . . . , N,

and recalling the Kronecker delta property (4.13), we finally obtain the linear system

(4.21)
N∑
j=1

[δij − µGj(xi, yi)] fj = g(xi, yi), i = 1, . . . , N,

that can also be written in the following matrix form

(I− µG)f = g,

where I is the identity matrix of order N , the square matrix G has entries Gj(xi, yi), i, j =
1, . . . , N , g = [g1, . . . , gN ]T with gi = g(xi, yi), i = 1, . . . , N , and f = [f1, . . . , fN ]T with fi =
fxi, yi), i = 1, . . . , N .
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4.3. Method 3. The method introduced in [1] is based on hybrid kernels. A hybrid kernel is a
combination of radial kernels, usually one infinitely smooth depending on a shape parame-
ter along with one of finite smoothness that is shape-parameter-free, in order to combine their
benefits and reduce the respective drawbacks. It is known that infinitely smooth kernels gener-
ally have a high order of convergence while their stability usually decreases by decreasing the
shape parameter and increasing the number of points. Conversely, kernels of finite smoothness
often provide lower accuracy and convergence order but better stability in the computations.

RBF ϕ(r)

Thin Plate Spline (TPS) r2 log r
Cubic (CU) r3

Polyharmonic (P7) r7

TABLE 2. Some examples of shape-parameter-free RBFs.

A family of hybrid radial kernels (HRKs) is constructed as follows:

(4.22) Ψϵ,i(P ) = ϕϵ,i(P ) + ρϕi(P ), i = 1, . . . , N,

where ϕϵ,i is an infinitely smooth radial kernel with shape parameter ϵ, ϕi is a piecewise smooth
shape-parameter-free radial kernel and ρ ∈ R is the HRK weight parameter. The shape parame-
ter ϵ and the weight parameter ρ control the accuracy and the stability of the HRK interpolation
of the function f that is given by

(4.23) ψ̃(P ) =

N∑
i=1

c̃iΨϵ,i(P ) +

N+M∑
i=N+1

c̃iπi−N (P ).

The coefficients c̃1, . . . , c̃N+M are also in this case determined by enforcing the interpolation
conditions

ψ̃(Pi) = fi, i = 1, . . . , N,

and the M additional conditions
N∑
i=1

c̃iπk(Pi) = 0, k = 1, . . . ,M,

with the polynomial part in (4.23) omitted if dealing with SPD hybrid radial kernels. Conse-
quently, we obtain the following symmetric linear system

(4.24) Hc̃ = b,

where

H =

[
H Q
QT O

]
, b =

[
f
0

]
.

with
Hij = Ψϵ,i(Pj), Qik = πk(Pi), i, j = 1, . . . , N, k = 1, . . . ,M,

c̃ = [c̃1, . . . , c̃N+M ]T the HRK coefficient vector and f = [f1, . . . , fN ]T the scattered data vector.
We recall that for a SPD HRK Ψϵ,i the matrix in (4.24) reduces to H = H .

The HRK method is constructed by replacing the unknown solution f(x, y) in (1.1) with its
HRK approximation

ψ̃(x, y) =

N∑
i=1

c̃iΨϵ,i(x, y)
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in the case of SPD hybrid kernels obtaining
N∑
j=1

[
Ψϵ,j(x, y)− µ

∫
Ω

k(x, y, s, t)Ψϵ,j(s, t)dsdt

]
c̃j = g(x, y).

By collocating the previous equation at the points (xi, yi) ∈ X ⊂ Ω, we get the following
system:

(4.25)
N∑
j=1

[
Ψϵ,j(xi, yi)− µ

∫
Ω

k(xi, yi, s, t)Ψϵ,j(s, t)dsdt

]
c̃j = g(xi, yi), i = 1, . . . , N.

To approximate the integrals in (4.25), the authors in [1] apply the composite Gauss-Legendre
cubature rule that we have recalled in Subsection 4.1∫

Ω

k(x, y, s, t)Ψϵ,j(s, t)dsdt ≈ G̃M
mN

(x, y),

G̃M
mN

(x, y) :=
1

2M

M∑
h=1

mN∑
k=1

wk
∆t(θhk )

2

M∑
ℓ=1

mN∑
ι=1

wιk(x, y, θ
h
k , η

ℓ
ι )Ψϵ,j(θ

h
k , η

ℓ
ι ),

with ∆t(s), θhk and ηℓι defined as in (4.11). Hence, the following linear system is finally obtained
N∑
j=1

[
Ψϵ,j(xi, yi)− µG̃M

mN
(xi, yi)

]
c̃j = g(xi, yi), i = 1, . . . , N.

Regarding the search for the optimal parameter values of the hybrid kernels, the authors in [1]
present a global particle swarm optimization (PSO) method. PSO is a robust algorithm in-
troduced by Kennedy and Eberhart [33] that uses swarm intelligence for solving optimiza-
tion problems. A swarm in the PSO algorithm comprises a group of particles navigating the
problem’s search-space, with each particle assigned a fitness value that represents a potential
solution to the optimization problem at hand. Key advantages of PSO include its straight-
forward implementation, information sharing, mutual cooperation among particles, memory
utilization, fast convergence, and low computational complexity. However, the conventional
PSO algorithm is susceptible to premature convergence and can easily become trapped in local
optima. To address these limitations, the authors in [1] introduced some modifications to the
standard PSO algorithm to enhance its performance and the reader can refer to their article for
further details about it.

4.4. Advantages and drawbacks. The three methods presented in this review paper all rely
on RBFs and, consequently, face similar challenges, particularly in selecting an optimal shape
parameter. At first glance, the hybrid kernel method might seem preferable, as it combines
the strengths of two different RBFs: one dependent on a shape parameter and another that is
shape-parameter-free. However, this introduces a new challenge: optimizing both the shape
parameter and the weight parameter, ρ, which balances the contributions of the two RBFs.
While algorithms such as LOOCV and PSO can optimize both parameters, the computational
effort increases because these algorithms must now handle two parameters instead of one.
In contrast, the SMRPI method is more computationally expensive due to the construction of
the shape functions Φi, as described in (4.17), whereas the discrete collocation method is the
simplest to implement. Regarding the cubature rule used to approximate the integral in (1.1),
all three methods rely on Gaussian-type rules. Despite these differences, it is important to note
that all three methods are reliable and exhibit comparable performance as far as we know.
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5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we reviewed three methods for the numerical treatment of Fredholm integral
equations of the second kind using RBFs. The described methods are meshless, independent
of the geometry of the domain, and reduce the problem to solving a linear system of algebraic
equations. To our knowledge, this research topic has not yet been fully explored. Our future
goal is to further engage in this field by introducing Nyström-type methods, which, as far as we
know, have not yet been considered. Additionally, we plan to carry out a comparison with the
methods discussed in this review paper, providing multiple numerical examples. This work
could help strengthen the connections between RBF interpolation and the theory of integral
equations.
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