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ABSTRACT. Algebraic theory of coding is one of the modern fields of applications of algebra. Genetic matrices and
algebraic biology have been the latest advances in further understanding of the patterns and rules of genetic code. Ge-
netics code is encoded in combinations of the four nucleotides (A, C, G, T) found in DNA and then RNA. DNA defines
the structure and function of an organism and contains complete genetic information. DNA paired bases of (A, C, G,
T) form a geometric curve of double helix, define the 64 standard genetic triplets, and further degenerate 64 genetic
codons into 20 amino acids. In trigonometry, four basic trigonometric functions (sinx, tanx, cosx, cotx) provided
bases for Fourier analysis to encode signal information. In this paper, we use these 4 paired bases of trigonometric
functions (sinx, tanx, cosx, and cotx) to generate 64 trigonometric triplets like 64 standard genetic code, further ex-
amine these 64 trigonometric functions and obtained 20 trigonometric triplets like 20 amino acids. This parallel shows
a similarity connection between universal genetic codes and the universality of trigonometric functions. This connec-
tion may provide a bridge to further uncover patterns of genetic code. This demonstrates that matrix algebra is one of
promising instruments and of adequate languages in bioinformatics and algebraic biology.
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1. INTRODUCTION

The genetic code is encoded in combinations of the four nucleotides (A, C, G, T) found in
DNA and the four nucleotides (A, C, G, U) found in RNA.The complementary pairs of the four
nitrogenous bases in DNA are A-T (adenine and thymine), C-G (cytosine and guanine). The
following table gives a complete list of 64 triplets (codons) with corresponding 20 amino acids
with three (one) letter code and stop codons.

Table 1 shows that there are 64 triplets or codons. One can see that some amino acids are
encoded by several different but related base triplets. Also three triplets (UAA, UAG, and
UGA) are stop codons. No amino acids are corresponding to their code. The remaining 61
triplets represent 20 different amino acids. Petoukhov [18] showed the "Biperiodic table of
genetic code" as illustrated below:

8 × 8 matrix table Table 2 shows a great symmetrical structure and has led to many dis-
coveries [8, 9, 10, 11, 12]. By using three fundamental attributive mappings, the stochastic
characteristic of the biperiodic table and symmetries in structure of genetic code were recently
investigated in [8, 9, 10, 11, 12].

Received: 27.08.2024; Accepted: 04.10.2024; Published Online: 16.12.2024
*Corresponding author: Matthew X. He; hem@nova.edu
DOI: 10.33205/cma.1539666

27



28 Matthew X. He and Sergey V. Petoukhov

TABLE 1. The universal genetic code and amino acids.

First Position Second Position of Codon Third PositionU C A G

U

UUU Phe [F] UCU Ser [S] UAU Tyr [Y] UGU Cys [C] U
UUC Phe [F] UCC Ser [S] UAC Tyr [Y] UGC Cys [C] C
UUA Leu [L] UCA Ser [S] UAA Ter [end] UGA Ter [end] A
UUG Leu [L] UCG Ser [S] UAG Ter [end] UGG Trp [W] G

C

CUU Leu [L] CCU Pro [P] CAU His [H] CGU Arg [R] U
CUC Leu [L] CCC Pro [P] CAC His [H] CGC Arg [R] C
CUA Leu [L] CCA Pro [P] CAA Gln [Q] CGA Arg [R] A
CUG Leu [L] CCG Pro [P] CAG Gln [Q] CGG Arg [R] G

A

AUU Ile [I] ACU Thr [T] AAU Asn [N] AGU Ser [S] U
AUC Ile [I] ACC Thr [T] AAC Asn [N] AGC Ser [S] C
AUA Ile [I] ACA Thr [T] AAA Lys [K] AGA Arg [R] A

AUG Met [M] ACG Thr [T] AAG Lys [K] AGG Arg [R] G

G

GUU Val [V] GCU Ala [A] GAU Asp [D] GGU Gly [G] U
GUC Val [V] GCC Ala [A] GAC Asp [D] GGC Gly [G] C
GUA Val [V] GCA Ala [A] GAA Glu [E] GGA Gly [G] A
GUG Val [V] GCG Ala [A] GAG Glu [E] GGG Gly [G] G

TABLE 2. Biperiodic table of genetic code.

CCC CCA CAC CAA ACC ACA AAC AAA
CCU CCG CAU CAG ACU ACG AAU AAG
CUC CUA CGC CGA AUC AUA AGC AGA
CUU CUG CGU CGG AUU AUG AGU AGG
UCC UCA UAC UAA GCC GCA GAC GAA
UCU UCG UAU UAG GCU GCG GAU GAG
UUC UUA UGC UGA GUC GUA GGC GGA
UUU UUG UGU UGG GUU GUG GGU GGG

Genetic information is transferred by means of discrete elements: 4 letters of the genetic al-
phabet, 64 triplets, 20 amino acids, etc. General theory of signal processing utilizes the encod-
ing of discrete signals by means of special mathematical matrices and spectral representations
of signals to increase reliability and efficiency of information transfer [25, 1]. This paper con-
siders classical trignometric functions of sinx, cosx, tanx and cotx. These four functions form
the complementary pairs sinx and cosx, tanx and cotx. In this paper, we use these 4 paired
bases of trigonometric functions (sinx, cosx, tanx, and cotx) to generate 64 triplets similar to
64 standard genetic code, further examine these 64 trigonometric functions and obtained 20
trigonometric functions similar to 20 amino acids. This parallel shows a similarity connection
between universal genetic codes and the universality of trigonometric functions. This connec-
tion may provide a bridge to further uncover patterns of genetic code. This deomnstrates that
matrix algebra is one of promising instruments and of adequate languages in bioinformatics
and algebraic biology.
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2. HADAMARD MATRICES

By a definition a Hadamard matrix of dimension "n" is the (n × n)−matrix H (n) with ele-
ments "+1" and "−1". It satisfies the condition

(2.1) H (n) ∗H (n)
T
= n ∗ In,

where H (n)
T is the transposed matrix and H (n) is the (n ∗ n)-identity matrix. The Hadamard

matrices of dimension 2k are formed, for example, by the recursive formula H
(
2k
)
= H (2)

(k)
=

H (2)⊗H
(
2k−1

)
for 2 ≤ k ∈ N , where ⊗ denotes the Kronecker (or tensor) product, (k) means

the Kronecker exponentiation, k and N are integers, H (2) is showed in Figure 1. In this article,
we will mark by black (white) color all cells in Hadamard matrices which contain the element
"+1" (the element "−1" correspondingly).

Rows of a Hadamard matrix are mutually orthogonal. It means that every two different
rows in a Hadamard matrix represent two perpendicular vectors, a scalar product of which is
equal to 0. The element "−1" can be disposed in any of four positions in a Hadamard matrix
H (2).

FIGURE 1. The family of Hadamard matrices H
(
2k
)

based on the Kronecker
product. Matrix cells with elements "+1" are marked by black color.

A Kronecker product of two Hadamard matrices is a Hadamard matrix as well. A per-
mutation of any columns or rows of a Hadamard matrix leads to a new Hadamard matrix.
Hadamard matrices and their Kronecker powers are used widely in spectral methods of anal-
ysis and processing of discrete signals and in quantum computers. A transform of a vector ā
by means of a Hadamard matrix H gives the vector ū = H ∗ ā, which is named Hadamard
spectrum. A greater analogy between Hadamard transforms and Fourier transforms exists [1].
In particular the fast Hadamard transform exists in parallel with the fast Fourier transform.
The whole class of multichannel "spectrometers with Hadamard transforms" is known [27],
where the principle of tape masks (or chain masks) is used, and it reminds one of the princi-
ples of a chain construction of genetic texts in DNA. Hadamard matrices are used widely in
the theory of coding (for example, they are connected with Reed-Muller error correcting codes
and with Hadamard codes [17]), the theory of compression of signals and images, a realization
of Boolean functions by means of spectral methods, the theory of planning of multiple-factor
experiments and in many other branches of mathematics.

Rows of Hadamard matrices are called Walsh functions or Hadamard functions which are
used for a spectral presentation and a transfer of discrete signals [1, 3, 31]. Walsh functions
can be represented in terms of product of Rademacher functions rn (t) = sign (sin 2nπt) , n =
1, 2, 3, . . . , which accept the two values "+1" and "−1" only (here "sign" is the function of a
sign on argument). Sets of numerated Walsh functions (or Hadamard functions), when they
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are united in square matrices, form systems depending on features of such union. Hadamard
matrices are connected with Walsh-Hadamard transforms, which are the most famous among
non-sinusoidal orthogonal transforms and which can be calculated by means of mathematical
operations of addition and subtraction only (see more details in [1, 28, 31]). Hereinafter we will
use the simplified designations of matrix elements on illustrations of Hadamard matrices: the
symbol "+" or the black color of a matrix cell means the element "+1"; the the symbol "−" or the
white color of a matrix cell means the element "−1". The theory of discrete signals pays special
attention to quantities of changes of signs "+" and "−" along each row and each column in
Hadamard matrices. These quantities are connected with an important notion of "sequency" as
a generalization of notion of "frequency" [1, p. 85]. Normalized Hadamard matrices are unitary
operators. They serve as one of the important instruments to create quantum computers, which
utilize so called Hadamard gates (as evolution of the closed quantum system is unitary) [16].

Algebraic biology knows already examples of applications of Walsh functions (alongside
with other systems of basic functions) to spectral analysis of various aspects of genetic algo-
rithms and sequences [6, 2, 5, 14, 24, 31, 32]. The book [32] contains a review of investiga-
tions made by various authors about Walsh orthogonal functions in physiological systems of
supra-cellular levels as well. We investigate whether structures of the genetic code have such
direct relations with Hadamard matrices which can justify systematic applications of Walsh-
Hadamard functions to spectral and other analysis of many inherited biological structures of
various levels. This paper proposes relevant evidences about connections of Hadamard matri-
ces with the genetic code in its Kronecker’s matrix form of presentation.

We note that standard genetic code can be constructed by Kronecker product process from a
2× 2 to 4× 4 and then 8× 8 matrices as illustrated in Figure 2.

FIGURE 2. Genetic code matrices.

This 8 × 8 matrix represents a universal genetic code. It served as a basis for the central
dogma of microbiology (DNA→RNA→Protein). The shapes of DNA motions form DNA dou-
ble hélix [7]. Mathematical structure of DNA code has been viewed as the other secrets of
life [26]. Four bases of trignometric functions of sinx, cosx, tanx, and cotx may offer further
insights of DNA bases of A, C, G, and T.

3. HADAMARD MATRIX OF TRIGONOMETRIC FUNCTIONS

The fundamental elements of trigonometry are sinx, cosx, tanx, and cotx. These 4 elements
form the trigonometry relation base pairs T = [sinx, tanx; cosx, cotx] like DNA base pairs [A,
T; G, C]. This T matrix evolves from a 2× 2 matrix to a 4× 4 matrix and then to an 8× 8 matrix
as illustrated below:
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TABLE 3. 2× 2 matrix T [1].

sinx tanx
cotx cosx

TABLE 4. 4× 4 matrix T [2].

sinx sinx sinx tanx tanx sinx tanx tanx
sinx cotx sinx cosx tanx cotx tanx cosx
cotx sinx cotx tanx cosx sinx cosx tanx
cotx cotx cotx cosx cosx cotx cosx cosx

TABLE 5. 8× 8 matrix T [3].
sinx sinx sinx sinx sinx tanx sinx tanx sinx sinx tanx tanx tanx sinx sinx tanx sinx tanx tanx tanx sinx tanx tanx tanx
sinx sinx cotx sinx sinx cosx sinx tanx cotx sinx tanx cosx tanx sinx cotx tanx sinx cosx tanx tanx cotx tanx tanx cosx
sinx cotx sinx sinx cotx tanx sinx cosx sinx sinx cosx tanx tanx cotx sinx tanx cotx tanx tanx cosx sinx tanx cosx tanx
sinx cotx cotx sinx cotx cosx sinx cosx cotx sinx cosx cosx tanx cotx cotx tanx cotx cosx tanx cotx cosx tanx cosx cosx
cotx sinx sinx cotx sinx tanx cotx tanx sinx cotx tanx tanx cosx sinx sinx cosx sinx tanx cosx tanx sinx cosx tanx tanx
cotx sinx cotx cotx sinx cosx cotx tanx cotx cotx tanx cosx cosx sinx cotx cosx sinx cosx cosx tanx cotx cosx tanx cosx
cotx cotx sinx cotx cotx tanx cotx cosx sinx cotx cosx tanx cosx cotx sinx cosx cotx tanx cosx cosx sinx cosx cosx tanx
cotx cotx cotx cotx cotx cosx cotx cosx cotx cotx cosx cosx cosx cotx cotx cosx cotx cosx cosx cosx cotx cosx cosx cosx

Either addition or multiplication can be applied to each cell of these 64 triplets as illustrated
below in the case of multiplication operation:

TABLE 6. 8× 8 matrix T [3] with multiplication (×).
sin3 x sin2 x tanx sin2 x tanx tan2 x sinx sin2 x tanx tan2 x sinx tan2 x sinx tan3 x

sin2 x cotx sin2 x cosx sinx tanx cotx sinx tanx cosx tanx sinx cotx tanx sinx cosx tan2 x cotx tan2 x cosx

sin2 x cotx sinx cotx tanx sin2 x cosx sinx cosx tanx tanx cotx sinx tan2 x cotx tanx cosx sinx tan2 x cosx
cot2 x sinx sinx cotx cosx sinx cosx cotx cos2 x sinx cos2 x tanx tanx cotx cosx tanx cosx cotx cos2 x tanx

sin2 x cotx cotx sinx tanx cotx tanx sinx tan2 x cotx sin2 x cosx cosx sinx tanx cosx tanx sinx tan2 x cosx
cot2 x sinx cotx sinx cosx cot2 x tanx cotx tanx cosx cosx sinx cotx cos2 x sinx cosx tanx cotx cos2 x tanx
cot2 x sinx cot2 x tanx cotx cosx sinx cotx cosx tanx cosx cotx sinx cosx cotx tanx cos2 x sinx cos2 x tanx

cot3 x cot2 x cosx cot2 x cosx cos2 x cotx cot2 x cosx cos2 x cotx cos2 x cosx cos3 x

This 8 × 8 matrix has 64 cells. Applying addition or multiplication operation to each cell,
it degenerates into 20 different cells due to the commutative nature of addition/multiplication
operation like 20 amino were acids degenerated from the 64 universal genetic code. These 20
different cells and frequency distribution are illustrated below:
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TABLE 7. Trigonometric functions.
Different Matrix Cell with Addition (+) Different Matrix Cell with Addition (×) Frequency from 8× 8 Matrix T [3]

3 sinx sin3 x 1
3 cosx cos3 x 1
3 tanx tan3 x 1
3 cotx cot3 x 1

2 sinx+ cosx sin2 x cosx 3

2 sinx+ tanx sin2 x tanx 3

2 sinx+ cotx sin2 x cotx 3
2 cosx+ sinx cos2 x sinx 3
2 cosx+ tanx cos2 x tanx 3
2 cosx+ cotx cos2 x cotx 3
2 tanx+ sinx tan2 x sinx 3
2 tanx+ cosx tan2 x cosx 3
2 tanx+ cotx tan2 x cotx 3
2 cotx+ sinx cot2 x sinx 3
2 cotx+ cosx cot2 x cosx 3
2 cotx+ tanx cot2 x tanx 3
sinx+ cosx+ tanx sinx cosx tanx 6
sinx+ cosx+ cotx sinx cosx cotx 6
sinx+ tanx+ cotx sinx tanx cotx 6
cosx+ tanx+ cotx cosx tanx cotx 6
20 20 64

Each cell of this matrix represents an relation curve. The graphical representations of these
curves (with addition/multiplication) are shown below:

FIGURE 3. Twenty trigonometric curves with addition.
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FIGURE 4. Twenty trigonometric curves with multiplication.

These curves are either bounded or unbounded. These curves may serve as basis to model
the expressions of human thoughts like the 20 amino acids as the building blocks of the pro-
teins. The orthogonal relationships of sine and cosine functions along with these building
blocks of thinking frequency curves provide the basis for Fourier series that can be used to rep-
resent various thinking frequency curves. Throughout the history of humankind, trigonometry
as human mind activities, has been applied in almost every area from geometry to nature [24].

4. MATRIX GENETICS AND ALGEBRAIC BIOLOGY

Matrix genetics which can be interpreted as a part of algebraic biology on the genetic systems
by means of their matrix forms of presentation. One can name additionally the following main
reasons for an initial choice of such form of presentation of molecular ensembles of the genetic
code:

• Information is usually stored in computers in the form of matrices.
• Noise-immunity codes are constructed on the basis of matrices.
• Quantum mechanics utilizes matrix operators through the connections with matrix

forms of presentation of the genetic code. The significance of matrix approach is em-
phasized by the fact that quantum mechanics arises in a form of matrix mechanics as
formulated by W. Heisenberg.

• Complex and hypercomplex numbers, which are utilized in physics and mathematics,
possess matrix forms of their presentation. The notion of number is the main notion
of mathematics and mathematical natural sciences. In view of this, investigation of a
possible connection of the genetic code to multi-dimensional numbers in their matrix
presentations can lead to very significant results.
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• Matrix analysis is one of the main investigation tools in mathematical natural sciences.
The study of possible analogies between matrices, which are specific for the genetic
code, and famous matrices from other branches of sciences can be heuristic and useful.

• Matrices, which are a kind of union of many components in a single whole, are subor-
dinated to certain mathematical operations, which determine substantial connections
between collectives of many components. These kinds of connections can be essential
for collectives of genetic elements of different levels as well.

Matrix genetics are developed during last decade intensively [8, 9, 10, 11, 18, 19, 20, 21, 22]. Let
us list some of interesting results which were obtained in these works:

• new phenomenological rules of evolution of the genetic code;
• multi-dimensional algebras for modelling and for analysing the genetic code systems;
• hidden interrelations between the golden section and parameters of genetic multiplets;
• relations between the Pythagorean musical scale and an important class of quint genetic

matrices which show a molecular genetic basis with a sense of musical harmony and of
aesthetics of proportions;

• cyclic algebraic principles in the structure of matrices of the genetic code;
• materials for a chronocyclic conception, which connects structures of the genetic system

with chrono-medicine and a problem of an internal clock of organisms, etc.

Spectral methods of decomposition of signals on orthogonal systems of functions such as
sin (x) and cos (x) have proved themselves for a long time as especially important in the theory
of signals and informatics in general. Researchers of genetic informatics attempt to address
to them already (see, for example, the works [13, 15] which pay attention to the importance
of spectral methods in this field). But an infinite quantity of orthogonal systems of functions
exists. It is difficult for researchers of molecular-genetic systems to make a choice of one of
infinite number of possible orthogonal systems as an adequate one for spectral methods in the
field of genetic informatics. They should make here rather a volitional choice, risking the waste
of many years of work in the case of the failure of such a choice. They make this choice usually,
proceeding from secondary reasons, which do not have a direct relation to genetic systems. For
example, they choose the system of orthogonal harmonious functions, which is applied in the
classical frequency Fourier-analysis, because this system has extensive applications in technical
fields.

The results described in our article show the relation of the genetic code with the orthog-
onal systems of functions, which relate to Hadamard matrices, and which possess a special
meaning for genetic informatics and its spectral methods. The orthogonal systems of func-
tions connected with Hadamard matrixes are picked out by nature from the infinite set of basic
systems for their deep connection with an essence of molecular-genetic coding. A consistent
investigation of bioinformatics systems should be done from the viewpoint of the theory of
Hadamard matrices and their applications. In particular, the comparative analysis of various
genetic sequences on their Hadamard spectrums is interesting. The described results give im-
portant help in a choice of research tool from an infinite set of orthogonal systems of functions
and from a set of variants of noise-immunity codes.

In the spectral analysis of genetic sequences (for example, their correlation functions), it is
meaningful to spend their decomposition on orthogonal vectors-rows of Hadamard genoma-
trices, instead of on trigonometric functions of the frequency Fourier-analysis. Investigations
of Hadamard spectrums in mathematical genetics are perspective and well-founded. Espe-
cially since some works are already known as applications of Walsh functions (alongside with
other systems of basic functions) to spectral analysis of various aspects of genetic algorithms
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and sequences [6, 2, 5, 14, 23, 29, 30]. The book [32, p. 416] contains a review of works about
applications of Walsh orthogonal functions in some other fields of physiology.

The discovery of connections of the genetic matrices with Hadamard matrices leads to many
new possible investigations using methods of symmetries, of spectral analysis, etc. One can ex-
pect that those Walsh-Hadamard functions, which are related to the described genetic Hadamard
matrices, will be used effectively in the spectral analysis of genetic sequences. It seems that in-
vestigations of structural and functional principles of bio-information systems from the view-
point of quantum computers and of unitary Hadamard operators are very promising. A com-
parison of orthogonal systems of Walsh-Hadamard functions in molecular-genetic structures
and in genetically inherited macro-physiological systems can give new understanding to an
interrelation of various levels in biological organisms. Data about the genetic Hadamard ma-
trices together with data about algebras of the genetic code can lead to new understanding of
genetic code systems, to new effective algorithms of information processing and, perhaps, to
new directions in the field of quantum computers.
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