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1. Introduction

The determinant is a scalar value corresponding to a square matrix and is denoted by |A|, D(A), det A,
or det(A). Besides, it is a function that maps from square matrix spaces to complex numbers. The
determinant has many uses in mathematics. For instance, it determines whether a square matrix is
invertible, is used to solve a system of linear equations, helps to find the inverse of a matrix, is used to
solve some boundary value problems, etc. The determinant of a square matrix can be calculated using
Laplace expansion. In particular, the determinant of a matrix of dimension 3 x 3 can be calculated
by the Sarrus rule. Calculating determinants becomes more difficult for square matrices of dimension
4 x 4 and larger. For more information about factorization and calculation of determinants of large
block matrices, see [1-14]. Sometimes calculating a determinant is easier if there are many zeros in
the entries of the considered matrix. For instance, it is easier to calculate the determinants of the
following matrices B and C' by hand than the determinant of the following matrix D.

3 0 3 7 1 65 3 7 5 b5 =7 7
B_ 0 -2 0 0 o= 0 -2 4 -8 . and D= 8§ 12 -8 2
5 2 0 13 0 0 9 18 5 =2 9 1
0 0 5 -8 0 0 0 -8 1 -1 3 -1

The more zeros, the easier it is to calculate the determinant. Indeed, the determinant of C'is the easiest
since C' is an upper triangular matrix. The determinant of an upper or lower triangular square matrix
is the product of the main diagonal entries. A similar calculation is provided for upper triangular

block matrices. Let E be an upper triangular square block matrix as follows:

'mat-ufuk@hotmail.com (Corresponding Author); 2altnfatma34@gmail.com
L2Department of Mathematics, Faculty of Arts and Sciences, Bitlis Eren University, Bitlis, Tiirkiye


https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0003-1278-997X
https://orcid.org/0009-0006-5429-830X
https://doi.org/10.53570/jnt.1545032

Journal of New Theory 49 (2024) 30-42 / On Factorization and Calculation of Determinant of Block Matrices - - - 31

Eyw B2 -+ Eip
0 FEya - Eoy

E = .
0 0 Enm

n
where 0 denotes the zero matrix. Then, |E| = [] |Ejl.
i=1

Simply having many zeros does not make it easy to calculate a determinant. Both matrices B and C'
have six zeros. However, since matrix C' is upper triangular, it is easier to calculate its determinant.

That is, the location or arrangement of the zeros is also essential.

This paper considers a different arrangement of zeros in a square matrix. It presents the following
type of square block matrices of dimension nm X nm whose components are upper triangular matrices

of dimension n X n:

A A - A
A A e Ao,
A= 21 22 2
Aml Am2 T Amm
nmxnm
where
An(i-1)+1,n(j—-1)+1  AnGE-D)+1n(G-1+2 ~°°  An@i—1)+1,n(G-1)+n
i — 0 nGi—1)42,n(G-1)+2 " On@—1)42n(—1)+n (1)

0 0 0 Au(i—D)4n,n(—1)4n

nxn

Firstly, we show that the determinant of A depends only on the diagonal entries of the matrices A;;.
Secondly, we construct a factorization of the matrix A when all the sub-matrices A;; are diagonal
matrices and obtain a formula for the determinant of A. Finally, we consider the eigenvalues, adjoint,

and inverse of the matrix A.

For instance, if we take n = m = 2, then the matrix A turns into

a1 a2 a3 a4
0 a2 0 ag4
A — bl b
asy1 as2 a3z asq

0 4.2 0 4,4

and we show that the following equality is valid

a1l Q12 a3 aig4

Al = 0 a2 0 aga a1 a1 a2 G24

as1 as2 as3 as4 as1 as3 || a42 a44

0 4.2 0 a4.4

In this paper, we consider only the upper triangular matrices since a lower triangular matrix is the

transpose of an upper triangular matrix.
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2. Main Results

In this section, we delve into the detailed process of reducing the determinant of block matrices whose
submatrices are triangular. This reduction is crucial for simplifying the determinant calculation of
such complex matrices. We begin by analyzing the specific structure of these matrices and demonstrate
how the arrangement of zeros in both the submatrices and the block matrix itself plays a fundamental
role. The results presented here provide a framework for factorization and determinant computation,
which will be elaborated upon in the following subsections. Our approach aims to significantly reduce
the computational complexity of these calculations, offering a more efficient pathway for handling

large-scale block matrices.

2.1. Reduction of Determinant

Consider the matrix of dimension nm X nm as follows:

All A12 e Alm
a|
Aml Am2 e Amm

where the submatrices A;; of dimension n x n are given by the following

Ap(i—1)+1,n(G-1)+1 An(i-1)+1n(G-1)+2 °° OnGE-1)+1,n(G-1)+n
0 Ap(i-1)+2n(G-1)+2 *° Qn(i—1)+2n(j—1)+n
Aij =
0 0 0 Qui—1)4nn(j—1)+n
More precisely,
ai,1 ce a1,n a1,n+1 ce ai,2n ce A1 n(m—1)+1 T a1,nm
0 e azm 0 . a2.2n e 0 e a2.nm
0 e asn 0 . as.2n e 0 e a3 nm
0 e ann 0 . Un.2n . 0 e U
an+41,1 ce An41,n An+1,n+1 e An+1,2n e an+l,n(m71)+1 e An4-1,nm
0 Gn+2,n 0 N An+2,2n 0 Gn+2,nm
0 cee An+3,n 0 ce an+3,2n ce 0 cee An+3,nm
A= (2.1)
0 .. A2nm 0 . A2n.2n .. 0 .. A2mmm
Ap(m—1)4+1,1 " An(m—-1)+1,n An(m—-1)+1,n+1 " An(m—-1)+1,2n " An(m—1)+1,n(m—1)+1 " On(m—1)+1,nm
0 o Op(m—1)42,n 0 0t Gp(m—1)42,2n " 0 ot Op(m—1)4-2,nm
0 * Gnu(m—1)+3,n 0 ct Au(m—1)+3,2n """ 0 *t Gnu(m—1)+3,nm

0 o Gnmn 0 o Gmman 0 o Gmmnm
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Let f, : ZT — {1,2,...,n} be a function defined by

k (mod n), ktm
n, kE|lm

In (k) :{

If we denote the number f, (k) by k, then the following notation is true for a matrix A = (a;;), ...~
of dimension nm x nm:

7> 3 = Qi = 0 (2.2)

Theorem 2.1. Let A, xnm be a matrix satisfying (2.2) and a, j, be an entry of the matrix A with
iop < jo- Then, any product including the number a;, j, of the following determinant formula is zero:

[Al= ) s80(0)a1,0(1)02,0(2) - - Anon)
0EShm
PROOF. Let o in Sy, be a permutation with o (i9) = jo. Then, o™ = e where e is the identity
function in Sy, i.e., e (i) =i, for all 1 < i < nm. Assume that o (ig) < oF+1 (ip), for all k € Z*
with 1 < k < (nm)!. Then,

o = € (io) = o™ (i) = o™ (ig) > ™2 (ig) > - > 7 (i0) = Jo

This contradicts the assumption ig < jo, i.e., there exists a number ko such that the relations 1 <
ko < (nm)! and o*o (ig) > oo+l (ig) hold. If o*° (i) is denoted by ag, then @ > o (ap) since
olag) =0 (ako (io)) = " T (ip). By (2.2), Gag0(ag) = 0. Consequently,

al,a(l) e aio,a(io) e a0'070'(0'0) e anﬁ(n) = 0
O

Corollary 2.2. Let Ay,pmxnm be a matrix satisfying the condition (2.2). Then, the determinant of A
depends only on the entries a; ; with ¢ = j, i.e., the determinant depends only on the entries on the
main diagonal in the submatrices A;; of A in (1.1). The entries a;; with ¢ < j in the submatrices
A;j; do not affect the determinant. Therefore, when calculating the determinant of matrix A, for
convenience, the entries a; ; with ¢ < j can be taken as 0. Consequently, the determinant of a matrix
A as in (2.1) and the determinant of the following matrix are equal:

a1 0 a1,n+1 0 a1 pn(m—1)+1 0
0 e 0 0 e 0o .- 0 e 0

0 e Qpp 0 S Apan v 0 S pnm
(n41,1 ce 0 An+1,n+1 T 0 te an+1,7z(m—1)+1 e 0

N
I
—~~
o
w
~

0 o A2pn 0 ccr A2p2n 0 e a2n,nm
Anim-1)+1,1 "** 0 Gum—1)+1n+1 - 0 Guem—1)4La(m-1)41 0
0 o0 0 Y N 0 . 0

0 cr Apmyn 0 ot Gpm2n "t 0 o Anmonm
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2.2. Factorization

Note that A can

We provide in this section a method for a factorization of the matrix A in (2.3).
i#}:ai,jzo. A

be taken as an arbitrary matrix of dimension nm x nm with the condition
factorization method for matrix A is as follows:

A=AAy--- A, (2.4)
where

a1 o --- 0 a1 i1 o --- 0 --- a1 n(m—1)+1 o --- 0
0 1 - 0 0 o .- 0 .- 0 o --- 0

0 o --- 0 0 o --- 0 --- 0
0 0 1 0 0 0 0 o --- 0
An+1,1 0 0 An+41,n+1 0 0 ng1,n(m—1)+1 o -~ 0
0 0 0 0 1 - 0 .- 0 o --- 0
5 0 0 0 0 0 0 0 o --- 0

A =
0 0 0 0 0 1 0 0 0
Ap(m—1)+1,1 0 ce 0 An(m—1)4+1,n+1 0 0 Ap(m—1)4+1,n(m—1)+1 0 ce 0
0 o --- 0 0 O --- 0 --- 0 1 - 0
0 0O --- 0 0 O --- 0 .- 0 0O --- 0
0 0 0 0 0 0 0 0 1
1 0 -+ 0 0 0 e 0 - 0 0 - 0
0 az,2 ce 0 0 a2 n+42 ce 0 e 0 a2 n(m—1)42 ce 0
0 0 .. 0 0 0 N | N 0 o0
0 0 .. 1 0 0 .0 -0 0 .0
0 0 .0 1 0 R | N 0 o0
0 an+4-2,2 te 0 0 An+2 n+2 te 0 e 0 Ap42,n(m—1)+2 o 0
B 0 0 ... 0 0 0 .0 .-~ 0 0 .0
Ay =

0 0 0 O 0 1 0 0 0
0 0 ... 0 0 0 R | . | 0 .0
0 anem-1)1422 - 0 0 anem-1y425n42 - 0 -+ 0 apem-1)42n@m-1+2 - 0
0 0 .. 0 0 0 N | N 0 o0
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1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 . ann 0 0 . an.2m . 0 0 . Anomm

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
- 0 0 0 0 0 0 0 0 0
A, =

0 0 cee a2n,n 0 0 e a2n,2n e 0 0 e a2n,nm

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 ce Anm,n 0 0 cee Anm,2n cee 0 0 s Anm,nm

(2.4) can be observed by matrix multiplication.

2.3. Determinant Formula

We have proved that the determinant of A and the determinant of A are equal in Corollary 2.2. We
have factored the matrix A in the former section. In this section, we give a formula for the determinant
of the matrix A by calculating the determinants of the factors of the matrix A.

Theorem 2.3. Consider a block matrix A whose submatrices are triangular as in (2.1). Then, the

following determinant formula is valid:

ag k Ak n+k s Ak n(m—1)+k
n
An+k,k An+kn+k c Antkn(m—1)+k
Al =11 : . _ : (2.5)
k=1
An(m—1)+kk  An(m—1)+kn+k " On(m—1)+kn(m—1)+k
PRrOOF. Consider the matrices A;, As, ..., A, in (2.4). Hence,

Al =[] [Ae] .| ]

The determinant of the matrix A; is calculated as follows: If we expand the determinant along the
2nd, 3rd, ..., nth rows, respectively, then
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ai 0---0 a1m+1 0---0 a1 m(m—1)+1 0--
0 1 0 0 0---0 0 0
0 0 0 0 0 0 0 0
0 0---1 0 0O--0- 0 0
An+41,1 0---0 An4+1,n+1 0 -0 - Ap41,n(m—1)+1 0
0 0---0 0 1---0- 0 0
~ 0 0---0 0 0O ---0 - 0 0
4 - |
0 0 0 0 0 1 0 0
anm-1)+1,1 0 -+ 0 @pim—1)41n41 0 -+ 0 - apm-1)r1,nm-1)+1 0
0 0---0 0 0---0 --- 0 1 ...
0 0---0 0 0---0 --- 0 0 ---
0 0---0 0 0 0 0 0
ai,1 a1 mn+1 0---0- a1 n(m—1)+1 0---0
(p41,1 aptip+r 0 --- 0 - Apitnm-141 0 -+ 0
0 0 1---0- 0 0---0
0 0 0---0- 0 0---0
0 0 0---1- 0 0 0
An(m—-1)+1,1 An(m—1)+1,n+1 0 - 0 © On(m—1)+1,n(m—1)+1 0 -0
0 0 0---0 --- 0 1 .-+ 0
0 0 0---0 --- 0 0---0
0 0 0--0 --- 0 0---1
We expand the last determinant along the 3rd, 4th, ..., (n + 1)th rows, respectively:
ain a1,n+1 a1.2n+1 0 0 a1 n(m—1)+1
(p+1,1 Ont1,n41 pt12n+1 0 -+ 0 Ang1n(m—1)+1
a2n+1,1 A2n+1,n+1 a2n+1,2n+1 0--0 - A2n+1,n(m—1)+1
0 0 0 1 0 0
0 0 0 0 0 0
’ Al = 0 0 0 01 0
An(m—-1)+1,1 An(m—1)+1,n+1 @n(m—1)+1,2n+1 0 0 © On(m—1)+1,n(m—1)+1
0 0 0 0---0 --- 0
0 0 0 0---0 --- 0

o O O O O
o O O O O

_= O
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If we continue this procedure, then

a1 a1,n+1 T a1 n(m—1)+1
~ An+1,1 An4+1,n+1 T Ap+1,n(m—1)+1
Ayl = .
An(m—-1)+1,1 An(m-1)+1n+1 " Ap(m—1)+1,n(m—1)+1
Similarly,
Ak k Ak,n+k T A n(m—1)+k
~ An+tk.k Qp+knt+k T Antkn(m—1)+k
’Ak‘ = . . .
An(m—1)+kk  An(m—-1)+kn+k " On(m—1)+kn(m—1)+k
[

We denote the matrix of dimension m x m on the right-hand side of the above relation by

Q. k Ak n+k s Ak.n(m—1)+k
- An+k.k Qn+kn+tk T An+kn(m—1)+k
i = . | . (26)
An(m—1)+kk  An(m-1)+kn+k °° Onim—1)+kn(m—1)+k

Theorem 2.3 shows that the determinants of the matrices A; and flz are equal.

Corollary 2.4. The matrix A of dimension nm x nm in (2.1) is invertible if and only if the matrix

fl};, for all 1 < k < n, of dimension m x m is invertible.

Example 2.5. Calculate the determinant of the matrices

1 —-19 32 -1 13 21 3 20 -1 12 2 52
0 -1 -7 0 -2 12 0 1 0 —-10 5
0 0 2 0 0 3 3 25 -3 32 1 78
and
-2 922 —24 3 5 -9 0o 1 0 1 0 -1
0o 2 17 0 -1 -23 -1 9 5 74 6 10
o 0 -1 0 0 3 0 1 0 -2 0 2
By Theorem 2.3,
1 —-19 32 -1 13 21
0 -1 -7 0 -2 12
o 0 2 0 0 3 | |1 -1][-1 -2 23_45
-2 922 24 3 5 -9 | | -2 3 2 11| -1 3|
0o 2 17 0 -1 -23
o 0 -1 0 0 3
and

3 20 —1 12 2 52

0 1 0 —-10 5

3 25 -3 32 1 78 s -2l =15

=3 -3 1]|l1 1 —1]|=312
0 1 0 1 0 -1
-1 5 6|1 -2 2
-1 9 5 74 6 10
0 1 0 -2 0 2
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2.4. Wronskian of the Trigonometric System

In this section, we calculate the trigonometric system cospix, sinpix, cospox, sinpax, ---, COSPyT,
and sin p,x where p1, po, - - -, pm are arbitrary real constants. These 2m functions are the fundamental
solutions of the differential equation of order 2m corresponding to the characteristic equation

(2 +p1) (B+p3) - (2 +ph) =0

This polynomial contains no odd terms. Therefore, the Wronskian of any fundamental solutions of
the corresponding differential equation is a constant, see [15]. Then, the Wronskian can be calculated

at point 0:
W = W [cos pyx, sin p1x, COS pax, Sin Pox, . . ., COS Py &, Sin Py, ]
coSp1T sinpix e COS P @ sin pp,x
—p1sinpx D1 COS P1T i —Pm SIN P @ Dm COS P
—p% cosp1T —p% sinpix e —p%l COS P& —p%n sin pm,x
= p‘rf sinpix —p‘i’ cospi1x e p;g’n sin py,x —p%l COS P&
(~)" ! pE 2 eospra (—1)" 7 pE Esinpya -+ (<1)" 2 cospre (<1)" ! g2 sinp
(=)™ p? Lsinpiz (=)™ 2™ teosprz oo (=) P2 tsinppr (—1)" p2 L cos ppa
cos 0 sin0 e cos( sin 0
—p1sin0 p1cos0 e —Ppm sin 0 Pm cos0
—p?cos0 —p?sin0 e —p2,cos0 —p2,sin0
= p:f’ sin 0 —p? cos 0 oo pf’n sin0 —pf’n cos 0
()™ 22 eos0 (=)™ 2 2sin0 - (—1)™ ! p2m2eos0 (—1)™ ! p2r2sin0
()™ P Lsin0 (D)™ 1 pF leos0 oo (1) p2rsind  (—1)™ 7 p2r L cos0
1 0 1 0 e 1 0
0 D1 0 P2 EE 0 Pm
= 0 —p:f 0 _p% ... 0 _p:?n
Ly I G AT G5 K
e i B o D iy TP NN CR Vit i
The last determinant can be calculated by (2.5). It splits two factors:
1 1 e 1 p1 P2 s Pm
-t —p3 ax —Dim —pi —p3 oz P

(_1)mflp§m—2 (_l)mflpgm—Q (_l)mflpgnm72 (_1)mflp§m—1 (_I)M71p§m_1 (—1)m71p%1m71
2
1 1 1
(ﬁ ) i —p3 —Dim
= Dk
k=1
(71)m—1p§m—2 (71)m—1p§m72 (71)m—1pgnm—2
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2
1 1
2 2 2
m p1 by - Dm
= (H pk) . Co .
k=1 : : L
p%m—Q p%m—2 . pgnme
The last determinant is the Vandermonde determinant of the numbers p?, p3, - - -, p2, and it is calcu-

lated by multiplying the differences between them (for more details, see [16]). Then, the Wronskian
of the trigonometric system takes the following form:

W= (ﬁm) I (-»)

1<i<j<m

2

Thanks to the Theorem 2.3, the proof of the last Wronskian formula is much shorter and simpler than
that in [17], provided by Kaya.

Corollary 2.6. The necessary and sufficient conditions for the linear independence of trigonometric

system cos py1x, sin p1x, cos pox, sin pax, -+ -, COS Py, and sin py,x are the following:
1. ppr #0, forall k€ 1,m
it. p; # pj and p; # —p;, for all @ # j

Corollary 2.7. The Wronskian of the particular trigonometric system cos x, sin x, cos 2z, sin 2z, - - -,

cosmz, and sin mx is
2

m (I (2-)

1<i<j<m

2.5. Some Properties of Block Matrices Whose Submatrices are Triangular

This section provides some properties of block matrices whose submatrices are triangular, such as
sum, product, adjoint, inverse, and eigenvalues.

Theorem 2.8. The sum and product of two matrices of type (2.1) are also of type (2.1). Besides,
the adjoint matrix of a matrix of type (2.1) is also of type (2.1).

PROOF. The first part of the theorem can be easily proved. Therefore, we prove the second part of
the theorem. It is sufficient that the cofactor of an entry a;, j, with ig < jo is equal to 0. According
to Corollary 2.2, the determinant of a matrix as in (2.1) is independent of the variable a;, ;, with
io < jo. Then, the derivative of the determinant of a matrix as in (2.1) concerning a;, j, is 0. On the
other hand, Jacobi’s formula [18] for the matrix analysis says that the cofactor of an entry in a square
matrix depending on the variables a;, j, is the derivative of the determinant of the matrix according
to the considered entry. Then, the cofactors of the entries a;, ;, with iy < jo are equal to 0. OJ

Corollary 2.9. If a matrix as in (2.1) has an inverse, then the inverse is also of type (2.1).

The proof is obtained from the equality:

_ ..
A 1 = madJ(A)

Theorem 2.10. Let A be a complex number. Then, A is an eigenvalue of a matrix A as in (2.1) if
and only if there exists a number k € 1,n such that A is an eigenvalue of the matrix flz in (2.6).

PROOF. A is an eigenvalue of the matrix A if and only if the following relation holds:
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arl — A T a1n a1 mn+1 T a1,.2n T a1,n(m—1)4+1 o a1,nm
0 ce azn 0 te a2 2n ce 0 ce a2 nm
0 e as.n 0 e a32n e 0 o a3 nm
0 cee ann — A 0 T Qn2n T 0 e An,nm
an+1,1 An+1,n An4+1n+1 — A an+1,2n Ap41,n(m—1)+1 Gn+1,nm
0 e An+2,n 0 e an+422n e 0 e Gn4+2,nm
0 e an+3,n 0 o An+3,2n e 0 e An+3nm
|A— | = . , . . . ) . , ) —0
0 ce a2n.n 0 ce a2n.2n — A ce 0 ce a2n.nm
An(m—-1)+1,1 " Anum-1)+1;n  Anm-1)+1n+l °° Anm-1)+12n " On(m-1)+1n(m—1)+1 — A Ap(m—1)+1,nm
0 T Gp(m—1)+2,n 0 ot Op(m—-1)422n " 0 o Ap(m—1)4+2,nm
0 0 Ap(m—1)+3,n 0 o Op(m—-1)43.2n """ 0 o Ap(m—1)43,nm
0 e Anm,n 0 e Gnm,2n e 0 o Anmmnm — A

By (2.5), the last relation can be rewritten as follows:

agk — A Atk e An(m—1)+k
n
Anyk ke Apikptk — A Qg ko (m—1)+k
A== " | _ Y =0
k=1
An(m—1)+kk  An(m—-1)+kn+k " On(m—1)+kn(m—1)+k — A

O
3. Conclusion

This paper proves that the determinant of a large-scale block matrix whose submatrices are triangular
does not need to be computed using classical and computational methods. The determinant of such
matrices is equal to the product of the determinants of their special submatrices. This method greatly

reduces the computational effort involved in calculating the determinant.

While the results presented in this paper significantly simplify the calculation of determinants for
block matrices with triangular submatrices, several promising directions remain for future research.
One area of potential exploration is the extension of these methods to non-triangular block matrices
or matrices with more complex structural patterns. Additionally, investigating the applications of
these findings in other branches of linear algebra, such as in solving systems of linear equations or
in eigenvalue analysis, could provide further insights. Researchers may also consider applying these
techniques to real-world problems in physics, engineering, or data science, where large-scale matrix
computations are essential. Finally, developing more advanced computational tools and algorithms
that leverage the factorization methods discussed here could contribute to faster and more efficient

determinant calculations in large matrices.
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