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Abstract: In this experimental study, the effect of edaravone (EDA) on liver damage caused by valproic acid 
(VPA) was investigated. The antioxidant, oxidative stress, and inflammation indicators such as glutathione 
(GSH), total lipid (TL), sialic acid (SA), aspartate (AST) and alanine transaminase (ALT), alkaline phosphatase 
(ALP), gamma-glutamyl transferase (GGT), catalase (CAT), superoxide dismutase (SOD), glutathione 
peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) were examined. Male 
Sprague Dawley rats were used in the experiment and randomly divided into 4 groups. The experiment lasted 

for 7 days. Group I: control group rats; Group II: rats receiving 0.5 g/kg VPA intraperitoneally daily. Group 
III: rats receiving 30 mg/kg EDA intraperitoneally daily. Group IV: rats receiving 0.5 g/kg VPA and 30 mg/kg 
EDA intraperitoneally daily (at the same time). On day 8, all animals were sacrificed under anesthesia, and 
liver tissues were removed. VPA caused the decreases in GSH, CAT, SOD, GPx, GR, and GST values and the 
increases in AST, ALT, ALP, GGT, sialic acid, and total lipid values. EDA reversed the in all values. These 
results suggest that EDA administration potentially reduces liver injury in VPA-induced hepatotoxicity. 
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1. INTRODUCTION 
 
Epilepsy is one of the most common neurological 
problems, occurring in 1-2% of people worldwide, 
although it is particularly prevalent among young 
people (1). Anti-epileptic drugs (AEDs) are primarily 

used to treat epilepsy. AEDs are widely used as long-
term adjunctive therapy or as monotherapy for other 
indications. AEDs include drugs that are highly 
susceptible to interactions (2,3). Valproic acid (2-
propylpentanoic acid, VPA) is one of the oldest and 
most frequently prescribed drugs for epilepsy, 

bipolar disorder, migraine prophylaxis, 
schizoaffective disorders, addiction diseases and 
neuropathic pain (4,5). VPA activity is mediated by 
an increase in the synthesis and release of γ-
aminobutyric acid and blockade of voltage-sensitive 
sodium channels (6,7). VPA is used as a 
neuroprotector in cases of Alzheimer's disease (8), 

migraine (9), and bipolar disorders for multiple 
tumors, neurodegenerative diseases such as 
Huntington's disease, Parkinson's disease, Duchenne 

progressive dystrophy, etc., and human 
immunodeficiency syndrome (10,11). 
Epidemiological studies suggest that VPA can cause 
hepatotoxicity (12), pancreatitis (13), and 
teratogenicity (5). The mechanism that causes liver 
damage has not been fully elucidated; hepatotoxicity 

may be due to reasons such as the development of 
oxidative stress, increased apoptosis, and 
microvesicular liver steatosis (14,15). 
 
An increase in the amount of reactive oxygen 
characterizes oxidative stress. Disruption of the 

balance between reactive oxygen species (ROS) and 
antioxidant mechanisms leads to physiologic and 
biochemical dysfunctions (16,17). Antioxidants play 
an important role in disease prevention due to their 
reactive oxygen species scavenging activity (18). 
Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is 
a novel free radical scavenger with potent 

antioxidant properties and is used in patients with 
acute brain infarction. Several studies have shown 
that it prevents cell damage caused by oxidative 
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stress by capturing hydroxyl radicals and scavenging 
ROS (19,20). EDA is a lipophilic molecule, and mainly 
non-enzymatic peroxidation is a new antioxidant 

moving by inhibiting lipoxygenase activity in vitro 
(21-23). In addition to edaravone’s antioxidizing 
activity, it has anti-inflammatory, anti-apoptotic, and 
anti-necrotic effects (24). 

 
This study aimed to investigate the potential 
protective effect of EDA, which has antioxidant 
properties, against VPA-induced liver injury. 
 
2. EXPERIMENTAL SECTION 

 
2.1. Chemicals 
VPA and EDA were obtained from Merck (Darmstadt, 
Germany). All other chemicals used in the 
experiments were of analytical purity and were 
purchased from Merck (Darmstadt, Germany), 

Sigma-Aldrich (St. Louis, MO, USA), and Fluka 

(Buchs, Switzerland). 
 
2.2. Laboratory Animals and Experimental 
Design 
All the experimental procedures were approved by 
the Istanbul University Local Ethics Committee on 
Animal Research (2010/54-the ethic committee 

number). 
 
Thirty-eight Sprague Dawley rats (2.5-3 months old, 
male) were randomly divided into 4 groups. The 
animals were housed in the standard cage with 
optimal temperature (20 °C±2) and light/dark (12 h 

light/12 h dark) conditions. Group I: control rats 
(n=8). Group II: rats receiving intraperitoneal 0.5 

g/kg VPA daily for 7 days (n=10). Group III: rats 
receiving 30 mg/kg EDA intraperitoneally daily for 7 
days (n=10). Group IV: rats receiving 0.5 g/kg VPA, 
intraperitoneally 30 mg/kg EDA administration daily 
for 7 days (n=10) (at the same time). All rats were 

sacrificed under anesthesia 16 hours after VPA and 
EDA administration. On day 8, liver tissues were 
taken. Liver homogenates (10% w/v) were prepared 
in physiological saline (NaCl, 0.9%). 
 
2.3. Biochemical Analysis 
Biochemical analyses were performed on blood, 

serum, and liver homogenates according to the 
methods specified below. 
 
2.3.1. Estimation of Glutathione (mg % GSH) 

Glutathione (GSH) levels were determined by the 
method using metaphosphoric acid and 5,5′-

dithiobis-2-nitrobenzoic acid (DTNB) (25). 
 
2.3.2. Estimation of Total Lipid (mg % Lipid) 
The sulfophosphovanillin method was used for the 
determination of total lipids in serum. This method is 
based on the principle of pink coloration of lipids with 
vanillin in sulfuric and phosphoric acid medium. The 

color intensity was determined in a 
spectrophotometer at 532 nm (26). 
 
2.3.3. Estimation of Sialic Acid (mmol sialic acid/L) 
Sodium periodate was used to oxidize sialic acid (SA) 
in concentrated phosphoric acid. Next, TBA was 
combined with the product of periodate oxidation. A 

pink chromophore was obtained, which was then 
extracted into cyclohexanone (27). 
 

2.3.4. Estimation of Aspartate Transaminase (U/ g 
protein) 
Aspartate transaminase (AST) activities were 
measured by converting L-glutamic acid to 

oxaloacetic acid, and the color was given by 2,4 
dinitrophenyl hydrazine in the medium. The color 
obtained was measured with a spectrophotometer at 
546 nm (28). 
 
2.3.5. Estimation of Alanine Transaminase (U/ g 

protein) 
Alanine transaminase (ALT) activities were measured 
by converting L-alanine to pyruvic acid and the color 
given by 2,4 dinitrophenyl hydrazine in the medium. 
The color obtained was measured with a 
spectrophotometer at 546 nm (28). 

 

2.3.6. Estimation of Alkaline Phosphatase (U/ g 
protein) 
Alkaline phosphatase (ALP) activities were 
determined at 405 nm according to the two-point 
method (29). 
 
2.3.7. Estimation of Gamma-glutamyl Transferase 

(U/ g protein) 
Gamma-glutamyl transferase (GGT) activity is based 
on the determination of the amount of p-nitroaniline 
formed as a result of the reaction by reading it in a 
spectrophotometer (30). 
 

2.3.8. Estimation of Catalase (U /mg protein) 
Catalase (CAT) activities were determined based on 

the reduction of hydrogen peroxide (H2O2) to water 
(H2O) (31). The decrease in absorbance was 
measured spectrophotometrically at 240 nm. 
 
2.3.9. Estimation of Superoxide Dismutase (U /g 

protein) 
Superoxide dismutase (SOD) activities were 
measured as the ability to increase the rate of 
photooxidation of riboflavin-sensitised o-dianisidine 
(32). 
 
2.3.10. Estimation of Glutathione Peroxidase (U /g 

protein) 
Glutathione peroxidase (GPx) activities were 
determined according to the Wendel method, in 
which the conversion of GSH to GSSG was measured 

(33). 
 

2.3.11. Estimation of Glutathione Reductase (U /g 
protein) 
Glutathione reductase (GR) activity is based on 
calculating of the proportion of NADPH oxidized 
during the reduction of oxidized glutathione (GSSG) 
by GR at 340 nm (33). 
 

2.3.12. Estimation of Glutathione-S-Transferase (U / 
mg tissue) 
Glutathione-S-transferase (GST) activity was 
assayed by determining the amount of product 
obtained by conjugation of GSH with 1-chloro-2,4-
dinitrobenzene (CDNB) (34). 
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2.3.13. Estimation of Proteins 
Lowry et al., developed the method to determine the 
amount of protein in liver tissue (35). 

 
2.4. Statistics 
Statistical analysis of biochemical results was 
calculated with GraphPad Prism 9.0 (GraphPad 

Software, San Diego, California, USA). Values are 
shown as mean ± standard deviation (SD). Unpaired 
t-test and analysis of variance (ANOVA) followed by 
Tukey multiple comparison analyses were used for 
the results. A value of P<0.05 was considered 
statistically significant. 

 
3. RESULTS AND DISCUSSION 
 
In this study, VPA administration caused a decrease 
in GSH levels (p<0.01) and an increase in total lipid 
(p<0.0001) and SA (p<0.01) levels compared to the 

control group. In addition, GSH levels (p<0.001) 

increased and total lipid (p<0.0001) and sialic acid 

levels (p<0.01) decreased in the VPA+ EDA treated 
group compared to the VPA (Figure 1). 
 

In our study, there was a significant increase in AST 
(p<0.0001), ALT (p<0.0001), ALP (p<0.0001) and 
GGT (p<0.001) activities in the VPA group compared 
to the control group. However, there was a 

significant decrease in AST (p<0.0001), ALT 
(p<0.0001), ALP (p<0.0001) and GGT (p<0.01) 
activities in the VPA+EDA group compared to the VPA 
group (Figure 2). 
 
 

The present study showed that the administration of 
VPA was associated with a decrease in the activities 
of CAT (p<0.001), SOD (p<0.01), GPx (p<0.05), GR 
(p<0.001), GST (p<0.0001) compared to the control 
group. VPA+EDA group caused a significant increase 
in CAT (p<0.01), SOD (p<0.01), GPx (p<0.001), GR 

(p<0.01) and GST (p<0.05) activities compared to 

VPA group (Figure 3). 
 

 

 
Figure 1: Blood GSH, serum total lipid and serum sialic acid levels. 

The columns represent mean ± SD. VPA: Valproic acid group, EDA: Edaravone group, VPA+EDA: Valproic 
acid+Edaravone, GSH: Glutathione. 

** represent p <0.01, ***represent p <0.001, **** represent p <0.0001 
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Figure 2: Liver AST, ALT, ALP and GGT activities of the groups. 

The columns represent mean ± SD. VPA: Valproic acid group, EDA: Edaravone group, VPA+EDA: Valproic 

acid+Edaravone, AST: Aspartate transaminase, ALT: Alanine transaminase, ALP: Alkaline phosphatase, 
GGT: Gamma-glutamyl transferase. 

** represent p <0.01, ***represent p <0.001, **** represent p <0.0001 
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Figure 3: Liver CAT, SOD, GPx, GR and GST activities of the groups 

The columns represent mean ± SD. VPA: Valproic acid group, EDA: Edaravone group, VPA+EDA: Valproic 

acid+Edaravone, CAT: Catalase, SOD: Superoxide dismutase, GPx: Glutathione peroxidase, GR: 
Glutathione reductase, GST: Glutathione-S-transferase. 

*represent p <0.05, ** represent p <0.01, ***represent p <0.001, **** represent p <0.0001 
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VPA is prescribed as a first-line antiepileptic drug due 
to its high efficacy and low cost and is one of the 
most common causes of acute liver failure (36,37). 

Therefore, VPA has been used since the 1960s to 
treat seizures and mood disorders and to treat many 
diseases, such as migraine (38). Hepatocyte damage 
is a common effect after VPA administration and can 

sometimes lead to irreversible, fatal liver failure. 
However, oxidative stress is generally considered 
critical for hepatocyte damage (39). Superoxide 
radicals, hydroxyl radicals, and hydrogen peroxide 
radicals cause an increase in ROS in the body, and 
this increase in ROS disrupts the antioxidant and 

oxidant balance in the body. Many organs and tissues 
in the body are adversely affected by this (17, 40). 
Free radicals impair cell functions and can cause cell 
death by destroying membrane lipids and proteins 
(41). 
 

Antioxidants play an important role in disease 

prevention due to their reactive oxygen species 
scavenging activity (18). The production of reactive 
metabolites and ROS can affect GSH balance (42). 
GSH is an important cell protective biomolecule 
against synthetic activated cytotoxicity by 
electrophilic compounds and through glutathione-S-
transferase (GST) conjugation (43). GSH is also an 

important antioxidant agent capable of immediate 
enzymatic (glutathione peroxidase, GPx) -mediated 
formation of ROS hydrogen peroxide and lipid 
hydroperoxides (44). ROS are also are removed by 
antioxidant enzymes such as catalase (CAT), 
superoxide dismutase (SOD), and reduced GSH. 

Antioxidants play an important role in disease 
prevention due to their ROS scavenging activity 

(45,46). 
 
Edaravone is a free radical scavenger previously 
approved in Japan for the treatment of patients with 
acute ischemic stroke, and EDA has also been 

approved for the treatment of amyotrophic lateral 
sclerosis due to its neuroprotective effect (23,47). 
The radical scavenging activity of EDA is mediated by 
an electron-donating mechanism on a wide range of 
radical species (48-51). However, the antioxidant 
mechanisms of EDA are not fully understood. 
Accordingly, it is hypothesized that EDA may manage 

oxidative stress by regulating ROS-NOX signaling 
pathways. 
 
It has been reported that GSH concentration in liver 

tissue was significantly reduced in VPA group 
compared to control group (52-54). In another 

study, it was reported that the amount of GSH 
decreased in the VPA group compared to the control 
group (55). In addition, Oktay et al. reported that 
there was no significant change in GSH level in the 
VPA group compared to the control group (56). In 
our study, we found that GSH levels decreased with 
VPA compared to the control group. Alzoubi et al. 

reported an increase in GSH levels using EDA in the 
treatment of memory impairment caused by chronic 
L-methionine administration (57). In the study 
investigating the protective effect of EDA on 
cyclophosphamide-induced oxidative stress and 
neurotoxicity in rats, it was reported that the amount 
of GSH increased with EDA (58). EDA increased GSH 

levels in a study on oxidative stress and allergic 
airway inflammation (59). In our study, GSH levels 
were significantly increased in the VPA + EDA group 

compared to the VPA group. 
 
Dyslipidemia is implicated in the development of 
cardiovascular diseases. In particular, high total 

cholesterol and low-density lipoprotein cholesterol 
(LDL-C) levels as well as low high-density lipoprotein 
cholesterol (HDL-C) are associated with 
cardiovascular mortality. VPA is well known to cause 
weight gain and insulin resistance and to increase 
triglyceride levels (60). Different effects of VPA on 

total cholesterol have been described in previous 
studies. Nikolaos et al. reported that VPA decreased 
total cholesterol levels, while Erminio et al. reported 
that VPA increased cholesterol levels (61,62). 
According to another study, a decrease in total 
cholesterol and low-density lipoprotein levels was 

observed in pediatric groups given VPA (63). In our 

study, we found that total lipid levels in serum 
increased with VPA compared to the control group. 
Experimental studies show that antioxidants have 
protective effects on atherosclerosis and endothelial 
damage. Dietary antioxidants have been reported to 
protect endothelial function (64,65) and prevent 
atherosclerosis in cholesterol-fed rabbits (66). Xi et 

al. have reported that mice given high doses of 
cholesterol in their diet and given EDA at the same 
time for 4 weeks had smaller atherosclerosis lesions 
(67). In our study, total lipid levels in serum 
decreased with EDA administration to the VPA group. 
 

SA levels have been reported to increase during 
inflammatory processes, probably due to increased 

levels of acute phase glycoproteins, 
hypertriglyceridemia, and atherosclerosis (68-72). 
Various studies have reported that SA is a marker for 
inflammatory diseases. Increased SA levels reflect 
the body's self-protection (68-72). In our study, VPA 

administered to rats caused a significant increase in 
sialic acid levels in serum. Oktay et al. reported that 
administration of VPA+EDA group SA levels 
decreased when compared to the VPA group (56). 
EDA administration has been reported to cause a 
significant decrease in SA levels in pancreatic 
functions compared to VPA animals (73). In our 

study, it was observed that SA levels, which were 
increased by EDA administration to the VPA group, 
decreased. 
 

Abdelkader et al., (2020) reported that VPA 
administration caused a significant increase in ALT, 

AST, ALP, and GGT activities in serum, which are 
considered to be an indicator of hepatocellular 
damage (53). Various studies have shown that VPA 
administration causes liver damage and significantly 
increases serum ALT, AST, and ALP levels compared 
to the control group (54,74). Koroglu et al. showed 
that administration of VPA group serum ALT levels 

significantly decreased when compared to the control 
group. There was no significant difference among the 
groups in terms of serum AST and GGT levels (75). 
In our study, VPA caused a significant increase in 
AST, ALT, ALP, and GGT activities in liver tissue. 
Hassanein et al. reported that the administration of 
VPA+EDA group AST, ALT, and ALP levels decreased 
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when compared to the VPA group (76). In our study, 
VPA+EDA group AST, ALT, ALP and GGT values 
decreased compared to VPA group. 

 
Reactive oxygen species formed in the body are also 
removed by antioxidant enzymes. Antioxidants play 
an important role in the prevention of diseases due 

to their ROS scavenging activities (45,46). VPA 
administration has been reported to significantly 
decrease CAT in the autistic groups compared with 
the healthy groups (77). It has been reported that 
the activities of SOD were decreased in the liver of 
VPA-treated rats compared to the control group (75). 

In our study, CAT and SOD enzyme activities were 
lower in the VPA group compared to the control 
group. Sheng-Rui Fan et al. showed that 
administration of EDA group CAT and SOD levels 
increased when compared to the VPA group (78). 
EDA administration has been reported to cause a 

significant increase in SOD levels in heart functions 

compared to VPA animals (79). All these studies 
(78,79) support our findings that CAT and SOD 
values increased in rats administered VPA+ EDA. 
 
There are conflicting results in GPx activities. CE 
reported decreased GPx activity in erythrocytes of 
patients treated with VPA, and Cotariu et al. reported 

decreased GPx activity in rats treated with 
intraperitoneal VPA (80,81). In contrast to these 
results, Hamed et al., Cengiz et al., and Kurekci et 
al. found an increase in GPx activity in VPA-treated 
patients (82-84). In our study, a decrease in GPx 
activity was observed in the VPA group. The decrease 

in GPx levels may indicate that the antioxidant 
capacity, which is effective in preventing various 

damages caused by VPA metabolism and its side 
effects, has decreased. It has been reported that EDA 
administration caused a significant increase in GPx 
activity in the VPA group (85). In our study, a 
decrease in GPx activity and GSH levels was 

observed in the VPA group and a significant increase 
in GSH and GPx activities in the VPA + EDA group. 
 
GR is one of the antioxidant enzymes (86) and 
Oztaylan et al. investigated the effect of VPA on the 
lens and reported that the amount of GR increased 
with VPA administration (87). Turkyilmaz et al. 

reported that GR activity decreased in VPA-induced 
brain injury (55). In another study, it was reported 
that GR activity decreased in the VPA group 
compared to the control group (88). In this study, we 

found that GR activity in liver tissue was significantly 
decreased in the VPA group. Hassan et al. reported 

an increase in GR, one of the antioxidant enzymes, 
in heart tissue when EDA was given for protection 
against isoproterenol (ISO) (89). Bayrak et al. 
reported that glutathione reductase activities 
decreased insignificantly in the VPA group in lung 
tissue, whereas GR activity increased significantly in 
the EDA group (85). In our study, VPA+EDA group 

GR values increased compared to the VPA group. 
 
Tong et al. found an increase in α-GST levels, a 
marker of hepatocyte damage, in serum 4 days after 
VPA treatment (90), while Chaudhary et al. found a 
decrease in GST activity in the cerebellum and 
cerebral cortex (91). In another study, in valproic 

acid-induced brain injury, GST decreased in the VPA 
group compared to the control group (55). It was 
reported that a decrease in GST levels in a rat model 

study of VPA-induced autism spectrum disorder (92). 
We found a significant decrease in GST activity in 
liver tissue in the VPA group compared to the control 
group. EDA administration has been reported to 

cause a significant increase in GST levels in heart 
functions compared to VPA animals (79). In another 
study, GST activity increased in the VPA+EDA group 
compared to the VPA group (89). Lu et al. reported 
an increase in GST levels in the VPA+EDA group 
compared to the EDA group (92). We found a 

significant decrease in GST activity in liver tissue 
VPA+ EDA group compared to the VPA group.  
 
4. CONCLUSION 
 
VPA is a widely used anti-antiepileptic. Although it 

has beneficial effects, there are many systems and 

organs that are affected due to its serious side 
effects. The liver is the organ most exposed to and 
affected by toxicity and free radical species. 
Protecting this tissue is a vital goal for all research. 
For this purpose, EDA was chosen as a preservative 
because its protective effects have been shown in 
previous studies and it is a good antioxidant. The 

biochemical results obtained from this study support 
the protective effects of EDA on liver tissue exposed 
to VPA. 
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