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ABSTRACT 
Rice is an important crop in India and is often affected by pests and 

diseases, which can lead to a significant drop in production. This 

research investigates advanced deep learning approaches for accurate 

paddy disease diagnosis, focusing on comparing several transfer 

learning models. The study specifically targets diseases such as Tungro, 

Dead Heart, Hispa, Blast, Downy Mildew, Brown Spot, Bacterial Leaf 

Blight, Bacterial Panicle Blight, and Bacterial Leaf Streak.  The base 

EfficientNetB3 model attains approximately 95.55 % accuracy during 

training and 95.12% during evaluation on unseen data. However, it 

encounters challenges when applied to domain-specific tasks such as 

diagnosing paddy diseases, frequently experiencing issues such as 

overfitting and inadequate convergence. To overcome these issues, an 

Enhanced EfficientNetB3 model was developed, incorporating batch 

normalization, dropout, and data regularization techniques. The training 

was conducted using the 'Paddy Doctor' dataset, featuring 10,407 high-

resolution images of paddy leaves. It reached an accuracy of 98.92 % 

during training with a loss rate of 0.1385. For validation, the model 

reached an accuracy of 98.20 % and a loss rate of 0.1450. On an 

independent test set, the accuracy 98.50 % obtained with a test loss of 

0.1505. With remarkable accuracy and a training time of just 68 

minutes, the model demonstrates its significant potential for precise 

paddy disease diagnosis. Its impressive performance plays a crucial role 

in advancing disease management and boosting crop yields. 

 

Keywords: Paddy Disease Detection, Transfer Learning, Enhanced EfficientNetB3, Deep Learning in Agriculture, Precision Agriculture, Image 

Classification

 

 

1. Introduction 
 

Rice is a primary food globally; it is very important in ensuring the cultivation of rice with food security. However, paddy 

crops face numerous diseases that can severely impact both their yield and quality. Understanding and identifying the paddy 

crop diseases is vital for managing and control the paddy crop. Paddy leaves are susceptible to several significant diseases, 

such as hispa, blast, tungro, brown spot, downy mildew, dead heart, bacterial leaf streak, bacterial leaf blight, and bacterial 

panicle blight. 

 

Blast is a highly damaging disease affecting rice, resulting from the fungal pathogen Magnaporthe oryzae. Under optimal 

conditions for its proliferation, it can cause substantial reductions in crop yield (Rahman et al. 2020; Dubey et al. 2024). Hispa, 

a pest-related issue, results in leaf damage that can reduce photosynthesis, ultimately affecting crop growth. Dead Heart is a 

symptom commonly associated with stem borers, which damage the stem and disrupt nutrient flow, leading to dead tillers (Deb 

et al. 2021). Tungro, a viral disease spread by green leafhoppers, causes stunted growth, reduced tillering, and yellow-orange 

leaf discoloration, significantly impacting rice yield (Yakkundimath et al. 2022). Brown Spot is another fungal disease that 

affects Paddy leaves, leading to lesions that can merge and cause extensive damage (Shah et al. 2023). Diseases such as 

Bacterial Leaf Blight, Downy Mildew, Bacterial Panicle Blight, and Bacterial Leaf Streak are also major concerns for rice 

cultivation, posing substantial risks to crop yields. These diseases are often characterized by leaf spots, streaks, and blight 

symptoms that reduce photosynthetic efficiency and weaken plants (Dogra et al. 2023). Timely identification and control of 

these diseases are essential to maintaining rice yields and safeguarding food security. 

 

Deep learning approaches are now widely utilized for identifying and categorizing paddy diseases due to their effectiveness 

in analysing and learning from large datasets.  Several models, such as Convolutional Neural Networks (CNNs), VGG-16, 

VGG-19, Inception-v1, ResNet-50, Inception-v3, DenseNet-121, Xception, along with the EfficientNetB2 and EfficientNetB3 

architectures, have been explored for various tasks, each exhibiting unique performance levels and contributing to the 

advancements in the field (Liang et al. 2022; Yakkundimath et al. 2022; Simhadri et al. 2024). These models can examine 
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paddy leaf images to detect disease symptoms, making them highly effective for prompt diagnosis and management in 

advanced farming practices. 

 

EfficientNetB3, a newer advancement within deep learning, provides notable enhancements in both accuracy and 

computational efficiency compared to conventional models. It employs a scaling technique that proportionally adjusts the 

depth, width, and resolution, resulting in improved   performance for   image   recognition tasks (Li et al. 2022; Verma et al. 

2024).  To enhance the efficiency, EfficientNetB3's architecture is crafted to obtain high accuracy, making it well-suited for 

use in environments with restricted computational capacity (Bhujel & Shakya 2022). 

 

This research contributes significantly to the field of paddy disease classification through several advancements: 

 

- The study leverages pre-trained architectures, focusing particularly on the Enhanced EfficientNetB3 model, which 

effectively balances accuracy with computational efficiency. 

 

- A comprehensive dataset comprising 10,407 images across 10 distinct paddy disease classes is utilized, addressing the 

limitations in dataset diversity found in prior studies. 

 

- The classification model demonstrates notable performance, achieving an accuracy rate of 98.50% in disease 

detection, thereby establishing a new benchmark for precision in the field. 

 

Given its advantages, EfficientNetB3 has been adapted to the task of predicting paddy leaf diseases, demonstrating superior 

accuracy and robustness in disease classification. Studies have shown that this model outperforms other deep learning 

architectures in terms of both speed and precision, particularly when identifying subtle differences between healthy and 

diseased paddy leaves (Li et al. 2022; Bhujel & Shakya 2022; Ganesan & Chinnappan 2022). This makes EfficientNetB3 an 

excellent option for building effective and dependable systems aimed at identifying and managing paddy diseases. 

 

This study investigates leveraging pre-trained architectures and introduces an Enhanced EfficientNetB3 model for 

identifying paddy diseases. By harnessing the capabilities of EfficientNetB3, this approach seeks to offer a robust and efficient 

solution for the early identification of diseases, thereby assisting in the management and reduction of crop losses caused by 

rice diseases.  

 

2. Material and Methods  
 

2.1 Dataset 

 

The dataset used in this research is the widely recognized Paddy Doctor Dataset, which is sourced from 

(https://www.kaggle.com/competitions/paddy-disease-classification), consisting of 30,000 images (Patil et al. 2023). This 

dataset includes 10 distinct classes of paddy leaf diseases, such as Dead Heart, Downy Mildew, Bacterial Leaf Streak, Brown 

Spot, Bacterial Panicle Blight, Tungro, Normal, Hispa, Bacterial Leaf Blight, and Blast. This dataset encompasses a broad 

spectrum of disease conditions, representing various stages of disease development, ranging from early to later stages. It also 

covers a variety of environmental conditions in which the images were captured, including differences in lighting, image 

angles, and the growth conditions of the plants. These factors contribute to the dataset's robustness, making it suitable for 

building models that are capable of generalizing to real-world agricultural scenarios. For visual illustration, Figure 1 presents 

sample images of different paddy diseases. 

 

The initial dataset of 30,000 images underwent significant pre-processing steps, which involved cleaning, resizing to a 

uniform 480 x 640 pixels for enhanced computational efficiency, and removing images that were blurred or noisy. Following 

these pre-processing steps, the dataset was reduced to a more refined set of 10,407 high-quality images. From this processed 

dataset, 8,324 images were assigned for training, while 2,083 images were kept for testing purposes (Kumar et al. 2023). Table 

1 outlines the specific distribution of images between the training and test sets. 

 

In addition, the dataset is evenly distributed across various disease categories, ensuring that no single disease type 

dominates. This balanced distribution is vital for preventing model bias and guarantees that the trained model can effectively 

classify a wide range of paddy diseases. Such diversity and balance improve the model’s generalization capability, making it 

well-suited to handle varying disease conditions that may be encountered in real-world agricultural settings. 

https://www.kaggle.com/competitions/paddy-disease-classification
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Figure 1- Sample Images of Paddy Diseases 

 

Table 1- Training and Test Dataset Distribution 

 

Disease Category Training Images Test Images 

Normal 1411 353 

Blast 1390 348 

Hispa 1275 319 

Dead Heart 1153 289 

Tungro 870 218 

Brown Spot 772 193 

Downy Mildew 496 124 

Bacterial Leaf Blight 383 96 

Bacterial Leaf Streak 304 76 

Bacterial Panicle Blight 270 67 

Total 8324 2083 

 

2.2 Models utilizing convolutional neural networks  

 

The Convolutional Neural Network (CNN) is a widely recognized approach for tasks in natural language processing and image 

analysis, such as classifying paddy diseases. Its strength lies in its capability to autonomously detect and extract important 

features using convolutional and pooling layers. This process reduces the complexity of the data while retaining crucial 
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information. This process allows CNNs to manage complex patterns and enhance computational efficiency (Ozdemir 2024; 

Malvade et al. 2023; Ganesan et al. 2023). When training CNNs for detecting paddy diseases, the model is exposed to images of 

healthy and diseased leaves, ultimately providing classifications based on the visual features observed. By leveraging such 

advanced techniques, farmers can more accurately diagnose and manage diseases affecting their crops, leading to improved 

agricultural practices and crop yields. 

 

For classifying plant diseases, numerous studies were carried out using Convolutional Neural Networks (CNNs). For 

instance, Shah et al. (2023) conducted a comparative analysis of CNNs with other models, including Inception V3, VGG16, 

VGG19, and ResNet50. The authors previously discovered that CNNs achieve strong results in the timely detection of rice 

plant disorders and effectively distinguish between different leaf conditions. In another study, Liang et al. (2022) introduced an 

enhanced, lightweight CNN based on VGG16, tailored for paddy disease detection and classification, which achieved notable 

gains in both accuracy and efficiency. Yakkundimath et al. (2022) also demonstrated the application of CNN models for 

classifying paddy diseases, showcasing the adaptability of these models to different agricultural contexts. Dogra et al. (2023) 

also used CNN architecture to diagnose brown spot paddy disease. 

 

Within the scope of this research work, the Enhanced EfficientNetB3 deep learning model was developed to diagnose 

paddy crop diseases.  The effectiveness of this model was assessed by comparing it with several other pretrained deep learning 

models, including Xception, DenseNet-121, ResNet-50, Inception v1, Inception v3, VGG16, VGG19, as well as 

EfficientNetB2 and EfficientNetB3. This assessment aimed to gauge its accuracy in detecting and categorizing paddy diseases 

(Ozdemir et al. 2024). 

 

2.2.1 VGG16 

 

The deep convolutional neural network VGG16 has been effectively employed for image categorization and paddy disease 

diagnosis. This Oxford Visual Geometry Group model, featuring 16 layers with over half being convolutional, is recognized 

for its simplicity in architecture and effectiveness in feature extraction due to its use of 3 x 3 extension filters throughout the 

model. This design allows for the capture of small visual features, making VGG16 particularly suitable for paddy disease 

detection. Numerous studies have demonstrated VGG16's proficiency in paddy disease discrimination compared to other deep 

learning models. Notable works include Shah et al. (2023), Sun et al. (2023), Liang et al. (2022), and Gerdan et al. (2023), 

which highlight the model's efficacy across various agricultural datasets (Liang et al. 2022; Sun et al. 2023; Shah et al. 2023; 

Gerdan et al. 2023). Figure 2 depicts the VGG16 architecture. 

 

 
 

Figure 2- VGG16 architecture  

 

2.2.2 VGG19 

 

VGG19 is an advanced variant of the VGG16 model, incorporating 19 layers for enhanced image classification. This deeper 

architecture allows VGG19 to capture more intricate features from input images, which is especially advantageous for 

identifying subtle details in paddy leaf diseases. The model retains the use of small receptive fields with 3×3 filters, which 

helps preserve the spatial resolution throughout the network. This characteristic is crucial for applications in agriculture, such 

as precise disease identification in crops (Simonyan & Zisserman 2015). VGG19’s effectiveness in paddy disease detection has 

been demonstrated in various studies applying deep learning techniques to agricultural datasets (Shah et al. 2023; Sun et al. 

2023). The architecture of VGG19 is shown in Figure 3.  
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Figure 3- VGG19 architecture 

 

2.2.3 Inception V1 

 

The Inception V1 model is specifically designed to enhance performance in various image recognition and classification 

challenges. To improve the Inception V1 model’s effectiveness with a plant disease image dataset, Particle Swarm 

Optimization (PSO) techniques are used to adjust and fine-tune the model’s hyperparameters. This optimization process helps 

in achieving better accuracy and efficiency in disease identification (Liang et al. 2022). Using PSO has been demonstrated to 

markedly enhance the model's performance on unfamiliar datasets, including those related to plant diseases (Rahman et al. 

2020). Additionally, deep learning models like Inception V1 have demonstrated their effectiveness in agricultural applications 

by enhancing disease classification and detection (Sun et al. 2023). Figure 4 shows the Inception V1 architecture.  

 

 
 

Figure 4- Inception V1 architecture 

 

2.2.4 ResNet-50 

 

The ResNet50 model, where "ResNet" stands for Residual Network, is based on a well-established design that includes fifty 

layers. This advanced image classification model excels in training with large datasets and achieving leading-edge results. The 

deep residual learning framework of ResNet50 enhances both feature extraction and classification performance, making it a 

favoured option for complex image recognition tasks. Research by Shah et al. (2023) and Razavi et al. (2024) has highlighted 

ResNet50's effectiveness in agricultural and plant disease classification, demonstrating its capability to manage detailed image 

data efficiently. 

 

 
 

Figure 5- ResNet-50 architecture 
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2.2.5 Inception V3 

 

The Inception V3 model is a pertained convolutional neural network (CNN) model trained with an extensive image dataset. To 

enhance its performance on plant disease images, the Particle Swarm Optimization (PSO) techniques are used to adjust and 

fine-tune the model’s hyperparameters. It’s a model from Google's Inception CNN series that features several techniques such 

as label smoothing, factorized 7x7 convolutions, BatchNorm in auxiliary classifiers, and the RMSProp Optimizer. This model 

is commonly used as a foundational architecture and for transfer learning in disease prediction research. The effectiveness of 

Inception V3 in plant disease classification is demonstrated by Shah et al. (2023) and Liang et al. (2022), highlighting its value 

in agricultural research. Figure 6 outlines the architecture of the Inception V3 model. 

 

 
 

Figure 6- Inception V3 architecture  

 

2.2.6   Densenet-121 

 

The DenseNet121 variant, a notable version of this architecture, includes four dense blocks consisting of 6, 12, 24, and 16 

layers in sequence. This architecture's dense connectivity enhances its ability to capture and learn complex features, which 

proves highly effective for paddy disease detection. The dense connectivity in DenseNet121 supports the extraction and 

learning of intricate features from paddy leaf images, facilitating the accurate identification of different paddy diseases and 

improving diagnostic precision. This capability is emphasized by Rahman et al. (2020) and Liu et al. (2022), who showcased 

how DenseNet models can be highly effective for detecting and classifying paddy diseases. Figure 7 depicts the architecture of 

DenseNet-121. 

 

 
 

Figure 7- Densenet-121 architecture 

 

2.2.7 Xception 

 

The Xception model is an advanced deep convolutional neural network that utilizes depth wise separable convolutions to 

enhance the feature extraction process. Building on the Inception model, Xception aims to improve computational efficiency 

and model performance. Its application in agriculture, especially for detecting paddy diseases, is recognized for efficiently 

capturing intricate details from images. This capability is enhanced by its depth wise separable convolution layers, which 
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diminish the number of parameters, thereby minimizing the risk of overfitting—especially beneficial in resource-constrained 

environments such as smart agriculture systems (Meena et al. 2024). Additionally, the model's effectiveness in various 

agricultural applications has been documented by Rahman et al. (2020) and Sun et al. (2023), highlighting its robustness and 

adaptability. Figure 8 illustrates the architecture of Xception. 

 

 
 

Figure 8- Xception architecture 

 

2.3. Proposed EfficientNetB3 (Enhanced) CNN Model 

 

With reference to (Mingxing and Quoc, 2019) the proposed CNN model EfficientNetB3 was developed. EfficientNetB3 stands 

out for its capability in feature extraction, attributed to the scaled-up enhancements from the original EfficientNetB0 

architecture. 

 

Model Overview 

 

The proposed EfficientNetB3 model is known for its balance between accuracy and efficiency; it requires modifications for 

specific tasks like diagnosing paddy diseases. The original classification layer was omitted (include top=False), and a Global 

Average Pooling (GAP) layer was introduced to condense the spatial information from the feature maps into a compact vector. 

This modification is represented as 

 

�̅� =
1

𝑁
⋅ ∑ 𝑥𝑖

𝑁

𝑖=1
 

 

Where; Xi is the input feature map, and N represents the number of spatial locations. 

 

However, the base EfficientNetB3 model has limitations when applied to domain-specific tasks like paddy disease 

diagnosis.   It typically reaches a training accuracy of about 95.55% and a testing accuracy of approximately 95.12%. 

Nonetheless, the model often experiences problems with overfitting and may not achieve optimal convergence. When a model 

adapts too closely to the training data, it leads to overfitting. This makes it worse at handling new data. This issue manifests as 

a significant discrepancy between the accuracy achieved during training and that observed during testing. Additionally, the 

model's performance can plateau during training, indicating that it does not fully utilize its learning capacity. Figure 10 

illustrate the architecture of base EfficientNetB3 model. 

 

To address these issues, the Enhanced EfficientNetB3 model incorporates several key modifications. Batch Normalization 

was employed to increase both the stability and efficiency of training by standardizing the inputs at each layer. This method 

lessens the effects of internal covariate shift, thereby boosting the overall performance of the model. This technique is 

expressed as  

 

�̂�(𝑘) =
𝑥(𝑘) − 𝜇(𝑘)

√𝜎2𝑘+ ∈ 
 

 

Where;  𝑥(𝑘) is the input to the kth layer, 𝜇(𝑘)  and 𝜎2𝑘 denotes the mean and variance of the batch, while ∈ is a small 

constant used to ensure numerical stability.  
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Dense layers with L2 regularization were also added to enhance learning capacity by incorporating more trainable parameters. 

L2 regularization, given by 𝜆𝛴𝑖𝑤𝑖
2 in the loss function, penalizes large weights, helping to mitigate overfitting and encourage 

better generalization.  
 

To further regularize the model, dropout was applied, randomly deactivating a proportion of neurons during training 

through a Bernoulli (p) process. This method keeps the model from relying too much on certain neurons, which helps avoid 

over fitting. It was finally finished by adding a Dense Output layer with a Softmax activation function where the Softmax 

function 𝜎(𝑧)𝑖  = 
ⅇ𝑧𝑖

𝛴𝑗ⅇ
𝑧𝑗

 converts raw scores into probabilities, allowing for clear probabilistic interpretation in multi-class 

classification. 

 

 
 

Figure 10- Architecture of Base EfficientNetB3 Model 

 

 
 

Figure 11- Architecture of the Enhanced EfficientNetB3 Model 
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Table 2 outlines the parameters of the base EfficientNetB3 model, whereas Table 3 details the updated parameters for the 

Enhanced EfficientNetB3 model, which aims to enhance both performance and efficiency. Figure 11 illustrates the architecture 

of the Enhanced EfficientNetB3 model, highlighting key components such as Batch Normalization, Dense layers with L2 

regularization, Dropout, and a final Dense layer equipped with a Softmax activation function. 

 
Table 2- EfficientnetB3 Model Architecture 

 

Layer Type Input Shape Output Shape Parameters 

Conv2D (224, 224, 3) (112, 112, 32) Kernel size: 3x3, Stride: 2, Filters: 32 

Batch Normalization (112, 112, 32) (112, 112, 32) Axis: -1, Momentum: 0.99, Epsilon: 1e-3 

Activation (ReLU6) (112, 112, 32) (112, 112, 32) ReLU6 Activation 

Depthwise Separable 

Conv2D 

(112, 112, 32) (112, 112, 32) Kernel size: 3x3, Stride: 1, Depthwise, 

Filters: 32 

Batch Normalization (112, 112, 32) (112, 112, 32) Axis: -1, Momentum: 0.99, Epsilon: 1e-3 

Depthwise Separable 

Conv2D 

(112, 112, 32) (56, 56, 64) Kernel size: 3x3, Stride: 2, Depthwise, 

Filters: 64 

Batch Normalization (56, 56, 64) (56, 56, 64) Axis: -1, Momentum: 0.99, Epsilon: 1e-3 

Depthwise Separable 

Conv2D 

(56, 56, 64) (28, 28, 128) Kernel size: 3x3, Stride: 2, Depthwise, 

Filters: 128 

Batch Normalization (28, 28, 128) (28, 28, 128) Axis: -1, Momentum: 0.99, Epsilon: 1e-3 

Depthwise Separable 

Conv2D 

(28, 28, 128) (14, 14, 256) Kernel size: 3x3, Stride: 2, Depthwise, 

Filters: 256 

Batch Normalization (14, 14, 256) (14, 14, 256) Axis: -1, Momentum: 0.99, Epsilon: 1e-3 

Depthwise Separable 

Conv2D 

(14, 14, 256) (7, 7, 512) Kernel size: 3x3, Stride: 2, Depthwise, 

Filters: 512 

Batch Normalization (7, 7, 512) (7, 7, 512) Axis: -1, Momentum: 0.99, Epsilon: 1e-3 

Global Average 

Pooling 

(7, 7, 512) (512)  

Dense (Fully 

Connected Layer) 

(512) (1000) Units: 1000, Activation: Softmax 

 
Table 3- Enhanced Part of EfficientNetB3 Model Architecture 

 

Layer Type Input Shape Output Shape Parameters 

Batch Normalization (512) (512) Axis: -1, Momentum:  0.9, Epsilon: 0.001 

Dense Layer 1 (512) (256) Units: 256, Activation: ReLU, Kernel Regularizer: L2(0.016) 

Dropout Layer (256) (256) Dropout Rate:  0.5, Seed: 123 

Dense Output Layer (256) (10) Units: 10, Activation: Softmax 

 

Furthermore, a custom callback function was utilized to adjust the learning rate dynamically in response to training and 

validation metrics, thereby enhancing the optimization process. Data generators were employed to handle both the training and 

validation datasets. Several measures, such as loss, accuracy, confusion matrices, and classification reports, were hired to 

evaluate the model's effectiveness. The trained model and its weights were preserved for future applications, allowing for 

potential reuse or additional fine-tuning. These modifications ensure that the Enhanced EfficientNetB3 model effectively 

overcomes the limitations of the base model, providing improved performance in the task of paddy disease diagnosis. The 

algorithm for diagnosing paddy diseases using the Enhanced EfficientNetB3 model is detailed below.  

 

 Algorithm for diagnosing paddy diseases using the Enhanced EfficientNetB3 model 

 

Input:  
 

Dataset D = (X, Y), where X is the set of images and Y are the corresponding disease labels.  

 

Output:  
 

 Trained Enhanced EfficientNetB3 Model Menhanced  

 Evaluation Metrics E 

 Classification Report R 

 
1 Import libraries:  

 

              L ← {TensorFlow, Keras, NumPy, Pandas, Matplotlib}; 

 

2 Load and Preprocess Dataset:  
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         (X, Y) ← LoadAndPreprocessDataset(D); 

 

3 Data Splitting: 

 

          (Xtrain,Ytrain), (Xval,Yval), (Xtest,Ytest) ← StratifiedSplit(X,Y) 

 

4 Data Augmentation Setup: 

 
         DataAugmentation ← ConfigureAugmentation(horizontal_flip=True) 

 
5 Create Data Generators: 

 
           TrainingData ← CreateGenerator(DataAugmentation, X_train, Y_train) 

           ValidationData ← CreateGenerator(None, X_val, Y_val) 

           TestData ← CreateGenerator(None, X_test, Y_test) 

 

6 Initialize Base Models: 

 

           M_base ← EfficientNetB3(include_top=False, weights='imagenet')  

 

7 Add Feature Extraction Layer: 

 

           M_base ← M_base + GlobalAveragePooling2D() 

 

8 Enhance Model: 

 

M_enhanced ← M_base 

M_enhanced ← M_enhanced + BatchNormalization(axis=-1) 

M_enhanced ← M_enhanced + Dense(units, activation='relu') 

M_enhanced ← M_enhanced + L2Regularization(strength) 

M_enhanced ← M_enhanced + Dropout(rate) 

M_enhanced ← M_enhanced + Dense(number_of_classes, activation='softmax') 

 

9 Compile Model: 

 

           M_enhanced ← Compile(optimizer, loss_function, evaluation_metrics) 

 

10 Define Training Parameters: 

 

Params ← {batch_size, epochs, learning_rate}        

   

11 Configure Callbacks: 

 

            Callbacks ← SetupCallbacks(monitor='val_loss', patience, save_best=True) 

 

12 Train the Model: 

 

M_enhanced ← TrainModel(M_enhanced, TrainingData, ValidationData, Params,     

             Callbacks) 

13 Evaluate Model: 

 

            E, R ← EvaluateModel(M_enhanced, TestData) 

 

14 Save Trained Model: 

 

             SaveModel(M_enhanced, 'model_path.h5') 

 

2.4. Training-Testing data and model evaluation 

 
In this study, the data is divided into three different parts: 80% for training, 10% for validation, and 10% for testing. The 

choice of these proportions is based on established practices in machine learning to ensure a well-balanced approach. 

Allocating 80% of the data for training provides a substantial amount of samples for the model to learn from, which is crucial 
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for developing a robust and effective model (Shah et al. 2023). A segment of the 10% validation set is used to assess the 

model’s effectiveness during training and adjust its hyperparameters. This intermediate evaluation assists in reducing 

overfitting by providing ongoing feedback (Sun et al. 2023; Kiratiratanapruk et al. 2020). The remaining 10% of the dataset is 

reserved for testing, offering an unbiased assessment of the model's accuracy with new data. This step ensures that the 

assessment of its ability to generalize is precise and reflective of real-world conditions (Li et al. 2022; Rahman et al. 2020). 

Table 4 details the parameters used during the model training phase. 

 
Table 4- Model Training Parameters 

 

Parameter Value 

Batch Size 64 

Epochs 32 

Momentum 0.9 

Learning Rate 0.0002 

Metric Categorical Crossentropy 

Patience 3 

Factor 0.2 

Verbose 2 

Optimization Method AdamW 

Dropout Rate 0.5 

Image Augmentation Random rotations, flips, brightness adjustments 

Regularization L2 regularization 

 

The parameters in Table 4 were selected to improve model performance and minimize overfitting. A batch size of 64 

balances computational efficiency with training stability. Training the model for 32 epochs allows adequate learning without 

risking overfitting. A momentum of 0.9 speeds up training by incorporating previous gradients, while a learning rate of 0.0002 

ensures steady progress. The Categorical Crossentropy metric measures accuracy for multiple classes. The patience of 3 

reduces the learning rate if no improvement occurs, using a reduction factor of 0.2 for gradual changes. Verbose level 2 offers 

detailed training feedback. The AdamW optimizer effectively manages large datasets and prevents overfitting. A dropout rate 

of 0.5 randomly disables neurons to improve generalization. L2 regularization prevents overly complex models by penalizing 

high weights. Image augmentation, including rotations, flips, and brightness changes, diversifies training data, enhancing the 

model's adaptability to different scenarios. 

 

2.4.1 Model evaluation metrics 

 

To evaluate the paddy disease classification model, several metrics are used: 

 

Precision measures the accuracy of positive predictions: 

   

Precision =
TP

TP + FP 
 

 

Where; TP denotes true positives and FP denotes false positives. 

 

Recall evaluates the model’s ability to identify all relevant positive cases: 

 

Recall = 
TP

TP+FN
 

 

Where; FN represents false negatives. 

 

F1-Score balances precision and recall: 

 

 F1-Score = 2 x  
Precision x Recall

Precision+Recall
 

 

Support refers to the number of actual occurrences of each class, providing context for other metrics. 

 

 

Training Loss and Training Accuracy are calculated to assess performance during training: 

 

Training Loss = −
1

𝑁
⋅ ∑ 𝑦𝑖

𝑁

𝑖=1
 log ( 𝑦�̂�) 
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And  

 

Training Accuracy =   
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

Validation Loss and Validation Accuracy evaluate performance on the validation set, while Test Loss measures 

effectiveness on the test set. 

 

3. Results  
 

Table 5 presents a comparative evaluation of the Enhanced EfficientNetB3 model alongside several other CNN architectures, 

emphasizing critical metrics like accuracy and loss during both training and validation phases.  

 

 The Enhanced EfficientNetB3 model accomplished an impressive training accuracy of 98.92% and recorded a low training 

loss of 0.1385. During the validation phase, the system achieved a performance level of 98.20% accuracy and a validation loss 

of 0.1450. It is also found that a test accuracy of 98.50% with a test loss of 0.1505 for the independent test dataset. These 

metrics demonstrate the model's robust performance across various evaluation stages, outpacing several other models as shown 

in Table 5. Figure 12 displays the trends in both training and validation loss and accuracy for the enhanced model. 

 
Table 5- Performance Metrics and Training Time of CNN Models 

  

Model Training Validation Test 
Training 

Time 

Architectures Input Size Loss Accuracy Loss Accuracy Loss Accuracy Minutes 

VGG16 224, 224, 3 0.2239 92.12% 0.2050 91.00% 0.1835 93.88% 120 

VGG19 224, 224, 3 0.2105 93.01% 0.1980 92.10% 0.1798 94.12% 130 

Inception v1 224, 224, 3 0.1984 93.50% 0.1860 92.75% 0.1759 94.45% 150 

ResNet-50 224, 224, 3 0.1893 93.87% 0.1755 93.20% 0.1702 94.80% 160 

Inception v3 299, 299, 3 0.1785 94.20% 0.1680 93.50% 0.1651 95.02% 180 

DenseNet-121 224, 224, 3 0.1709 94.53% 0.1605 94.00% 0.1604 95.23% 200 

Xception 299, 299, 3 0.1627 94.95% 0.1550 94.50% 0.1580 95.40% 210 

EfficientNetB2 260, 260, 3 0.1594   95.10% 0.1835 93.90% 0.1928 94.85% 90 

EfficientNetB3 300, 300, 3 0.1528   95.55% 0.1752 94.60% 0.1864 95.12% 80 

Enhanced EfficientNetB3 224, 224, 3 0.1385   98.92 % 0.1450 98.20% 0.1505 98.50% 68 

 

 
 

Figure 12- Training and Validation Loss and Accuracy for Enhanced EfficientNetB3 

 

3.1 Confusion matrix 

  

The performance of the Enhanced EfficientNetB3 model was assessed through a confusion matrix, which provided an in-depth 

evaluation of its ability to classify various paddy diseases. The model achieved remarkable success in accurately identifying 

both healthy plants and several disease types, such as blast. It showed especially strong performance in recognizing Dead 
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Heart, where it correctly classified 289 instances, and Blast, with 345 correct predictions. Additionally, the model effectively 

identified Bacterial Leaf Blight with 94 correct classifications and Bacterial Leaf Streak, correctly identifying all 76 instances. 

Other diseases, including Brown Spot, Downy Mildew, and Hispa, were also accurately classified with only minor 

misclassifications. The model performed well in identifying Normal (healthy plants), with 342 correct classifications. The 

confusion matrix highlights the model's consistent and reliable ability to distinguish between various paddy diseases, 

reinforcing its potential for practical use in disease diagnosis. The confusion matrix depicted in Figure 13 illustrates the 

model's proficiency in recognizing different paddy diseases. 

 

 
 

Figure 13- Confusion Matrix for Paddy Disease Classification Model Performance 

 

3.2 Model disease classification 

 

Table 6 displays the Precision, Recall, F1-Score, and Accuracy metrics for the Enhanced EfficientNetB3 model across various 

paddy disease categories. The model proven exceptional performance, with perfect Precision and Recall of 1.00 for bacterial 

leaf streak. Additionally, it achieved high accuracy in identifying paddy diseases such as dead heart and blast. 

 
Table 6- Performance Metrics for the Enhanced EfficientNetB3 Model 

 

Disease Precision Recall F1-Score Accuracy 

Bacterial Leaf Blight 0.99 0.94 0.96 98.0% 

Bacterial Leaf Streak 1.00 1.00 1.00 100% 

Bacterial Panicle Blight 0.98 0.98 0.98 98.0% 

Blast 0.99 0.98 0.99 98.5% 

Brown Spot 0.96 0.98 0.97 97.5% 

Dead Heart 1.00 1.00 1.00 99.5% 

Downy Mildew 0.95 0.95 0.95 95.0% 

Hispa 0.98 0.98 0.98 98.0% 

Tungro 0.97 0.99 0.98 98.0% 

Normal 0.97 0.99 0.98 98.0% 
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Figure 14- Evaluation Metrics Heatmap 

 

Similar results are observed from the Evaluation Metrics Heatmap in Figure 14 thus ensuring that the model excels most in 

categorizing paddy diseases. The disease prediction performance of the Enhanced EfficientNetB3 model is compared to other 

models is shown in Figure 15(a) and 15(b). 
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Figure 15 (a)- Predictive Performances of Disease Prediction Models 
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Figure 15 (b)- Predictive Performances of Disease Prediction Models 

 

4. Discussion  
 

The comparative analysis of paddy disease classification models emphasizes the effectiveness of different deep learning 

architectures for diagnosing paddy diseases. Even simpler models, such as MobileNet, achieve a commendable accuracy of 

around 90%. In contrast, more advanced models like ResNet50, EfficientNet, and hybrid architectures—such as ResNet-

YOLO and DenseNet-UNet—exhibit even higher accuracy, often exceeding 95%. For example, Ganesan & Chinnappan 

(2022) demonstrated a system that achieved an impressive accuracy of 97.1% using ResNet-YOLO for identifying paddy leaf 

diseases, showcasing the effectiveness of these advanced architectures in disease detection. 

 

Models incorporating self-attention mechanisms, such as the Self-attention-based ResNet studied by Stephen et al. (2023), 

achieved an accuracy of 96.7%. This underscores the benefit of self-attention techniques, which enhance model efficiency by 

focusing on the most critical elements of the dataset.  The Enhanced EfficientNetB3 model discussed in this study also aligns 

with these findings, achieving a test accuracy of 98.50%. While it showed a lower test loss compared to some other models, it 

performed well on different data samples, indicating robust generalization. 

 

 On the other hand, simpler models, including conventional structures like VGG16, basic CNNs, as well as EfficientNetB2 

and EfficientNetB3, also demonstrated solid performance with accuracy ranging from 90% to 95%. This range of results 

suggests that even models with lower complexity can deliver effective results when applied to moderately complex datasets. 

 

Despite the promising performance of the Enhanced EfficientNetB3 model, there are still some limitations that need to be 

addressed in future research. One limitation is the model's dependency on a large amount of labeled training data, which may 
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not always be available, especially in regions with limited data for paddy disease classification. Additionally, the model's 

performance can be impacted by noise and variation in data quality, which may affect the accuracy in real-world applications. 

Future work could explore techniques such as semi-supervised learning or data augmentation to reduce the dependence on 

large labeled datasets and improve robustness (Ozdemir et al. 2024). Furthermore, incorporating domain-specific knowledge or 

hybrid models that combine deep learning with expert systems may help improve model accuracy and generalization in diverse 

field conditions. Another avenue for future research is exploring the deployment of these models on edge devices with limited 

computational resources. This could involve further optimization of the model to maintain high performance while reducing 

model size and computational requirements. 

 

4.1. Detailed model performance comparison 

 
Table 6- Comparison of Accuracy Rates of Paddy Disease Classification Models Using Deep Learning 

 

Study & Reference 
Number of 

Images 
Diseases Diagnosed Models Used Accuracy Rates (%) 

Shah et al. (2023)  2000 Blast, Brown spot, 

Bacterial blight 

Inception V3, VGG16, 

VGG19, CNN, ResNet50 

Inception V3: 92.4, VGG16: 90.2, 

VGG19: 91.5, CNN: 89.8, ResNet50: 

93.7 

Sun et al. (2023)  1500 Seed defects  Rice-VGG16 96.3 

Liang et al. (2022)  1200 Multiple paddy diseases 

and pests 

Improved CNN based on 

VGG16 

94.6 

Rahman et al. (2020)  3000 Brown spot, Leaf blast, 

Sheath blight 

CNN 91.2 

Yakkundimath et al. 

(2022)  

2500 Blast, Sheath blight, 

Brown spot 

Multiple CNN models 90.8 

Dogra et al. (2023)  1800 Brown spot Deep learning model 94.0 

Razavi et al. (2024)  2200 Rice cultivar 

classification 

ResNet models 95.8 

Ganesan & 

Chinnappan (2022)  

1400 Paddy leaf diseases Hybrid ResNet-YOLO 97.0 

Stephen et al. (2023)  1600 Paddy leaf diseases Self-attention based ResNet 96.7 

Liu et al. (2022)  2100 Paddy leaf diseases Hybrid DenseNet-UNet 95.4 

Li et al. (2022)  1300 Rice germ integrity Improved EfficientNet 93.5 

Bhujel & Shakya 

(2022)  

1700 Paddy leaf diseases EfficientNet 95.9 

Deng et al. (2021)  2000 Multiple Paddy diseases Deep learning models 93.2 

Kaur & Sivia (2024)  1600 Leaf blast Deep and machine learning 

convolutional networks 

94.8 

Latif et al. (2022)  1800 Paddy diseases Improved CNN 94.2 

Hukkeri et al. (2024)  2400 Various plant diseases Pretrained CNN on ImageNet 92.9 

Meena et al. (2024)  1700 Paddy diseases Xception model 96.0 

 

Proposed Work 

(2024) 

 

10407 

 

10 Paddy diseases 

including normal leaves 

VGG16, VGG19, 

Inception v1, 

ResNet-50, 

Inception v3, 

DenseNet-121, 

Xception, 

EfficientNetB2              

EfficientNetB3 

Enhanced EfficientNetB3 

93.88%, 94.12% 

94.45% 

94.80% 

95.02% 

95.23% 

95.40% 

94.85% 

95.12% 

98.50% 

 

 In assessing the training performance of various models, including VGG16, VGG19, Inception v1, ResNet-50, Inception 

v3, DenseNet-121, Xception, EfficientNetB2, EfficientNetB3, and Enhanced EfficientNetB3, the Enhanced EfficientNetB3 

model achieved the lowest training loss at 0.1385 and reached a training accuracy of 98.92%. The results indicate that the 

model has effectively learned the patterns from the training data, and the validation loss shows consistent performance, 

reflecting the model's ability to generalize well to new, unseen data. 

 

The Enhanced EfficientNetB3 model showed a validation loss of 0.1450 and a test loss reaching 0.1505, both lower than 

those observed in other models. It attained a validation accuracy of 98.20% and a test accuracy of 98.50%, demonstrating 

strong generalization to new data. These observations suggest that the model demonstrates strong performance with new data, 

with the loss values staying within an optimal range. 

 

Moreover, Enhanced EfficientNetB3 outperformed models such as Xception, DenseNet-121, EfficientNetB2, and 

EfficientNetB3 in validation accuracy. Its ability to maintain an effective balance between accuracy and loss highlights 

Enhanced EfficientNetB3 as a highly efficient model, making it an excellent choice for dataset classification. 
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Additionally, the Enhanced EfficientNetB3 model required only 68 minutes of training time, significantly faster than 

models such as Xception, which took 210 minutes, DenseNet-121, which took 200 minutes, and EfficientNetB2, which took 

90 minutes. This efficiency highlights that Enhanced EfficientNetB3 is not only accurate but also computationally cost-

effective compared to other architectures. This aspect makes Enhanced EfficientNetB3 a suitable choice when computational 

resources or training time are limited, while still maintaining high performance. Table 6 provides a comparison of accuracy 

rates among various deep learning models for paddy disease classification, including Enhanced EfficientNetB3. Given the 

lower computational cost and faster training time, Enhanced EfficientNetB3 is recommended when the task requires high 

accuracy but with limited time or computational resources.  

 

5. Conclusions 
 

The proposed Enhanced EfficientNetB3 model sets a new benchmark in paddy disease identification with its impressive 

performance, achieving a training accuracy of 98.92%, which exceeds the accuracy of previous models. It shows strong 

validation and test accuracies of 98.20% and 98.50%, respectively, indicating effective generalization to new data. While the 

model maintains excellent accuracy overall, it also achieves efficient training in just 68 minutes. The validation and test losses 

are consistent with the training loss, further emphasizing the model's strong performance.  The Enhanced EfficientNetB3 

model excels in precision, recall, and F1-scores, making it highly effective for classifying paddy diseases. It also supports real-

time inference and resource optimization, providing significant advantages for precision agriculture and offering potential 

applications in managing diseases across various crops and climates. 
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