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Abstract 

In this study, a SimCLR-based model is proposed for the classification of unlabeled 

brain tumor images in medical imaging using a self-supervised learning (SSL) 

technique. Additionally, the performances of different SSL techniques (Barlow 

Twins, NnCLR, and SimCLR) are analyzed to evaluate the performance of the 

proposed model. Three different datasets, consisting of pituitary, meningioma, and 

glioma brain tumors as well as non-tumor images, were used as the dataset. Out of a 

total of 7,671 images, 6,128 were used as unlabeled data, and the model was trained 

with both labeled and unlabeled data. The proposed model achieved high 

performance with unlabeled data, reducing the need for manual labeling. As a result, 

the model demonstrated superior performance compared to other models, with high 

performance values such as 99.35% c_acc and 96.31% p_acc. 
 

 
1. Introduction 

 

Deep learning has become a widely used method in 

image classification [1],[2],[3], segmentation 

[4],[5],[6], audio processing [7],[8],[9], object 

detection [10],[11], and natural language processing 

(NLP) [12],[13] tasks. Significant improvements have 

been achieved, especially in challenging areas such as 

disease classification and organ segmentation in 

medical image analysis. These successes are often 

based on large amounts of manually labeled training 

data. While labels can be easily obtained through 

crowd sourcing in natural images, this method is 

limited in medical imaging due to the requirement of 

expert knowledge. This situation indicates that access 

to unlabeled medical images is often easier than 

access to labeled images [14]. 

Supervised learning approaches have reached 

their limits due to the challenges and costs associated 

with the manual annotation of labeled data. 

Additionally, image recognition systems learn image 

representations using large amounts of images along 

with semantic annotations for these images. These 

annotations can be provided in different formats such 

as class labels, hashtags, or bounding boxes. 
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However, predefined semantic annotations often fail 

to encompass the long tail of diverse and rare visual 

concepts. This limitation hinders progress in the 

performance of image recognition systems 

[15],[16],[17]. 

While traditional methods rely on annotations 

in large datasets, self-supervised methods enable 

more efficient use of deep learning by providing the 

ability to learn without the need for these annotations. 

These methods further advance developments in the 

field of deep learning by facilitating feature learning 

from unlabeled data [15],[18]. 

Self-supervised learning (SSL) is defined as a 

learning paradigm that sits between unsupervised 

learning and supervised learning. Compared to 

supervised learning, it aims to learn without the 

requirement for labeled data. Instead, it allows the 

model to generate labels for itself by leveraging the 

natural structure and relationships within the data. In 

this way, the model extracts “supervisory signals” 

from the data itself. In supervised learning 

approaches, large amounts of labeled data are 

generally required for the model to learn. However, 

this labeling process can be time-consuming and 

costly. SSL aims to learn by utilizing the intrinsic 
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structures within the data, allowing for efficient 

model training on large amounts of unlabeled data 

[14],[19]. 

SSL can be considered a subfield of 

unsupervised learning since it does not involve 

manual labeling. However, when viewed within a 

narrower framework, unsupervised learning generally 

aims to uncover specific data patterns such as 

clustering, community discovery, or anomaly 

detection, whereas SSL targets extracting information 

from data based on the fundamental principles of 

supervised learning [14]. Figure 1 clearly illustrates 

the differences between these two approaches [20].

 

Figure 1. An Example of Supervised, Unsupervised, and 

Self-Supervised Learning. 

 

Our main contributions in this study are given 

as follows. 

 

• In the study, high success was achieved in the 

classification of unlabeled brain tumor 

images using the SimCLR-based SSL model. 

This approach effectively used unlabeled data 

and reduced the need for manual labeling. 

• The proposed model achieved better results 

compared to other SSL techniques with high 

performance values such as 99.35% c_acc 

and 96.31% p_acc. This shows that the model 

is effective in medical image analysis. 

• By using 6128 of the total 7671 images as 

unlabeled, a significant saving was achieved 

in the data labeling  

• process and the need for manual labeling was 

minimized. 

• By comparing different SSL techniques such 

as Barlow Twins, NnCLR and SimCLR, it 

was shown that the SimCLR-based model 

was superior. These comparisons are an 

important contribution in terms of evaluating 

the effectiveness of SSL techniques in 

medical image classification. 

• The study showed that the SSL approach has 

a wide application potential, especially in 

areas such as medical image analysis where 

limited labeled data is available. This method 

can provide more efficient and faster medical 

image classification by reducing the need for 

expert knowledge. 

 

2. Material and Method 

 

2.1. Material 

 

Although labels can be easily obtained through crowd 

sourcing from datasets, this method is limited in 

medical imaging because it requires expert 

knowledge. Therefore, this study was conducted to 

classify unlabeled data using the SSL technique with 

brain tumor images from medical images. 

The brain is an organ that controls vital 

systems and tissues in the human body, such as 

hormonal regulation, memory, and reasoning. Brain 

tumors occur due to the abnormal proliferation of 

brain cells. Tumors, which are categorized as benign 

or malignant, increase intracranial pressure, 

complicating the control of vital systems and 

potentially leading to the patient's death in advanced 

stages. As with all types of cancer, early diagnosis and 

treatment increase survival rates for brain tumors. 

Changes in the brain can be detected using medical 

imaging techniques such as computed tomography 

and magnetic resonance imaging (MRI). The brain 

MRI images used in this study consist of four classes. 

These classes are specified as "glioma, meningioma, 

pituitary, and no_tumor." 

 

 

Figure 2. Some Labeled and Unlabeled Images 

Containing Brain Tumor Images. 

 

In this study, three different datasets 

containing brain MRI images were used. The first 

dataset includes a total of 1311 MRI images, 

consisting of 300 Pituitary images, 306 Meningioma 

images, 300 Glioma images, and 405 No Tumor 
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images  [21]. The second dataset contains a total of 

3264 MRI images, comprising 901 Pituitary images, 

937 Meningioma images, 926 Glioma images, and 

500 No Tumor images [22]. The third dataset used 

contains a total of 3096 MRI images, including 844 

Pituitary images, 913 Meningioma images, 901 

Glioma images, and 438 No Tumor images [23]. To 

test the developed networks, the brain MRI datasets 

from three different sources were mixed and split into 

1235 training data, 6128 unlabeled data, and 308 test 

data. Sample brain MRI images are shown in Figure 

2. 

 

2.2. Method 

 

In this study, a SimCLR-based model is proposed for 

training on limited datasets with a small number of 

images. The performances of SimCLR [24], Barlow 

Twins [25] and NnCLR [26] techniques were also 

analyzed by examining these methods. 

SimCLR, Barlow Twins, and NnCLR 

methods use twin networks. These networks aim to 

minimize the network error for representations of data 

belonging to the same class. Figure 3 (a) provides an 

example of a twin network architecture. The twin 

networks share the same network weights and attempt 

to learn to produce a minimum distance value for 

different samples belonging to the same class. This 

situation is the opposite for samples belonging to 

different classes. Figure 3 (b) illustrates this situation 

in detail for sample data from the MNIST dataset. The 

network error is calculated using methods like 

contrastive loss, and the network is trained. 
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Figure 3. (a) Twin Network Architecture, (b) Positive and Negative Examples of Twin Networks in Vector Space 

 
2.2.1. SimCLR 

 

SimCLR fundamentally utilizes twin networks. These 

networks learn unlabeled data from datasets lacking 

sufficient amounts of data through classic data 

augmentation in four stages [24]. Figure 4 presents a 

schematic representation of the SimCLR method. 

In the first stage of the SimCLR method, 

unlabeled data is augmented to create an increased 

data pool for each sample using classic data 

augmentation techniques (random resizing, random 

cropping, and adding Gaussian blur noise). In the 

second stage, the encoder network 𝑓(. ) obtains 

feature vectors for these augmented images 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗. 

In the third stage, a projection operation 𝑔(. ) is 

applied. At the end of this process, the contrastive loss 

value for the vectors 𝑧𝑖  and 𝑧𝑗  is calculated. The 

contrastive loss is given by the following equation. 

 

𝑙𝑖,𝑗 = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑗)/𝜏)

∑ 𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑗)/𝜏)2𝑁
𝑘−1,𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟[𝑘≠𝑖]

 (1) 

 

Here, 𝑁 is the number of samples, and 𝜏 is the 

temperature parameter. The indicator function is 

defined as {𝐸ğ𝑒𝑟 [𝑘 ≠ 𝑖] 𝑖𝑠𝑒 1 }. When calculating 

the loss, the contrastive loss is computed based on the 

cosine similarity between the selected number of 

positive data samples. The proposed model is trained 
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according to the backpropagation algorithm by taking 

the partial derivatives of the contrastive loss method. 

x
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Figure 4. Schematic Representation of the SimCLR 

Method 

 

2.2.2. Barlow twins 

 

Barlow twins  [25] is an innovative Contrastive 

Learning (CL) model that aims to perform 

classification on datasets with limited data using a 

self-supervised learning strategy with twin networks. 

This method generates augmented images 𝑇 for all 

images in the sampled batch 𝑋. These images are 

provided as input in pairs 𝑦𝑎  and 𝑦𝑏 and 𝑦𝑎  and 𝑦𝑏 

to the deep learning model 𝑓 with parameters 𝜃. The 

output of this model consists of feature vectors 

𝑧𝑎  and 𝑧𝑏. These vectors are assumed to be mean-

centered over the batch size, resulting in an average 

output of 0 for each unit across the batch. The loss 

function of the Barlow Twins method is shown below. 

 

𝐿𝐵𝑇 ≜ ∑(1 − 𝐶𝑖𝑖)

İ

+ 𝜆 + ∑ ∑ 𝐶𝑖𝑗
2

𝑗≠𝑖𝑖

 (2) 

 

Here, 𝜆 is a positive constant that adjusts the 

importance of the first and second terms of the loss. 𝐶 

is the cross-correlation matrix calculated between the 

outputs of the twin networks over the batch size. This 

matrix is constructed according to the following 

equation. 

 

𝐶𝑖𝑗 ≜
∑ 𝑧𝑏,𝑖

𝐴 𝑧𝑏,𝑗
𝐵

𝑏

√∑ (𝑧𝑏,𝑖
𝐴 )

2
𝑏 √∑ (𝑧𝑏,𝑗

𝐵 )
2

𝑏

 
(3) 

 

Here, 𝑏 represents the batch samples. 𝑖, 𝑗 are 

the vector dimensions of the network outputs. 𝐶 has 

the output dimension of the network and takes values 

ranging from -1 (perfect anti-correlation) to 1 (perfect 

correlation) [25]. 

The objective function of the Barlow Twins 

method resembles the INFONCE method [27]. 

However, it stands out because it does not require a 

large number of negative samples and works 

effectively with high-dimensional vectors. 

After calculating the Barlow Twins loss, the method 

trains the twin network according to the 

backpropagation algorithm. 

 

2.2.3. NnCLR 

 

Developed based on the SimCLR method, this 

approach is a modern self-supervised learning 

architecture that uses twin networks. The NnCLR 

method [26] employs the nearest neighbor clustering 

technique to increase the number of latent 

representations and obtain more diverse positive pairs 

rather than single positive examples [26]. This 

necessitates maintaining a vector support set that 

represents the entire data distribution. Figure 5 

presents a schematic representation of the NnCLR 

algorithm. 
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Figure 5. Schematic Representation of the NnCLR 

Method 

 

SimCLR uses two augmented images 

𝑧𝑖  and 𝑧,
+to create a positive pair. In contrast, NnCLR 

proposes using the nearest neighbors of 𝑧𝑖 from the 𝑄 

support set to form positive pairs. Similar to SimCLR, 

negative pairs are applied to the loss function in mini-

batches. The loss function of the NnCLR algorithm is 

provided below. 

 

𝐿𝑖
𝑁𝑛𝐶𝐿𝑅 = −𝑙𝑜𝑔

𝑒𝑥𝑝(𝑁𝑁(𝑧𝑖 , 𝑄) ∙ 𝑧𝑖
+/𝜏)

∑ 𝑒𝑥𝑝(𝑁𝑁(𝑧𝑖 , 𝑄) ∙ 𝑧𝑖
+/𝜏)𝑛

𝑘

  (4) 
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2.2.4. Proposed Model 

 

The overall structure of the proposed model is 

presented in Figure 6. The proposed model consists of 

the Encoder, Projection Head, and Classification 

stages. The model takes labeled and unlabeled images 

as input, and the Encoder module extracts feature 

maps. The Projection Head transforms the features 

extracted in the Encoder stage into a different space, 

creating similarity matrices between unlabeled and 

labeled data. In the Classification stage, the similarity 

matrices obtained in the Projection Head are used to 

predict which class the data may belong to. 

In the Encoder stage, the input images 

undergo two convolution (Conv2D) operations 

followed by MaxPooling2D operations sequentially, 

repeated three times. The obtained features are then 

flattened into a vector using the Flatten operation and 

processed through three Dense layers. In the Conv2D 

operations, the number of filters (f) is set to 16, 32, 

and 64, with a filter size (kernel size) of 3x3. The 

activation function used after the Conv2D operations 

is ReLU. The Conv2D operation extracts feature 

maps from the images, while the MaxPooling2D 

operation reduces dimensionality by eliminating 

unnecessary features. 

The Projection Head stage consists of three 

consecutive Dense layers. In these layers, the number 

of neurons is set to 256, 128, and 64, respectively. 

Additionally, the activation function used in each 

Dense layer is ReLU. The SimCLR loss function is 

employed for training the proposed Encoder and 

Projection architecture. 

The Classification stage also consists of three 

consecutive Dense layers, with the number of neurons 

set to 256, 128, and 4, respectively. The activation 

function used in the first two Dense layers is ReLU. 

Categorical CrossEntropy is utilized for training the 

Classification module. The Categorical CrossEntropy 

(CE) cost function is as follows [28]. 

 

𝐿𝐶𝐸 =  − ∑ 𝑦𝑖

𝑁

𝑖=1

. 𝑙𝑜𝑔 𝑦̂𝑖 (5) 

 

Here, 𝑁 represents the number of classes. 𝑦𝑖 

denotes the true classes, while 𝑦̂𝑖 represents the 

predicted class. 

 

 

Figure 6. Overall Structure of the Proposed Model. 

 

3. Results and Discussion 

 

In this study, a SimCLR-based model was proposed 

to enhance the classification performance of 

unlabeled images. Three datasets containing brain 

tumor images were used, specifically comprising 

"pituitary," "meningioma," and "glioma" types, along 

with non-tumor images. A total of 7671 images were 

included in the datasets, out of which 6128 were 

designated as unlabeled data, while 1235 images were 

allocated for training and 308 for testing. The 

proposed model was trained using both labeled and 

unlabeled data. 

For the training of the proposed model, the 

Adam optimization algorithm was employed, with 

SimCLR Loss and Categorical Crossentropy as the 

cost functions. The images were trained at a 

resolution of 96x96 over 100 epochs, with a 

temperature parameter τ set to 0.1. Data augmentation 

has been applied using the RandomFlip ("horizontal") 

method. This technique increases data diversity, 

allowing the model to generalize better.  The 
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performance of the models is based on the Accuracy 

metric. This metric is given below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

Where, 𝑇𝑃 denotes the true-positive value, 

𝑇𝑁 stands for the true-negative value, 𝐹𝑃 refers to the 

false-positive value, and 𝐹𝑁 indicates the false-

negative value. 

In the initial experimental study, the 

performance of the proposed model was compared to 

that of the SimCLR model, and the results are 

presented in Table 1. Additionally, the accuracy and 

loss graphs of the models are displayed in Figure 7. 

p_acc represents the accuracy of the classifier output, 

c_acc denotes the accuracy of comparative learning, 

r_acc indicates correlation accuracy, and val_p_acc 

reflects the test accuracy. 

 
Table 1. Test Results of the Proposed Model vs. SimCLR. 

Model 
c_acc 

(%) 

p_acc 

(%) 

r_acc 

(%) 

val_p_acc 

(%) 

SimCLR 99.28 58.86 00.78 54.87 

Proposed 

Model 
99.35 96.31 57.76 72.40 

 

The findings indicate that the proposed model 

achieved a comparative accuracy (c_acc) of 99.35%, 

a classification accuracy (p_acc) of 96.31%, a 

correlation accuracy (r_acc) of 57.76%, and a 

validation accuracy (val_p_acc) of 72.40%. These 

results demonstrate a significant improvement over 

the SimCLR model, underscoring the effectiveness of 

the proposed self-supervised learning approach in 

classifying unlabeled images. The substantial gains in 

accuracy metrics suggest that the model can 

efficiently leverage unlabeled data, enhancing 

performance in medical image classification tasks. 

 

 

 

 

Figure 7. Accuracy and Loss Graphs of SimCLR and 

Proposed Model. (a) SimCLR Accuracy and Loss Graphs, 

(b) Proposed Model Accuracy and Loss Graphs. 

 

This figure (Figure 7) illustrates the 

performance comparison between the SimCLR model 

and the proposed model. The accuracy and loss 

metrics for both models are displayed, providing 

insight into their training dynamics and overall 

effectiveness in classifying the datasets. The proposed 

model exhibits superior performance, as indicated by 

higher accuracy and lower loss across the training 

epochs. 

The findings presented in this table 

summarize the performance metrics of the models 

employed in this study. Upon reviewing the results, it 

is evident that the proposed model predicts with 

significantly higher accuracy compared to the other 

models. This suggests that the incorporation of the 

self-supervised learning technique, particularly 

through the SimCLR framework, has contributed to 

enhanced classification performance in the context of 

brain tumor imaging. 

 
Table 2. Test results of the models 

Model 
c_acc   

(%) 

p_acc 

(%) 

r_acc  

(%) 

val_p_acc 

(%) 

Barlow twins 98.65 56.63 35.94 53.25 

NnCLR 98.36 62.36 36.26 58.12 

SimCLR 99.28 58.86 00.78 54.87 

Proposed 

Model 
99.35 96.31 57.76 72.40 

 

Accuracy and loss graphs of the models 

during training are presented in Figure 8. 

Additionally, the accuracy and loss graphs of the 

Barlow Twins and NnCLR models are shown in 

Figure 9. When examining the accuracy graph (a) in 

Figure 8, we can say that the proposed model 

demonstrates more stable and higher accuracy 

throughout the training. 



K. Fırıldak, G. Çelik, M.F. Talu / BEU Fen Bilimleri Dergisi 13 (4), 1304-1313, 2024 

1310 

 

Figure 8. Accuracy (a) and loss (b) graphs of the models. 

 

 

Figure 9. Accuracy and loss graphs of the BarlowTwins and NnCLR models. (a) BarlowTwins, (b) NnCLR model graphs 

 

4. Conclusion and Suggestions 

 

In this study, a SimCLR-based model was proposed 

using self-supervised learning (SSL) techniques to 

enhance the classification performance of unlabeled 

brain tumor images. The research was conducted on 

three types of brain tumors: pituitary, meningioma, 

and glioma, as well as non-tumor images. A dataset 

consisting of a total of 7,671 images was used, of 

which 6,128 were designated as unlabeled data, while 

the remaining images were utilized for training and 

testing. The proposed model was trained with both 

unlabeled and labeled data, effectively reducing the 

need for expert knowledge in medical imaging and 

minimizing the requirement for manual labeling. 

As a result of performance analysis, it was 

observed that the proposed model achieved 

significant improvements compared to the SimCLR 

model, with values of 99.35% c_acc, 96.31% p_acc, 

57.76% r_acc, and 72.40% val_p_acc. These findings 

demonstrate the effective utilization of unlabeled data 

through the SSL technique. It was concluded that this 

approach holds great potential for broader 

applications, especially in fields such as medical 

image analysis, where the labeled dataset is limited. 
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