
Computers and Informatics

2757-8259 2024, Volume 4 Issue 2
DOI: 10.62189/ci.1558975 Research Article

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

99

Multi-Criteria Priority RED Queuing (MCPRQ): A novel approach

to enhance queue management and quality of service in IPv6

networks
Abdullah Orman*

Ankara Yildirim Beyazit University, Department of Computer Technologies, aorman@aybu.edu.tr

Çetin Elmas

Gazi University, Department of Electrical - Electronic Engineering, celmas@gazi.edu.tr

İnan Güler

Gazi University, Department of Electrical - Electronic Engineering, iguler@gazi.edu.tr

Submitted: 01.10.2024

Accepted: 01.11.2024

Published: 31.12.2024

* Corresponding Author

Abstract:

This study aims to develop a new DiffServ queue model and AQM (Active Queue Management) model to improve

the quality of service in real-time internet applications. This model, called MCPRQ (Multi-Criteria Priority RED

Queuing), aims to provide more effective queue management by evaluating packets according to their priority

levels, sizes, and waiting times within the scope of the DiffServ architecture. This evaluation is performed using the

Analytical Hierarchy Process (AHP) and integrated with the RED (Random Early Detection) algorithm to provide a

solution to increase the quality of service in queue management. The MCPRQ model has been tested with the

OMNeT++ simulator in IPv6 networks and has achieved successful results compared to commonly used queue

structures. Its low packet loss has attracted attention, especially in low-density networks, and low average delay in

high-density networks. This shows that MCPRQ offers a significant advantage in flexibility and scalability. As a result,

the MCPRQ model effectively manages congestion in medium and high-density networks while providing better

performance by preserving the quality of service in real-time applications.

Keywords: AHP, Differentiated services, IPv6, Quality of service, Queuing model

© 2024 Published by peer-reviewed open access scientific journal, Computers and Informatics (C&I) at DergiPark

(dergipark.org.tr/ci)

Cite this paper as: Orman, A., Elmas, Ç., & Güler, İ. RED Queuing (MCPRQ): A novel approach to enhance queue management

and quality of service in IPv6 networks. Computers and Informatics, 2024; 4(2); 99-111,

https://doi.org/10.62189/ci.1558975

https://dergipark.org.tr/en/pub/@orman_abdullah
https://dergipark.org.tr/en/pub/@cetin-elmas
https://dergipark.org.tr/en/pub/@iguler_1041
https://dergipark.org.tr/en/pub/ci
https://orcid.org/0000-0002-3495-1897
https://orcid.org/0000-0001-9472-2327
https://orcid.org/0000-0001-9064-5520
https://doi.org/10.62189/ci.1558975

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

100

1. INTRODUCTION

Today, many real-time applications over the Internet have significantly increased bandwidth

requirements and quality of service (QoS) expectations. Applications such as IP-based phones, IPTV,

internet radio broadcasts, and video conferencing systems demand high bandwidth, low latency, and

minimum packet loss. These needs necessitate implementing advanced solutions to optimize data

transmission performance in modern network infrastructures. However, congestion, packet loss, and

delay variations (jitter) experienced in networks can reduce the quality of these services [1].

QoS is applied to efficient bandwidth use and network performance improvement, especially in

applications sensitive to delay and packet loss [2-4]. The differences between protocols such as TCP and

UDP necessitate the selection of appropriate strategies for QoS management. In particular, TCP's packet

loss retransmission features and UDP's low latency tolerance require separate management of different

traffic.

Congestion problems in network traffic are usually caused by router queues filling up and packets being

dropped from these queues. Standard drop tail management is insufficient to solve this problem and

causes global synchronization problems in the network. At this point, Active Queue Management (AQM)

techniques have been developed to control congestion before it starts. RED (Random Early Detection),

one of the AQM algorithms, is designed to detect congestion signs in advance by keeping the average

queue length within a specific range to prevent queues from filling up[5].

In addition, QoS methods such as DiffServ (Differentiated Services) and IntServ (Integrated Services) offer

solutions based on packet prioritization and bandwidth reservation. However, DiffServ methods are

insufficient to solve the congestion problem, so they must be integrated with AQM algorithms [6-9].

Recent studies have focused on developing AQM and QoS methods [4, 10-14]. Artificial intelligence-

based solutions, intense reinforcement learning (DRL), and in-network telemetry propose new

algorithms to meet QoS demands in real-time applications [5, 9, 15-17]. New algorithms such as DESiRED

increase performance and minimize congestion problems by dynamically responding to network traffic

density [18].

This study investigated the effects of MCPRQ (Multi-Criteria Priority RED Queuing) algorithms developed

with DiffServ and AQM methods on QoS. The developed methods were optimized for IPv6 networks and

subjected to performance tests in different traffic scenarios. This research shows that new-generation

algorithms for optimizing network performance improve essential parameters such as bandwidth and

delay.

2. MATERIALS AND METHODS

The algorithm we developed includes both AQM and QoS components. A new packet classification,

active queue management, and packet selection algorithm are proposed for QoS. The developed

algorithm (MCPRQ) is compared with the Drop tail and RED AQM algorithms, while PQ and MCPQ are

compared with QoS algorithms. The comparison is made in the OMNeT++ network simulator under

three different scenarios.

2.1. Packet Classification Algorithm

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

101

In PQ's packet selection, only packet priority (IPv4: ToS, IPv6: dscp) is taken into account, and packets to

be transferred to the output are selected according to the priority order of the queues. However, in the

case of high-density traffic, this method causes the queue length to increase and high latency times to

occur. RED, conversely, ensures that the queue length remains constant by dropping packets randomly

selected from the queue before there is any congestion. In this method we developed, packets are taken

into four different virtual queues created at the beginning, and a selection is made among the packets

waiting in this queue. Unlike the PQ algorithm, packet priority (dscp value), packet size, and waiting time

in the queue are considered. Again, unlike PQ, the length of the created virtual priority queues is not

fixed, and they are updated instantly according to the queue density. The RED application is applied only

to the queue with the lowest priority value from these virtual queues. Here, the queues created according

to the DSCP value of the packets are given in Table 1 [12].

Table 1MCPRQ Packet Classification[12]

Category DSCP Range

Expedited Forwarding (EF) dscp ≥46

High Queue (HQ) 27≤ dscp <46

Low Queue (LQ) 16≤ dscp <27

Best Effort Data (BE)+RED 0≤ dscp <16

The DSCP value of 46 (EF) indicates that the packet is a voice packet and is the most critical packet. The

HQ queue receives real-time application packets with two-way communication (like video conferencing).

The LQ queue receives packets with one-way real-time communication (IPTV and Video Stream). The BE

queue receives all the remaining packets (such as FTP, SMTP, HTTP, etc.). If a packet has not been

assigned a DSCP value, it is still in this queue. The capacities allocated to these queues are given in

Equation 1 [12].

𝐿𝐸𝐹 = 𝐿𝐻𝑄 = 𝐿𝐿𝑄 = 𝐿𝑇/𝑛

(1)

𝐿𝐵𝐸 = %85 ∗ 𝐿𝑇 − (𝑈𝐿𝐸𝐹 + 𝑈𝐿𝐻𝑄 + 𝑈𝐿𝐿𝑄)

Here, 𝐿𝐸𝐹 , 𝐿𝐻𝑄 , queue capacity 𝐿𝑇: shows the total queue length, 𝑛: the number of queues, and the

currently used quantities of the queues.𝑈𝐿𝐸𝐹 , 𝑈𝐿𝐻𝑄 , 𝑈𝐿𝐿𝑄 .

25% of the total queue length is allocated to EF, HQ, and LQ queues, and 85% of the total idle queue

length is assigned to the BE queue. In other words, the capacity of the BE queue is not fixed and is

constantly changing. One of the reasons for this distinction is to use the total queue capacity efficiently,

and the other is that in regular traffic, the amount of packets called “Best Effort Data” is much higher

than all other packet classes. The reason for not assigning the entire idle queue to the BE queue is to

prevent a new high-priority packet from being dropped when all virtual queues are full. However, when

congestion increases, there is a possibility that the queue will fill up and high-priority packets will be

dropped. To prevent this, the RED algorithm is applied to the BE queue to keep the length fixed and

ensure that the dropped packets are low-priority. The general structure of MCPRQ is shown in Figure 1.

2.2. MCPRQ Active Queue Management Algorithm

Considering the weaknesses in AQM applications, the packets to which AQM will be applied should be

carefully selected. AQM algorithms are packet-dropping algorithms created to prevent congestion.

According to the quality of service rules, critical packets must reach the target. For this reason, packets

with high importance should not be dropped. The MCPRQ algorithm constantly monitors the total queue

length, and congestion is detected in advance with RED. However, the packets to be dropped are

selected only from the packets in the BE queue. In this way, five critical problems are solved. These are:

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

102

• Since dropped packets are selected from packets with low importance, QoS will increase.

• Since dropped packets are more likely to be TCP packets, the source will regenerate them.

• Global synchronization will be avoided. Since there is no congestion, the possibility of dropping

critical packets without being queued will be eliminated.

• When packets in the BE queue, which will have a very high waiting time in the queue, are dropped,

the total queue will be used more effectively.

• There is no need to apply any AQM to queues other than the BE queue. In these queues, the last

packet will be dropped when the queue is full (Drop Tail).

Figure 1. MCPRQ queue structure

𝑎𝑣𝑔 = 0, 𝑐𝑜𝑢𝑛𝑡 = −1, 𝑏𝑢𝑓𝑓𝑒𝑟𝑈𝑠𝑒𝑑 = 0
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑣𝑔 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝐵𝐸 𝑞𝑢𝑒𝑢𝑒
 𝑖𝑓 𝑞𝑢𝑒𝑢𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦
 𝑎𝑣𝑔 = (1 − 𝑤𝑞)𝑎𝑣𝑔 + 𝑤𝑞 ∗ 𝑏𝑢𝑓𝑓𝑒𝑟𝑈𝑠𝑒𝑑
𝑒𝑙𝑠𝑒
 𝑚 = 𝑓(𝑡𝑖𝑚𝑒 − 𝑞𝑡𝑖𝑚𝑒)
 𝑎𝑣𝑔 = (1 − 𝑤𝑞)𝑚𝑎𝑣𝑔
𝑖𝑓 𝑚𝑖𝑛𝑡ℎ ≤ 𝑎𝑣𝑔 ≤ 𝑚𝑎𝑥𝑡ℎ
 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑐𝑜𝑢𝑛𝑡 𝑣𝑎𝑙𝑢𝑒
 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃𝑎

 𝑃𝑏 = 𝑚𝑎𝑥𝑝 ∗
𝑎𝑣𝑔−𝑚𝑖𝑛.𝑡ℎ

𝑚𝑎𝑥.𝑡ℎ−𝑚𝑖𝑛.𝑡ℎ

 𝑃𝑎 = 𝑃𝑏/(1 − 𝑐𝑜𝑢𝑛𝑡 ∗ 𝑃𝑏)
 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟
 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ 𝑃𝑎 𝑝𝑟𝑜𝑏𝑖𝑙𝑖𝑡𝑦
 𝑐𝑜𝑢𝑛𝑡 = 0
𝑦𝑜𝑘 𝑒ğ𝑒𝑟 𝑚𝑎𝑥𝑡ℎ ≤ 𝑎𝑣𝑔
 𝑚𝑎𝑟𝑘 𝑡ℎ𝑒 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡
 𝑐𝑜𝑢𝑛𝑡 = 0
𝑒𝑙𝑠𝑒
 𝑐𝑜𝑢𝑛𝑡 = −1
 𝑞𝑢𝑒𝑢𝑒 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 𝑤ℎ𝑒𝑛
 𝑡𝑖𝑚𝑒 = 𝑞𝑡𝑖𝑚𝑒
𝑖𝑓 𝑚𝑎𝑟𝑘𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 𝑜𝑟 𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 + 𝑏𝑢𝑓𝑓𝑒𝑟𝑈𝑠𝑒𝑑 > 𝑇𝑜𝑡𝑎𝑙𝑏𝑢𝑓𝑓𝑒𝑟
 𝑑𝑟𝑜𝑝 𝑝𝑎𝑐𝑘𝑒𝑡
𝑒𝑙𝑠𝑒
 𝑎𝑑𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 𝑡𝑜 𝑞𝑢𝑒𝑢𝑒
 ℎ𝑖𝑡 𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝 (𝑎𝑑𝑑 𝑞𝑢𝑒𝑢𝑒𝑑 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑎𝑐𝑘𝑒𝑡)
 𝑏𝑢𝑓𝑓𝑒𝑟𝑈𝑠𝑒𝑑 = 𝑏𝑢𝑓𝑓𝑒𝑟𝑈𝑠𝑒𝑑 + 𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒

Figure 2. Pseudocode structure of RED applied to MCRPQ.

Here:

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

103

𝑎𝑣𝑔 : Average queue length

𝑞_𝑡𝑖𝑚𝑒 : Start of queue empty time

𝑐𝑜𝑢𝑛𝑡 : Number of packets after the last marked packet

𝑤𝑞 : Queue weight

𝑚𝑖𝑛𝑡ℎ : Minimum threshold value for the queue

𝑚𝑎𝑥𝑡ℎ : Maximum threshold value for the queue

𝑚𝑎𝑥𝑝 : 𝑝𝑎Maximum value for

𝑃𝑎 : Current packet marking probability

𝑞 : Current queue length

𝑡𝑖𝑚𝑒 : Now

𝑚 = 𝑓(𝑡): Linear function concerning time

𝑏𝑢𝑓𝑓𝑒𝑟𝑈𝑠𝑒𝑑: The number of queues currently in use

2.3. MCPRQ Packet Selection Algorithm

Unlike the PQ algorithm, the MCPQ algorithm considers not only the priority of the queue in which the

packet is located but also the packet size and the waiting time of the packet in that queue when selecting

the packets to be transmitted. The MCPRQ algorithm also uses the same packet selection algorithm as

the MCPQ algorithm. A decision-making mechanism has been established to determine the effective

rates of the packet priority, packet size, and packet waiting time criteria. The MCPRQ algorithm has also

attempted to resolve the packet to be selected by using the analytical hierarchy process (AHP), one of

the multi-criteria decision-making mechanisms [19]. As seen in the source MCPQ Equation 2, the packet

priority, packet size, and packet priority weights have been calculated [12].

𝐹𝐸𝐹,𝐻𝑄,𝐿𝑄,𝐵𝐸 = 0,49𝑃𝑃𝑁 + 0,20𝑃𝑆𝑁 + 0,31𝑊𝑇𝑁 (2)

The values of the weights found in Equation 3 are given after they are normalized. For normalization,

the packet priority is divided by the highest dscp value of 63, and the packet size is divided by the largest

packet size (MTU) of 1500. The packet duration that waits for the longest in virtual queues is accepted

as 𝑊𝑇𝑚𝑎𝑥 .

𝐹𝐸𝐹 = 0,49𝑃𝑃1/63 + 0,20𝑃𝑆1/1500 + 0,31𝑊𝑇1/𝑊𝑇𝑚𝑎𝑥

(3)
𝐹𝐻𝑄 = 0,49𝑃𝑃2/63 + 0,20𝑃𝑆2/1500 + 0,31𝑊𝑇2/𝑊𝑇𝑚𝑎𝑥

𝐹𝐿𝑄 = 0,49𝑃𝑃3/63 + 0,20𝑃𝑆3/1500 + 0,31𝑊𝑇3/𝑊𝑇𝑚𝑎𝑥

𝐹𝐵𝐸 = 0,49𝑃𝑃4/63 + 0,20𝑃𝑆4/1500 + 0,31𝑊𝑇4/𝑊𝑇𝑚𝑎𝑥

𝑛 = 4, 𝐹𝑚𝑎𝑥 = 0, 𝑊𝑇𝑚𝑎𝑥 = 0, 𝐹[1. . 𝑛] = 0, 𝑄𝑚𝑎𝑥 = 0, 𝑊𝑇 = 0
For each queue (I, 1 .. n)
 If the queue is not empty
 Find the first element of the queue
 Calculate the queue delay WT (I) = CurretTime ()- TimeStamp ()
 If WT (I) > Wtmax
 Wtmax = WT (I)

For each queue (i, 1 .. n)
 If the queue is not empty
 Find the first element of the queue
 Find DSCP value →PP (i)
 Find packet size →PS (i)
 Calculate the queue delay WT (i) = CurretTime ()- TimeStamp ()
 𝐹(𝑖) = 0,49𝑃𝑃𝑖/63 + 0,20𝑃𝑆𝑖/1500 + 0,31𝑊𝑇𝑖/𝑊𝑇𝑚𝑎𝑥
 If𝐹(𝑖) > 𝐹𝑚𝑎𝑥
 Fmax =𝐹(𝑖)
 Qmax = i

Transfer the first packet from the Qmaxth queue to the output
Decrease the Qmaxth queue length by PS (Qmax)
Reduce total queue length by PS (Qmax).

Figure 1Pseudocode of MCPQ packet selection algorithm

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

104

Here:

n : Number of virtual queues

WT : The amount of time the packet waits in the queue

𝐹(𝑖) : Multi-criteria decision-making function value

Fmax : The most significant value of the multi-criteria decision-making function

WTmax : Maximum waiting time of packets in the queue

Qmax : 𝐹(𝑖)The queue number of the packet with the most significant value.

3. TESTING THE DEVELOPED ALGORITHM

DiffServ support has been given to applications, TCP, and UDP for all packets. Queue algorithms,

statistics, and all capacities have been brought to a structure that calculates packet size. There are many

DiffServ test environments built with different simulators. There are studies, especially on NS2 and

OPNET [20].

In a real network, more packets belong to TCP applications than UDP applications. For this reason, HTTP,

FTP, and SMTP, which can work properly in the test environment, have been adopted. Table 2 shows the

established test environment applications and their features.

Figure 4. Established test environment

Table 2. Established test environment applications And Features

Application Datagram DSCP Package Size Production Period Port Connection

VOIP UDP 46 256 B 10ms 2517 srv1↔cli1

Video Conference UDP 34 1316 B 10ms 3247 srv2↔cli2

IPTV UDP 32 512 B 20ms 1234 srv3↔cli3

Video Stream UDP 26 1316 B 10ms 1558 srv4↔cli4

UDP BE Data UDP 0 1032 B 10ms 6889 srv5↔cli5

HTTP TCP 12 2024 B - 80 All

FTP TCP 11 2024 B - 20 All

SMTP TCP 10 2024 B - 25 All

While two UDP applications run on servers from Sr1 to Sr5, three TCP (Http, Ftp, Smtp) run. Srv6 and

srv7 only work on TCP applications created to generate background traffic.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

105

Table 3. Total package sizes used in the simulation.

Package Type Datagram Total Packet Size (Byte)

VOIP UDP 304

Video Conference UDP 1364

IPTV UDP 560

Video Stream UDP 1364

UDP BE Data UDP 1048

HTTP TCP 1084

FTP TCP 1084

SMTP TCP 1084

ACK TCP 72

SYN+ACK TCP 76

FIN TCP 60

In the developed test environment, MCPQ and MCPRQ algorithms are tested under different scenarios:

Drop Tail, RED, and PQ queue structures were compared. The average end-to-end latency, end-to-end

jitter, dropped packet amounts, total latency, router queue length, and instantaneous memory usage

were used as comparison metrics.

Table 3. Test scenarios and used parameters

Test

Name

Packet

Loss

Inter-Router

Connection

Maximum Queue

Capacity

Switch – Node

Connection

Simulation

Duration

Scenario1 Low 8Mbps 12ms 32Kb 100Mbps 1ms 5sec-60sec

Senate2 High 6Mbps 16ms 25KB 100Mbps 1ms 5sec-60sec

Scenario3 None 10Mbps 8ms 40KB 100Mbps 1ms 5sec-60sec

Three different scenarios were created to compare the developed algorithm. These are the cases where

there is queuing. Still, packet losses are low (Scenario 1), the cases where packet losses are high (Scenario

2), and the cases where there is no packet loss but only queuing (Scenario 3).

Scenario 1: It was created to examine the behavior of queuing algorithms and compare them in an

environment where congestion occurs in the network, but packet losses are low.

The average queue length and the amount of memory used in the MCPRQ algorithm are shown. The

RED algorithm is applied only to the virtual queue with no priority (BE) packets. In this scenario, the

MCPRQ algorithm determines minth=12 Kb and maxth=24 Kb. Although the average queue length is

variable, it is measured at an average level of 15.83 Kb.

Figure 6 shows the packets and packet sizes dropped in the MCPRQ algorithm. The figure shows that

almost all dropped packets are in the same priority group (BE queue where UDP BE Data, SMTP, FTP,

and HTTP packets are located). Thanks to the RED algorithm applied to the BE queue, the queue length

is kept in the minth-maxth range, global synchronization is avoided, and since packet dropping is done

only for unimportant packets, the quality of service is increased.

Figure 5. Scenario1 MCPRQ mean queue length

Figure 6. Scenario1 MCPRQ dropped package graph

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

106

Figure 7 shows the end-to-end delay graph with the MCPRQ queue algorithm. Since the priorities of the

packets were taken into account and placed in different queues, different delays occurred. The fact that

the queue length was not constant due to the RED algorithm caused the delays of BE data packets to

be non-constant. While VOIP, Video conference IPTV, and Video stream applications are transmitted

with a delay of 15-25 ms, UDP BE data packets are transmitted with a delay of 50-100 ms. Although the

delay in BE data is relatively low according to the PQ and MCPQ algorithms, the change in delay (jitter)

is higher than the others.

Figure 7. Scenario1 MCPRQthe end-end delay graph

Figure 8. Scenario1 MCPRQ end-end jitter graph

The MCPRQ algorithm also creates a very low jitter (~±2 ms) in VOIP, while it creates a jitter of ~±5 ms

for video conferencing, ~±4 ms for IPTV, and ~±3 ms for video stream packets. It consists of. A similar

jitter graph was obtained with the MCPQ algorithm, except for tiny jumps. Although the MCPQ and

MCPRQ algorithms have a worse jitter value than the PQ algorithm, they are pretty low compared to the

allowed jitter values. It does not negatively affect the service quality.

Equation 4 calculates the processing speed of the transmitted packets in the router queue to examine

the impact of all these algorithms on the router's performance.

𝑄𝑠 =
∑ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡

∑ 𝐷𝑒𝑙𝑎𝑦 𝑇𝑖𝑚𝑒
 (4)

Here, the Transmitted Packet is the sum of the sizes of the packets transferred from the queue to the

exit. The Delay Time is expressed as the total waiting time for the packet to enter the queue.

Table 4. Router packet analysis for scenario 1.

Queue

Type

Received

Package (Kb)

Sent Package

(Kb)

Dropped

Package (Kb)

Total

Delay (s)

Average Tail

Length (Kb)

𝑄𝑠(Kb

/s)

Drop Tail 54301 53537 733 2079.96 30.12 25.73

RED 54272 53539 730 1064.22 15.29 50.30

PQ 53747 53543 176 2222.48 29.11 24.09

MCPQ 53625 53545 55 1857.44 23.84 28.82

MCPRQ 53785 53543 227 1243.34 15.83 43.06

Table 4 shows that the lowest packet loss is obtained in the MCPQ algorithm, while the highest packet

loss is obtained in the drop tail algorithm. While 32% less packet loss occurs in the MCPQ algorithm

than in the PQ algorithm, the PQ algorithm also causes 22% more packet loss than the MCPRQ

algorithm. Again, as seen in Table 4, RED has the fastest queue processing speed and is ranked as

MCPRQ, MCPQ, and drop tail. PQ is measured as the slowest working queue.

Table 5. For Scenario 1, the average from the end-end delay durations (ms)

Queue Type VOIP Video Conference IPTV Video Stream UDP BE Data

Drop Tail 48 49 48 49 48

RED 33 34 32 33 33

PQ 17 19 18 18 127

MCPQ 17 24 23 19 99

MCPRQ 18 23 22 20 68

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

107

The developed MCPRQ algorithm, like the MCPQ algorithm, considers packet priorities, packet size, and

the waiting time for the packet in the queue. Therefore, the packets are not transferred according to the

transmission order of the queues but according to the Fmax value. The packet in the queue with the

most considerable Fmax value is transmitted. In the MCPRQ algorithm, unlike MCPQ, the queue length

is tried to be kept in the minth-maxth range, and the dropped packets are selected from the BE queue

with RED. While the packets in the priority queue other than VOIP are transmitted 2-4 ms later than the

same PQ algorithm as MCPQ, the packets in the non-priority queue (BE) are transmitted ~30 ms earlier

than MCPQ and ~60 ms earlier than PQ.

Scenario 2: This simulation environment was created to examine the behavior of queuing algorithms

and compare them with each other in an environment where network congestion occurs and packet

losses are high.

Figure 9. Scenario2 MCPRQ average tail length

Figure 10. Scenario2 MCPRQ dropped packet graph

Figure 9 shows the average queue length and the amount of memory used in the MCPRQ algorithm.

The RED algorithm in the MThe CPRQ algorithm is applied only to the virtual queue with no priority (BE)

packets. In this scenario, the MCPRQ algorithm determines minth=8Kb and maxth=17Kb. Although the

average queue length is variable, it is measured at an average of 16.71 Kb.

Figure 10 shows the graph of packets dropped in the MCPRQ algorithm and packet sizes. Almost all

packets dropped with RED consist of packets in the same priority group (BE queue where UDP BE Data,

SMTP, FTP, and HTTP packets are located). However, due to excessive traffic density, there were losses

in video conference, IPTV, and video stream packets. Thanks to the RED algorithm applied to the BE

queue, the queue length is kept in the minth-maxth range, global synchronization is avoided, and since

packet dropping is done only from unimportant packets, the service quality is increased.

Figure 11. Scenario2 MCPRQ end-to-end delay graph

Figure 12. Scenario2 MCPRQ end-end jitter graph

The end-to-end delay graph is shown using the MCPRQ queue algorithm. Different delays occurred

since the packets' priorities were considered and placed in other queues. The fact that the BE queue

length was not constant due to the RED algorithm caused the delays of BE data packets to be

inconsistent. While VOIP, Video conference IPTV, and Video stream applications are transmitted with a

delay of 25-40 ms, UDP BE data packets are transmitted with a delay of 80-120 ms.

The MCPRQ algorithm creates a very low (~±3 ms) jitter in VOIP, 3 ms for video conferencing, and ~4

ms for IPTV and video streaming. In this scenario, while MCPQ gives a worse result in terms of jitter,

MCPRQ provides a result that is very close to the PQ algorithm.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

108

Table 6. Scenario 2 router package analysis

Queue

Type

Received

Package (KB)

Sent Package

(KB)

Dropped Package

(KB)

Total

Delay (s)

Avg. Queue

Length (Kb)

𝑄𝑠(Kbps)

Drop Tail 50459 40238 10197 1501.25 22.90 26.80

RED 50600 40248 10337 1072.66 16.75 37.52

PQ 50443 40230 10189 1327.11 23.09 30.31

MCPQ 50406 40238 10147 1189.22 19.12 33.83

MCPRQ 50328 40238 10073 1043.90 16.71 38.54

When looking at the sum of the delay times at the router for all packets sent from the queue (excluding

those dropped), the most considerable waiting time is Drop. The shortest delay time was achieved in the

MCPRQ algorithm, followed by the RED, MCPQ, and PQ algorithms, respectively. The MCPRQ algorithm

gave a 12% better result than MCPQ and a 21% better result than PQ.

Table 7. For Scenario 2 average from the end-end delay durations (ms)

Queue Type VOIP Video Conference. IPTV Video Stream UDP BE Data

Drop Tail 52 54 55 55 54

RED 45 45 45 45 45

PQ 21 25 22 23 138

MCPQ 24 36 37 30 141

MCPRQ 27 39 40 34 90

The developed MCPRQ algorithm, like the MCPQ algorithm, considers the packet priorities, the packet

size, and the waiting time of the packet in the queue, so packets are transferred according to the Fmax

value, not the transmission order of the queues. The packet in the queue with the most considerable

Fmax value is transmitted. Unlike MCPQ, the queue length in the MCPRQ algorithm is tried to be kept

in the minth-maxth range, and the dropped packets are selected from the BE queue with RED. Packets

in the priority queue other than VOIP are transmitted 6-18 ms later than MCPQ and the same PQ

algorithm. In comparison, packets in the non-priority queue (BE) are transmitted ~50 ms earlier than PQ

and MCPQ.

Scenario 3: This scenario aims to examine the behavior of queuing algorithms and compare them with

each other in an environment where congestion occurs in the network, but there is no packet loss.

The average queue length and the amount of memory used for the MCPRQ algorithm are shown. Since

the average queue length of the RED algorithm in the MCPRQ algorithm is less than minth=14Kb, no

packet loss occurred. As a result, the MCPRQ algorithm works the same way as the MCPQ algorithm and

gives the same results (Table 8).

Table 8. Scenario 3 router packet analysis

Queue

Type

Received

Package (Kb)

Sent Package

(Kb)

Dropped

Package (Kb)

Total Delay

(Sec)

Avg Queue

Length (Kb)

𝑸𝒔(Kb

ps)

Drop Tail 66786 66771 0 1344.35 16.10 46.66

RED 66814 66770 27 1133.51 13.46 58.9

PQ 66785 66775 0 766.55 6.67 87.11

MCPQ 66784 66774 0 800.64 7.15 83.4

MCPRQ 66784 66774 0 800.64 7.15 83.4

The end-to-end delay graph with the MCPRQ queue algorithm is shown. Since the queue length is lower

than the minimum threshold value of RED, there is no packet loss, which caused it to work in the same

way as the MCPQ algorithm. While VOIP, Video conference IPTV, and Video stream applications are

transmitted with a delay of 18-32 ms, UDP BE data packets are transmitted with a delay of 18-32 ms

(Table 9).

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

109

Table 9. For Scenario3 average from the end-end delay durations (ms)

Queue Type VOIP Video Conference IPTV Video Stream UDP BE Data

Drop Tail 26 27 25 26 26

RED 24 25 23 25 24

PQ 13 14 13 14 25

MCPQ 13 15 14 15 25

MCPRQ 13 15 14 15 25

Since the priorities of the packets, as well as the packet size and the waiting time of the packet in the

queue, are taken into consideration in the developed MCPQ and MCPRQ algorithms, packets are

transferred according to the Fmax value, not according to the transfer order of the queues. For this

reason, packets in the priority queue other than VOIP are transmitted 1-2 ms later than the PQ algorithm,

while packets in the non-priority queue (BE) are transmitted simultaneously.

Since there is no congestion in this scenario, no situation can create a high jitter in the queue. While a

±1 ms jitter occurs in the PQ algorithm, a ±2 ms jitter was measured in the drop tail, MCPQ, and MCPRQ

algorithms, and a ±3 ms jitter was measured in the RED algorithm.

4. PERFORMANCE COMPARISON

Each scenario was analyzed regarding average queue length, packet losses, average queue speed, end-

to-end delay, and end-to-end jitter criteria. Table 10 shows the first two queue methods that gave the

best results.

Table 10.Result comparison

Scenario Avg. Queue Length End to End Delay Total Delay Package The loss Jitter
Avg. Queue

Speed

Regular Traffic RED,

MCPRQ

MCPRQ,

MCPQ

RED,

MCPQ

MCPQ,

PQ

PQ,

Drop Tail

RED,

MCPRQ

Heavy traffic MCPRQ,

RED

MCPRQ,

PQ

MCPRQ,

MCPQ

MCPRQ,

MCPQ

PQ,

Drop Tail

MCPRQ,

RED

Light Traffic PQ,

MCPRQ

MCPRQ,

PQ

PQ,

MCPRQ

MCPRQ,

PQ

PQ,

MCPRQ

PQ,

MCPRQ

As seen in Table 10, the algorithms with the lowest average queue length are RED and MCPRQ. However,

the queue model with the most stable average queue length is MCPRQ. RED exhibits an unstable graph

because it could not solve cases where packet sizes differ. In light traffic, all algorithms in the test

environment gave very close values.

5. CONCLUSION

DiffServ methods at the IP layer were developed to improve the quality of service in IPv6 networks. These

methods are drop-tailed compared with other AQM and Diffserv methods, such as RED and PQ. The

comparison is made on a test network built on the OMNeT ++ simulator.

Another method developed is Multi-Criteria Priority RED Queuing (MCPRQ), a DiffServ and AQM

method. It is created by combining MCPQ and RED algorithms. In packet scheduling, MCPQ uses the

RED model to drop packets randomly in case of congestion or near congestion. Dropping packets from

the least essential packets prevents a decrease in service quality and global synchronization.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

110

Although using MCPRQ in end-to-end delay slightly increased the delay in real-time applications, it

significantly reduced the average delay and the delay in BE packets (UDPBE data, HTTP, FTP, SMTP).

MCPQ and MCPRQ again stand out for their low packet loss rates, which are desired in real-time

applications.

MCPRQ is that a packet arriving at the queue leaves the queue quickly. In particular, the MCPRQ

algorithm makes the queue work faster by reducing the average queue length and not allowing

congestion.

In future studies, the weights calculated in the MCPQ algorithm can be improved with a machine-

learning algorithm that changes according to the traffic density. To combat jitter more successfully, a

change in delay can be added to the timing criteria, or a queuing algorithm that combats jitter can be

added. A structure like SRED can eliminate the unstable RED structure in the MCPRQ algorithm against

sudden queue changes and different packet sizes.

REFERENCES

[1] Naeem EA, Abdelaal AEA, Eyssa AA, Al Azrak FM, Ahmed RA, Hassan ES, et al. Efficient signal and protocol level

security for network communication. International Journal of Speech Technology. 2020; 23(2):399-424.

[2] Ahmed S, Ali M, Baz A, Alhakami H, Akbar B, Khan IA, et al. A Design of Packet Scheduling Algorithm to Enhance

QoS in High-Speed Downlink Packet Access (HSDPA) Core Network. International Journal of Advanced

Computer Science and Applications. 2020;11(4):596-602.

[3] Aureli D, Cianfrani A, Diamanti A, Vilchez JMS, Secci S, Ieee. Going Beyond DiffServ in IP Traffic Classification.

NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT

SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE2020.

[4] Hassan ES, Abdelaal AEA, Oshaba AS, El-Emary A, Dessouky MI, El-Samie FEA. Optimizing bandwidth utilization

and traffic control in ISP networks for enhanced smart agriculture. PLoS One. 2024; 19(3):e0300650.

[5] Floyd S, Jacobson V. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on

networking. 1993; 1(4):397-413.

[6] Oleiwi HW, Saeed N, Al-Taie HL, Mhawi DN. Evaluation of Differentiated Services Policies in Multihomed

Networks Based on an Interface-Selection Mechanism. Sustainability. 2022;14(20).

[7] Strzeciwilk D. Timed Petri Nets for Modeling and Performance Evaluation of a Priority Queueing System.

Energies. 2023;16(23).

[8] Xue JH, Wu Y, Tao J, Zhang YL, Ieee. Research on Campus Network Based on QoS Technology. 2020 IEEE 3RD

INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP

2020)2020. p. 418-23.

[9] Zhang R, Liu L, Lu XD, Yan ZM, Li H. Performance Modeling of a General GPS Scheduling Under Long Range

Dependent Traffic. 2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS,

INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL

CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM

2020)2020. p. 683-9.

[10] Demir S, Özçelik I. A priority-based queuing model approach using destination parameters for real-time

applications on IPv6 networks. Turk J Electr Eng Comput Sci. 2020;28(2):727-42.

[11] Orman A. Improvement of the quality of service in IPv6 networks by active packet management [PhD thesis].

YÖK Thesis Center: Gazi University; 2012.

[12] Orman A, Elmas C, Güler I, editors. Increasing Quality of Services with Priority Active Package Management.

2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT); 2018 19-

21 Oct. 2018.

[13] Park G, Jeon B, Lee GM. QoS Implementation with Triple-Metric-Based Active Queue Management for Military

Networks. Electronics. 2023;12(1).

[14] Shi HF, Pan CS, Wang YZ. BS-HTIS: Buffer Sizing for Heterogeneous Traffic and Integrated System. Ieee Access.

2021;9:115237-45.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1558975

111

[15] Barry MA, Tamgno JK, Lishou C, Ieee. Influence of quality service in IP/MPLS network load with IPTV and VoD

services. 2020 22ND INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY

(ICACT): DIGITAL SECURITY GLOBAL AGENDA FOR SAFE SOCIETY!2020. p. 378-85.

[16] Chen J, Chen J, Zhang H. DRL-QOR: Deep reinforcement learning-based QoS/QoE-aware adaptive online

orchestration in NFV-enabled networks. IEEE Transactions on Network and Service Management.

2021;18(2):1758-74.

[17] Sathyanarayana SD, Sankaradas M, Chakradhar S, Ieee. 5GLoR: 5G LAN Orchestration for enterprise IoT

applications. 2022 IEEE FUTURE NETWORKS WORLD FORUM, FNWF2022. p. 28-35.

[18] de Almeida LC, da Silva WRD, Tavares TC, Pasquini R, Papagianni C, Verdi FL. DESiRED — Dynamic, Enhanced,

and Smart iRED: A P4-AQM with Deep Reinforcement Learning and In-band Network Telemetry. Computer

Networks. 2024;244:110326.

[19] ORMAN A, DÜZKAYA H. Ulaşım Planlama Çalışmalarında Veri Analiz Yöntemleri: Çok-Disiplinli Bir Mühendislik

Yaklaşımı ve Ankara Ulaşım Ana Planı Örneği [Data Analysis Methods in Transportation Planning Studies: A

Multidisciplinary Engineering Approach and the Case of Ankara Transportation Master Plan]: Atlas Akademi;

2019.

[20] Chandavarkar BR. Media Independent Handover and Mobile IPv6-Based UDP Performance Evaluation Suite for

Heterogeneous Wireless Networks. Wirel Pers Commun. 2023;129(2):1197-228.

