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Abstract 

This research focuses on the control of differential wheeled robots and aims to develop a new, practical controller inspired 

by the well-known PID controller. The primary challenge with traditional PID controllers lies in the difficulty of 

accurately optimizing the three key parameters (coefficients of Proportional, Integral and Derivative) through 

experimental trial and error. While numerical simulations offer solutions for parameter optimization, real-world factors 

such as friction losses, inconsistent current and voltage supply to the DC motors, and wheel slippage often prevent these 

optimized parameters from achieving the same effectiveness in physical systems. This study proposes a novel controller 

designed to address these challenges, simplifying the parameter tuning process to a single, easily adjustable variable. The 

new controller, while inspired by the PID approach, offers an effective alternative, overcoming the limitations posed by 

real-world conditions. It was implemented and tested on a differential wheeled robot specifically designed for this 

research. Experimental testing across various tasks demonstrated that the new controller provides stable and reliable 

control, making it a valuable alternative to traditional PID-based approaches. 

Keywords: Differential wheeled robots, PID controller, Simplified Controller Design. 

 

 

Diferansiyel Tekerlekli Otonom Robotlar için Etkili bir Denetleyicinin Tasarımı 

ve Deneysel Doğrulaması 

 

Öz 

Bu araştırma, diferansiyel tekerlekli robotların denetimine odaklanmakta ve yaygın olarak bilinen PID denetleyiciden 

esinlenerek yeni ve pratik bir denetleyici geliştirmeyi amaçlamaktadır. Geleneksel PID denetleyicideki temel zorluk, 

deneysel deneme yanılma yoluyla üç temel parametrenin (Orantı, İntegral ve Türev işlevlerine ait katsayılar) doğru bir 

şekilde optimize edilmesinin güçlüğünde yatmaktadır. Sayısal benzetimler parametre optimizasyonu için çözümler 

sunarken, sürtünme kayıpları, DC motorlara tutarsız akım ve voltaj beslemesi ve tekerlek kayması gibi fiziksel gerçek 

faktörleri, bu optimize edilmiş parametrelerin gerçek hayatta aynı etkinliğe ulaşmasını sıklıkla engellemektedir. Bu 

çalışma, parametre optimizasyon sürecini tek ve kolayca ayarlanabilir bir değişkene basitleştirerek bu zorlukları ele almak 

üzere tasarlanmış yeni bir denetleyici önermektedir. PID yaklaşımından esinlenen yeni denetleyici, gerçek dünya 

koşullarının getirdiği sınırlamaların üstesinden gelerek etkili bir alternatif sunmaktadır. Önerilen denetleyici, bu araştırma 

için özel olarak tasarlanmış diferansiyel tekerlekli bir robot üzerinde uygulanmış ve test edilmiştir. Çeşitli görevlerde 

yapılan deneysel testler, yeni denetleyicinin istikrarlı ve etkili denetim sağladığını ve onu geleneksel PID tabanlı 

yaklaşımlara göre değerli bir alternatif haline getirdiğini göstermiştir. 

Anahtar Kelimeler: Diferansiyel tekerlekli robotlar, PID denetleyici, Sadeleştirilmiş Denetleyici Tasarımı.  
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1. Introduction 

 

Differential wheeled robot control has attracted an increasing amount of interest nowadays 

owing to its widespread application in a variety of fields, such as service robotics, industrial 

automation, and autonomous navigation (Díaz et al., 2021; Mújica et al., 2021; Zhu et al., 2021). With 

two independently driven wheels, the differential wheeled robot presents unique challenges for 

control system design, particularly in terms of precise movement and stability. Traditional control 

approaches, such as the proportional-integral-derivative (PID) controller, have been frequently 

employed for this reason. However, optimizing the PID parameters—specifically, the proportional, 

integral, and derivative gains—remains a difficult issue that frequently relies on experimental trials 

and error-prone techniques (Joseph et al., 2022; Somefun et al., 2021). This complexity arises from 

the inherent physical realities encountered in real-world scenarios, such as friction losses, variations 

in motor performance, and the non-ideal behavior of the robot's wheels during operation, which can 

lead to discrepancies between simulated and actual performance (Gharghory & Kamal, 2012; Ye et 

al., 2017; Zhang et al., 2022). 

The purpose of this study is to suggest a new control scheme for differential wheeled robots 

inspired by the PID control scheme which would make the tuning procedure easier due to the fewer 

parameters needing optimization. Rather than having to tune three parameters, as with the 

conventional PID controller, the suggested controller only needs one adjustable parameter, which is 

more flexible for control design. This is expected to improve the robustness of the robot under 

different working conditions. The efficacy of the proposed controller will be tested on a specially 

designed differential wheeled robot for this research. The goal of the research is to move towards an 

application of the simplified control model for differential wheeled robots so as to improve the 

reliability and efficiency of robotic systems (Ortenzi et al., 2018; Raj & Seamans, 2019; Jin, 2023). 

Alongside the controller's design and implementation, this work will also include test drives of 

the robot completing various tasks in order to assess its performance. These tasks will be chosen to 

determine the robot's ability to navigate and manipulate in various conditions, thus evaluating the 

controller's performance comprehensively. It is anticipated that the experimental results will prove 

that the proposed controller not only provides smooth control but also enables effective adaptation to 

the sudden changes in terrain that a differential wheeled robot is likely to encounter. This research 

provides to the robotic control systems by tackling the problem of traditional PID controllers by 

establishing a more useful real-life application of the phenomena (Zhang, 2015; Sahu & Prusty, 2018; 

Salman et al., 2019; Carlucho et al., 2021; Ali et al., 2021; Tahtawi et al., 2023). 

This research is significant because it suggests a new control approach that has possible 

repercussions in the field of robotics. With the growing prevalence of robots in our daily lives and 
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industries, it is no doubt that a good control system will be sought after. This study attempts to 

improve the design process of control systems for differential wheeled robots so they can be 

controlled more easily and easily adjusted to in the future. Beyond that, data learned from the 

experimental testing will be useful for subsequent projects and eventually new ways of controlling 

robots and their tasks may be developed (Lee and Chen 2015; Mohanty and Parhi 2013; Kesavan et 

al. 2016; Qu et al. 2023). 

Briefly, this study tries to address the issues of managing differential wheeled robots by 

designing a new controller based on the PID ideology. This implies that the research purposefully 

tries to validate the approach through experimentation and various tests to prove the stability and 

effectiveness of the control strategy that will benefit technology in robotics and control engineering. 

 

2. Materials and Methods 

 

A differential wheeled robot is known as a mobile robot that uses two wheels that are 

independently slaved to either side of its body. Since there are no additional steering mechanisms, 

these robots can change directions simply by changing the combination of relative rotational speed 

of the wheels. Robots of this type usually have one or more caster wheels to support the device and 

prevent it from tipping over (Klancar et al., 2017; Mohanty and Parhi 2013). If both wheels forward 

and turn at the same angle, the robot will move obediently in a straight line. If the wheels are set to 

rotate in opposites at equal speeds, the robot will pivot around in a circle towards the middle point of 

the wheels. Based upon the direction as well as the speed of rotation, the robot’s center of rotation 

can lie along the line connecting the two contact points of the wheels. If the robot is in linear 

movement, then the point of rotation has an infinitely distant location from the robot. Because the 

direction of the robot relies on the direction of wheels' rotation as well as the speed, then the variables 

need to be properly measured and controlled. A differentially steered robot is similar to differential 

gears of cars in the sense that wheels have the capacity to have speeds in unlike amounts. However, 

unlike in a differential gear system, both of the wheels in a differentially steered system are powered. 

These robots are typically found in robotics because their movement is simple to program and control. 

Nowadays, almost all mobile robots use differential steering owing to its cost-effectiveness and 

simplicity (Li et al., 2025; Lee et al., 2025; Byeon et al., 2025). 

 

2.1. Kinematics of Differential Drive Robots 

 

Figure 1 illustrates the differential drive kinematics of a mobile wheeled robot. The variables 

are represented as follows: X and Y denote the global coordinate system, while the robot's orientation 
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relative to this coordinate system is given by the angle φ. The radius of the wheels is represented by 

r, and the width of the vehicle by b. Assuming there is no slipping and that the wheels remain in 

contact with the ground, they trace arcs on the plane, causing the vehicle to rotate around a point 

known as the Instantaneous Center of Rotation (ICR). The ground contact velocities of the left and 

right wheels, denoted as VL and VR respectively, result in the vehicle rotating with an angular velocity 

ω. 

 

 
Figure 1. Differential Drive Kinematics. 

 

Based on the definition of angular velocity, the following Equation 1 and Equation 2 can be derived: 

𝜔 (𝑅 +
𝑏

2
)  = 𝑉𝑅                                                                                                                        (1) 

𝜔 (𝑅 −
𝑏

2
)  = 𝑉𝐿                                                                                                                         (2) 

Using the above two equations, obtaining the unknowns ω and R (defined as the distance from 

the ICR to the center of the robot) is expressed by Equation 3 and Equation 4. 

𝜔 = 
(𝑉𝑅−𝑉𝐿)

𝑏
                                                                                                                               (3) 
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𝑅 = 
𝑏

2

(𝑉𝑅+𝑉𝐿)

(𝑉𝑅−𝑉𝐿)
                                                                                                                             (4) 

Using the equation for angular velocity, the instantaneous velocity V of the point located 

midway between the robot's wheels can be expressed as following Equation 5: 

𝑉 = 𝜔𝑅
(𝑉𝑅+𝑉𝐿)

2
                                                                                                                          (5) 

The tangential velocities of the wheels can also be expressed as: 

𝑉𝑅 = 𝑟 𝜔𝑅                                                                                                                                  (6) 

𝑉𝐿  = 𝑟 𝜔𝐿                                                                                                                                   (7) 

In Equation 6 and Equation 7, 𝜔𝑅 and 𝜔𝐿 represent the angular velocities of the right and left 

wheels, respectively. Consequently, the robot's kinematics in local body coordinates can be expressed 

as following Equation 8: 

[

𝑥̇
𝑦̇
𝜑̇

]  = [
𝑐𝑜𝑠 𝜑 0
𝑠𝑖𝑛 𝜑 0

0 1
] [

𝑉
𝜔

]                                                                                                             (8) 

One might encounter a scenario where the velocity V and the angular velocity 𝜔 are provided 

as inputs, while the angular velocities of the left wheel 𝜔𝐿 and the right wheel 𝜔𝑅 are required as 

control variables. In this situation, the previously mentioned equations can be easily reformulated. By 

using the relationships R=V/𝜔 and 𝜔R=VR/r in following Equation 9: 

𝜔 (𝑅 +
𝑏

2
) = 𝑉𝑅                                                                                                                        (9) 

One then arrives at the Equation 10 for the angular velocity of the right wheel, 𝜔R: 

𝜔𝑅  = 
𝑉 + 𝜔 𝑏/2

𝑟
                                                                                                                         (10) 

The similar procedure can also be used to determine the left wheel's angular velocity. Equation 

11 shows the angular velocity of the left wheel, 𝜔L: 

𝜔𝑅  = 
𝑉− 𝜔 𝑏/2

𝑟
                                                                                                                         (11) 

 

 



Karadeniz Fen Bilimleri Dergisi 15(1), 362-381, 2025 367 

2.2. Control Methods in the Literature 

 

In this section, controllers in the literature are examined in order to compare the developed 

controller with existing controllers. The basic equations required for the use of PID (Shah and Agashe 

2016), Adaptive PID (Abbas and Mustafa 2024) and Fuzzy Logic (Zangeneh et al., 2022) controllers 

are given below, respectively. The output values (error values) used in the controllers are equal to the 

difference between the desired course angle of the differential wheeled robot and the current course 

angle. The u(t) values obtained from the controllers are the signal values ranging from 0 to 255 sent 

to the motor controller to move the right and left wheels. 

𝑢(𝑡) = 𝐾𝑝 × 𝑒(𝑡) + 𝐾𝑖 × ∫ 𝑒(𝑡) 𝑑𝑡
𝑡+1

𝑡
+ 𝐾𝑑 ×

𝑑𝑒

𝑑𝑡
                                                                  (12) 

Equation 12 shows the PID controller. The values of Kp, Ki and Kd in Equation 12 are constant 

coefficients of proportional, integral and derivative. These three coefficients must be selected 

accurately according to the system being controlled. In this study, these three coefficients were 

selected as 50, 5 and 1, respectively. 

𝑊𝑅 = 𝑚𝑎𝑥(0, 𝑚𝑖𝑛(255, 𝑟𝑜𝑢𝑛𝑑(255 + 𝑢)))
𝑊𝐿 = 𝑚𝑎𝑥(0, 𝑚𝑖𝑛(255, 𝑟𝑜𝑢𝑛𝑑(255 − 𝑢)))

                                                                        (13) 

Equation 13 shows the signal values that should be sent to the right and left wheels, considering 

the u(t) values coming from the controller in Equation 12. If the differential wheel robot deviates to 

the left from the desired route, more signals are sent to the left motors, allowing the robot to reach 

the reference route. Similarly, if the robot deviates to the right from the desired route, more signals 

are sent to the right motors, allowing the robot to catch the reference route. 

𝐾𝑝(𝑡 + 1) = 𝐾𝑝(𝑡) + 𝑃𝑎 × 𝑒(𝑡)

𝐾𝑖(𝑡 + 1) = 𝐾𝑖(𝑡) + 𝐼𝑎 × 𝑒(𝑡)

𝐾𝑑(𝑡 + 1) = 𝐾𝑑(𝑡) + 𝐷𝑎 × 𝑒(𝑡)

                                                                                            (14) 

The difference between the Adaptive PID controller and the classical PID controller is that the 

constant coefficients Kp, Ki and Kd are defined as a function of time and error value. Equation 14 

shows these values used for the Adaptive PID controller. 

The following equations show the workflow of the Fuzzy Logic controller. The Fuzzy Logic 

controller consists of three basic stages: determining the membership functions (triangular), 

determining the rule base (if-then rules), and calculating the output values (defuzzification). 

The membership functions used in fuzzy logic can be defined as shown in Equation 15. The 

NB value in Equation 15 represents the error value being between -180 and -90, the NS value 
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represents the error value being between -90 and 0, the NB value represents the error value being 

between +180 and +90, the PS value represents the error value being between +90 and 0, and the Z 

value represents the error value being approximately 0. 

𝜇𝑁𝐵(𝑒) = 𝑚𝑎𝑥 (0,
−𝑒−45

45
)

𝜇𝑁𝑆(𝑒) = 𝑚𝑎𝑥 (0,
−𝑒

45
)

𝜇𝑍(𝑒) = 𝑚𝑎𝑥 (0,1 −
|𝑒|

45
)

𝜇𝑃𝑆(𝑒) = 𝑚𝑎𝑥 (0,
𝑒

45
)

𝜇𝑃𝐵(𝑒) = 𝑚𝑎𝑥 (0,
𝑒−45

45
)

                                                                                                      (15) 

The rules of fuzzy logic can be expressed as follows: 

1. If error is negative big (NB), right motor is fast, left motor is slow (WR=PB and WL=NB). 

2. If error is negative small (NS), right motor medium, left motor slow (WR=PS and WL=NS). 

3. If the error is close to zero (Z), both motors are at equal speed (WR=Z and WL=Z). 

4. If error is positive small (PS), right motor slow, left motor medium (WR=NS and WL=PS). 

5. If error is negative small (NS), right motor slow, left motor fast (WR=NB and WL=PB). 

After the membership functions and rules are determined, the signals that need to be sent to the motors 

can be calculated with Equation 16 below. Here, 𝜇𝑖 represents the membership degrees and 𝑣𝑖 

represents the center values of the membership functions. 

𝑊𝑅 =
∑ 𝜇𝑖×𝑣𝑖𝑖

∑ 𝜇𝑖𝑖

𝑊𝐿 =
∑ 𝜇𝑖×𝑣𝑖𝑖

∑ 𝜇𝑖𝑖

                                                                                                                           (16) 

 

2.3. Improvement of an Efficient Controller 

 

Classical PID controllers provide the desired reference value to be captured by taking the 

proportional, integral and derivative of the error. Since each physical system is different from each 

other, the 3 coefficient numbers belonging to the proportional, integral and derivative operators must 

be determined separately for different models. Although numerical simulations are used to determine 

the optimum values of these three different coefficients, the optimum coefficients obtained from the 

numerical simulation do not match the optimum coefficients required for differential wheeled robots 

used in real life due to reasons such as the existence of friction losses, the slipping of the wheels 

during the first movement or due to different reasons, the battery not always being able to provide the 

same and constant current and voltage, and the observation of different angular velocities from the 
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wheels despite the reduction and motors being the same. Experimentally, determining the optimum 

values of the three coefficients of the PID controller takes a lot of time. For example, when 5 different 

values of each coefficient are considered, 125 (53) experiments are required. This study proposes an 

effective single-coefficient controller for differential wheeled robots, thus significantly reducing the 

number of experiments required to achieve optimum control. 

Since the differential wheel robot will deviate from the reference route (setpoint) by a maximum 

of 180 degrees, the reference value is updated with Equation 17 and the output value is adjusted 

between -180 and +180 degrees: 

𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 = {
𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 360, 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑖𝑛𝑝𝑢𝑡 > 180
𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 360, 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑖𝑛𝑝𝑢𝑡 < −180

                                                 (17) 

Equation 18 shows the determination the error by finding the difference between the setpoint 

(desired route angle of the differential wheeled robot) and the input (instantaneous heading angle of 

the differential wheeled robot): 

𝑒𝑟𝑟𝑜𝑟 = 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑖𝑛𝑝𝑢𝑡                                                                                                   (18) 

Equation 19 and Equation 20 express a single coefficient and effective controller developed in 

this study by taking into account the magnitude of the error value for the differential wheeled robot: 

𝑊𝑅 = {
75 − 𝑒𝑟𝑟𝑜𝑟, 𝑒𝑟𝑟𝑜𝑟 < −𝐿

0, 𝑒𝑟𝑟𝑜𝑟 > 𝐿
255 − 2 × 𝐿 − 2 × 𝑒𝑟𝑟𝑜𝑟, −𝐿 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ 𝐿

                                                                  (19) 

𝑊𝐿 = {
0, 𝑒𝑟𝑟𝑜𝑟 < −𝐿

75 + 𝑒𝑟𝑟𝑜𝑟, 𝑒𝑟𝑟𝑜𝑟 > 𝐿
255 − 2 × 𝐿 + 2 × 𝑒𝑟𝑟𝑜𝑟, −𝐿 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ 𝐿

                                                                  (20) 

The WR value and WL values in Equation 19 and Equation 20 express the signal magnitude 

given to the right wheel motor and the left wheel motor, respectively. As the WR and WL signals 

increase, the angular speeds of the wheels increase, and as they decrease, the angular speeds decrease. 

The maximum WR and WL values are 255 and the minimum is 0. The L value in Equation 19 and 

Equation 20 represents the single coefficient that needs to be optimized. 

If the error value in Equation 19 and Equation 20 is less than the -L value, the robot has deviated 

too far from the desired route in a clockwise direction. The robot must turn counterclockwise to catch 

the reference path. For this reason, the left wheel must stop and the right wheel must move in 

proportion to the error. Similarly, if the error value is greater than the L value, the robot has deviated 

too far from the desired route in a counterclockwise direction. The robot must turn clockwise to catch 

the reference path. For this reason, the right wheel must stop and the left wheel must move in 
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proportion to the error. If the error value is between -L and +L (the error is relatively smaller than in 

the above two cases), the robot must be precisely controlled and move forward. For this case, if the 

error value is 0, both wheels turn with full load and the robot reaches the desired position as soon as 

possible. If the error value is negative (the robot deviates clockwise), the right wheel is rotated more 

and the left wheel is rotated less, allowing the robot to catch the reference path. Similarly, if the error 

value is positive (the robot deviates counterclockwise), the left wheel is rotated more and the right 

wheel is rotated less, allowing the robot to catch the reference path. 

The effect of the L parameter on the differential wheel robot movement can be explained as 

follows: The first task of the L parameter determines the limit that allows the robot to make a precise 

movement or a sharp maneuver. If the L parameter is selected small, the robot makes a sharp 

maneuver even at small error values. Choosing the L value too small can cause oscillatory movement. 

Oscillatory behavior causes large errors overall. If the L value is selected too large, the reference path 

is caught too late, and even this situation causes high errors. The second and third duties of the L 

parameter are to adjust the magnitude of the signals sent to the motor drivers in the precise and sharp 

maneuver movements of the robot. In this way, the rotation amounts of the right and left wheels are 

determined as a function of the error and the L parameter. 

Duo to the WR and WL values obtained in Equation 19 and Equation 20, the rps (revolution per 

second) of the motors on the right and left is decided by using the “analogWrite” command in the 

microprocessor. Owing to the accurate WR and WL values determined by the proposed effective 

controller, the differential wheeled robot achieves stable and fast movement. 

 

3. Findings and Discussion 

 

In this study, a single-parameter controller was designed and implemented to move a 

differential wheel robot. The focus was to find the most suitable value for the "L" parameter, which 

significantly affects the controller's effectiveness. To evaluate performance, experimental studies 

were conducted using a robot equipped with an Arduino Nano microprocessor. The differential wheel 

robot design is illustrated in Figure 2. The front wheels of the robot in Figure 2, marked with red 

arrows, are driven. The wheels at the back move freely. 

Input data were gathered from a digital compass measuring the robot’s heading, while output 

data were generated by the PWM (Pulse Width Modulation) signals controlling the motors—PWM 6 

for the right wheel and PWM 9 for the left. This established a closed-loop control system, ensuring 

stable control of the robot's movement. 
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Figure 2. The differential wheel robot design. 

 

Seven experiments were conducted, varying only the "L" parameter, while keeping other conditions 

constant, including the robot's initial course angle, position, and total distance. The tested "L" values 

were 38, 40, 43, 44, 45, 46, and 50. The performance was assessed by how quickly and accurately 

the differential wheel robot could reach a desired heading of 85 degrees. The error between the actual 

and desired heading, the time to reach the target, and the robot's stability were the key metrics. 

The experimental results revealed that L=44 provided the best control, with the robot reaching the 

target in just 7 seconds with minimal oscillations or overshoot. The data for this trial, including time, 

heading, and error values, are presented in Table 1. The error was calculated as the difference between 

the desired heading of 85 degrees and the actual heading at each time step. In contrast, other values 

of "L" resulted in less stable performance, with the robot exhibiting oscillatory behavior and taking 

longer to stabilize. Data for these other trials are included in Appendix A. 

 

Table 1. Experimental study for L=44. 

L=44 

Time Heading Error Time Heading Error Time Heading Error Time Heading Error 

0.00 45 40 2.13 68 17 4.26 78 7 6.39 90 -5 

0.30 45 40 2.43 66 19 4.57 81 4 6.70 92 -7 

0.61 46 39 2.74 81 4 4.87 85 0 7.00 94 -9 

0.91 80 5 3.04 83 2 5.17 84 1 

To
ta

l 

A
b

so
lu

te
 

Er
ro

r 

31
2

 1.22 121 -36 3.35 79 6 5.48 94 -9 

1.52 124 -39 3.65 79 6 5.78 90 -5 

1.83 80 5 3.96 80 5 6.09 87 -2 
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Figure 3 shows the comparative error values for L=38, L=44, and L=46. The robot's response 

was stable and quick with L=44 (represented in red), while both L=38 (green) and L=46 (blue) led to 

oscillations and longer stabilization times. This instability at non-optimal "L" values demonstrates 

the importance of tuning the parameter carefully. 

 

 

Figure 3. Performance of the designed controller for different L values. 

 

The findings indicate that L=44 is the optimal value for the controller, providing the best 

balance between responsiveness and stability. Since the error margin of the digital compass used in 

this study in determining the magnetic field is ±5 degrees, the red colored results (L=44) in Figure 3 

indicate that a stable and safe control of the differential wheeled robot is performed. When the "L" 

parameter is either too high or too low, the robot exhibits unstable and oscillatory movements, which 

delay the time it takes to reach the desired heading. The data from these trials align with control 

theory, where poor tuning of control parameters can result in underdamped or overdamped responses. 

The video links of the robot's movement for L=38, L=44, and L=46, included in Appendix B, further 

illustrate this point. 

The results demonstrate that the "L" parameter is critical to the controller’s performance, and 

the optimal value of L=44 ensures efficient and stable control. Deviating from this value leads to 

instability and poorer performance. This study underscores the importance of properly tuning control 

parameters for optimal performance and highlights the need for experimental validation in designing 

control systems for differential wheel robots. 
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Figure 4. Comparison of the Proposed Controller with PID, Adaptive PID and Fuzzy Logic Controllers 

(Overshoot=180 degrees). 

 

In this study, the effective and stable behavior of the proposed controller was compared with 

the classical PID controller, adaptive PID controller and Fuzzy Logic controller in the literature. The 

experimental results of each controller are given in Figure 4. As seen in Figure 4, a different reference 

course angle was entered into the differential wheeled robot at t=0 and the performance of each 

controller in capturing the new course angle was tested. With the entry of the new command, the 

controller developed in this study can meet the 180-degree deviation (initial course angle=0° and final 

course angle=180°) that occurs at t=0 in a stable and effective manner and can capture the reference 

route angle in a shorter time and with less error than other controllers. When the red results in Figure 

4 are examined, it is seen that the reference route is captured by the proposed controller with a 

maximum error of 4 degrees. Since the error margin of the digital compass used in this study in 

determining the magnetic field is ±5 degrees (the acceptable error margin determined by the 

manufacturer of the compass is 10 degrees of deviation), the red results in Figure 4 (the results of the 

proposed controller) show that the differential wheeled robot is controlled stably and safely. The PID 

controller exhibits an oscillatory behavior on the reference route. The adaptive PID controller is 

insufficient in capturing the reference angle. Although the Fuzzy Logic controller exhibits stable 

behavior, it cannot capture the reference path. It is necessary to set the 3 parameters of PID controller 

(P, I and D),  6 parameters of Adaptive PID controller, namely P, I, D, Pa (proportional adaptation 

coefficient), Ia (integral adaptation coefficient) and Da (derivative adaptation coefficient) which 



Karadeniz Fen Bilimleri Dergisi 15(1), 362-381, 2025 374 

provide adaptation of these parameters at each time step, and membership functions, rule numbers 

and upper and lower limits of membership functions of Fuzzy Logic controller correctly and 

appropriately. The difficulty of determining each of the multiple parameters of these controllers 

exactly affects the performance of the controllers negatively. If each parameter could be determined 

exactly and accurately, of course these controllers would be able to show good performance. 

However, it is quite difficult to select these multiple parameters accurately only with experimental 

study and trial-error method. It is clearly seen in Figure 4 that the controller proposed in this study 

shows effective performance with a few trial and error methods performed in the experimental study 

with a single parameter in order to overcome these difficulties. In addition to Figure 4, the scenarios 

of 90-degree deviation at t=0 and deviation from 90 degrees to 270 degrees (180-degree deviation) at 

t=0 are included in Appendix C and Appendix D, respectively. Full dataset for the comparison of the 

proposed controller with PID, adaptive PID, and fuzzy logic controllers is included in Appendix E. 

The results of three different scenarios were compared with statistical metrics using the mean 

absolute error (MAE), mean squared error (MSE) and root mean squared error (RMSE) formulas in 

Equation 21, Equation 22 and Equation 23, respectively. The yi and ri in the equations represent the 

actual (achieved) value (for example, red data in Figure 4) and the reference (target) value (for 

example, black data in Figure 4), respectively. MAE is suitable for directly understanding the 

magnitude of errors and when large errors are as important as small ones, while MSE is more 

appropriate for penalizing large errors more severely, particularly when large errors have significant 

consequences. RMSE is ideal for assessing the spread of errors or when a more interpretable version 

of MSE is preferred. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑟𝑖|𝑛

𝑖=1                                                                                                                         (21) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦

𝑖
− 𝑟𝑖)

2𝑛
𝑖=1                                                                                                                     (22) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦

𝑖
− 𝑟𝑖)

2𝑛
𝑖=1                                                                                                               (23) 

When the results of the three scenarios in Table 2 (Figure 4, Figure A.1 and Figure A.2) are examined, 

it is clearly seen that the proposed controller provides control of the differential wheeled robot with 

less error in terms of mean absolute error, mean squared error and root mean squared error compared 

to other methods. 
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Table 2. Comparison of the proposed controller using statistical metrics. 
  

MAE MSE RMSE 

1
st

 

S
ce

n
a
ri

o
 

F
ig

u
re

 4
 PID 55.41 5178.71 71.96 

Adaptive PID 144.17 21207.08 145.63 

Fuzzy 73.53 6921.01 83.19 

Proposed 35.27 3953.74 62.88 

2
n

d
 

S
ce

n
a
ri

o
 

F
ig

u
re

 A
.1

 

PID 12.74 736.98 27.15 

Adaptive PID 26.81 1188.99 34.48 

Fuzzy 68.88 5447.19 73.81 

Proposed 8.86 572.97 23.94 

3
rd

 

S
ce

n
a
ri

o
 

F
ig

u
re

 A
.2

 

PID 41.54 5559.10 74.56 

Adaptive PID 68.53 5867.59 76.60 

Fuzzy 58.45 4179.13 64.65 

Proposed 29.78 3753.73 61.27 

 

 

4. Conclusion 

 

This research provides the design and implementation of a novel control system specific to 

differential wheeled robots, inspired by the widely used PID (Proportional-Integral-Derivative) 

controller. The main goal was to overcome the significant challenges faced in tuning the three basic 

parameters—P (Proportional), I (Integral), and D (Derivative)—that are essential for the effective 

operation of a PID controller. Traditionally, these parameters are carefully tuned using either trial-

and-error methods or numerical simulations. Yet, when applied to the real world, this process is 

revealed to be extremely challenging and even unreliable because of the complexities of reality. Such 

complexities involve energy losses due to friction, inequalities in current and voltage supply to the 

direct current motors, and the impossibility of supplying equal angular velocity to the wheels, even if 

the motors and reduction gearing are identical. In addition, the occurrence of wheel slippage during 

motion startup and other environmental conditions contribute to the complexity of the situation such 

that it becomes highly unlikely for the optimum parameters obtained in such a simulated environment 

to be equal to those needed in actual conditions. In overcoming these challenges, this work proposes 

a less complex but effective controller comprising a single tunable parameter, thereby obviating the 

necessity of cumbersome parameter optimization. This controller was developed for differential 

wheeled robots and was modified to be applied to the specially designed robot model in this study. 

Emphasizing simplicity and practical implementation, the controller herein suggested facilitates more 

intuitive and robust tuning by experimental approaches, thereby enhancing its applicability to real-

world problems with variability and uncertainty. The experimental phase of this research entailed 

extensive tests of the new controller implemented on the purposely built differential wheeled robot. 
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The outcomes indicated that, in spite of the intrinsic challenges faced by real-world applications, the 

newly developed controller was able to achieve stable, reliable, and effective control of the robot's 

motion and navigation. This implies that the controller presents a credible option to traditional PID 

controllers, especially in scenarios where accurate tuning of more than one parameter is not possible 

or is impossible. 

In conclusion, the current research puts forward a novel control method for differential wheeled 

robots that unifies theoretical developments with practical implementation. Reducing the control 

architecture to a single adjustable parameter, the controller described herein not only simplifies user 

convenience but also enables robust and stable performance under real-time dynamic operating 

environments. This study forms a foundation for the development of more open and robust control 

systems in the field of robotics, particularly with differential wheeled robots being applied in various 

applications like autonomous vehicle driving and complicated industrial processes. The controller 

proposed in this study can be used for different types of robots with large or small differential wheels. 

Research studies in the future can investigate the applicability of the controller to other robotic 

platforms and its performance in even more dynamic environments. Additionally, in future studies, 

more precise controls can be achieved by enhancing the performance of the proposed controller using 

more sensitive (high-cost) digital compasses. 
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Appendix A 

Table A1. Experimental study for L=38. 

L=38 

Time Heading Error Time Heading Error Time Heading Error Time Heading Error 

0.00 45 40 4.98 161 -76 9.96 175 -90 14.95 35 50 

0.29 45 40 5.28 54 31 10.26 171 -86 15.24 40 45 

0.59 46 39 5.57 27 58 10.55 64 21 15.53 47 38 

0.88 135 -50 5.86 28 57 10.84 31 54 15.83 61 24 

1.17 150 -65 6.15 130 -45 11.14 33 52 16.12 84 1 

1.47 145 -60 6.45 160 -75 11.43 157 -72 16.41 90 -5 

1.76 55 30 6.74 156 -71 11.72 191 -106 16.70 89 -4 

2.05 32 53 7.03 60 25 12.02 184 -99 17.00 95 -10 

2.34 32 53 7.33 31 54 12.31 71 14 17.29 96 -11 

2.64 135 -50 7.62 31 54 12.60 30 55 17.58 94 -9 

2.93 168 -83 7.91 129 -44 12.89 30 55 17.88 95 -10 

3.22 165 -80 8.21 158 -73 13.19 134 -49 18.17 97 -12 

3.52 69 16 8.50 155 -70 13.48 166 -81 

To
ta

l 

A
b

so
lu

te
 

Er
ro

r 

31
08

 

3.81 32 53 8.79 53 32 13.77 160 -75 

4.10 34 51 9.09 25 60 14.07 55 30 

4.40 142 -57 9.38 26 59 14.36 27 58 

4.69 165 -80 9.67 135 -50 14.65 27 58       
 

Table A2. Experimental study for L=40. 

L=40 

Time Heading Error Time Heading Error Time Heading Error Time Heading Error 

0.00 44 41 2.34 89 -4 4.68 129 -44 7.01 82 3 

0.29 44 41 2.63 225 -140 4.97 125 -40 7.31 85 0 

0.58 46 39 2.92 43 42 5.26 111 -26 7.60 88 -3 

0.88 63 22 3.21 32 53 5.55 94 -9 7.89 85 0 

1.17 95 -10 3.51 122 -37 5.84 94 -9 

To
ta

l 
A

b
so

lu
te

 

Er
ro

r 

77
5

 1.46 103 -18 3.80 145 -60 6.14 94 -9 

1.75 97 -12 4.09 143 -58 6.43 87 -2 

2.05 88 -3 4.38 134 -49 6.72 84 1 
 

Table A3. Experimental study for L=43. 

L=43 

Time Heading Error Time Heading Error Time Heading Error Time Heading Error 

0.00 45 40 3.00 100 -15 6.00 89 -4 9.00 75 10 

0.30 45 40 3.30 92 -7 6.30 82 3 9.30 74 11 

0.60 45 40 3.60 75 10 6.60 71 14 9.60 76 9 

0.90 67 18 3.90 71 14 6.90 71 14 9.90 79 6 

1.20 118 -33 4.20 74 11 7.20 72 13 10.20 80 5 

1.50 125 -40 4.50 96 -11 7.50 71 14 10.50 77 8 
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1.80 73 12 4.80 97 -12 7.80 71 14 

To
ta

l 
A

b
so

lu
te

 

Er
ro

r 

55
4

 2.10 58 27 5.10 95 -10 8.10 70 15 

2.40 61 24 5.40 91 -6 8.40 71 14 

2.70 97 -12 5.70 90 -5 8.70 72 13 

 

Table A4. Experimental study for L=45. 

L=45 

Time Heading Error Time Heading Error Time Heading Error Time Heading Error 

0.00 44 41 2.13 54 31 4.26 85 0 6.39 91 -6 

0.30 45 40 2.43 59 26 4.57 83 2 6.70 92 -7 

0.61 45 40 2.74 100 -15 4.87 85 0 7.00 91 -6 

0.91 80 5 3.04 104 -19 5.17 90 -5 

To
ta

l 
A

b
so

lu
te

 

Er
ro

r 

36
5

 1.22 125 -40 3.35 96 -11 5.48 89 -4 

1.52 127 -42 3.65 86 -1 5.78 88 -3 

1.83 68 17 3.96 87 -2 6.09 87 -2 

 

Table A5. Experimental study for L=46. 

L=46 

Time Heading Error Time Heading Error Time Heading Error Time Heading Error 

0.00 45 40 3.43 41 44 6.86 83 2 10.29 97 -12 

0.29 45 40 3.71 15 70 7.14 105 -20 10.57 101 -16 

0.57 46 39 4.00 17 68 7.43 106 -21 10.86 103 -18 

0.86 81 4 4.29 149 -64 7.71 100 -15 11.14 104 -19 

1.14 129 -44 4.57 174 -89 8.00 92 -7 11.43 101 -16 

1.43 129 -44 4.86 168 -83 8.29 91 -6 11.71 102 -17 

1.71 53 32 5.14 55 30 8.57 84 1 12.00 101 -16 

2.00 40 45 5.43 25 60 8.86 83 2 

To
ta

l 

A
b

so
lu

te
 

Er
ro

r 

13
98

 
2.29 43 42 5.71 25 60 9.14 83 2 

2.57 142 -57 6.00 51 34 9.43 95 -10 

2.86 153 -68 6.29 53 32 9.71 93 -8 

3.14 149 -64 6.57 55 30 10.00 92 -7       
 

Table A6. Experimental study for L=50.  

L=50 

Time Heading Error Time Heading Error Time Heading Error Time Heading Error 

0.00 45 40 6.49 148 -63 12.99 188 -103 19.48 139 -54 

0.28 45 40 6.78 66 19 13.27 187 -102 19.76 178 -93 

0.56 45 40 7.06 37 48 13.55 74 11 20.05 172 -87 

0.85 85 0 7.34 34 51 13.84 28 57 20.33 57 28 

1.13 133 -48 7.62 108 -23 14.12 30 55 20.61 23 62 

1.41 132 -47 7.91 142 -57 14.40 149 -64 20.89 25 60 

1.69 47 38 8.19 141 -56 14.68 177 -92 21.18 140 -55 

1.98 31 54 8.47 46 39 14.96 171 -86 21.46 190 -105 
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2.26 35 50 8.75 24 61 15.25 54 31 21.74 185 -100 

2.54 165 -80 9.04 27 58 15.53 24 61 22.02 54 31 

2.82 218 -133 9.32 150 -65 15.81 30 55 22.31 18 67 

3.11 213 -128 9.60 186 -101 16.09 147 -62 22.59 20 65 

3.39 93 -8 9.88 175 -90 16.38 185 -100 22.87 141 -56 

3.67 35 50 10.16 56 29 16.66 182 -97 23.15 199 -114 

3.95 33 52 10.45 22 63 16.94 55 30 23.44 191 -106 

4.24 139 -54 10.73 22 63 17.22 24 61 23.72 54 31 

4.52 162 -77 11.01 100 -15 17.51 29 56 24.00 3 82 

4.80 158 -73 11.29 142 -57 17.79 141 -56 

To
ta

l 

A
b

so
lu

te
 

Er
ro

r 

51
57

 

5.08 51 34 11.58 141 -56 18.07 179 -94 

5.36 17 68 11.86 54 31 18.35 173 -88 

5.65 17 68 12.14 31 54 18.64 57 28 

5.93 97 -12 12.42 39 46 18.92 29 56       

6.21 146 -61 12.71 149 -64 19.20 33 52       

 

Appendix B 

 

Google Drive Links of videos for experimental studies (L=38, L=44 and L=46): 

https://drive.google.com/drive/folders/1pXxIzxSv4E4pwutwl6YH3U22_t25BFmo?usp=sharing 

Appendix C 

 

The 90-degree deviation (initial course angle=180° and final course angle=90°) that occurs at t=0: 

 

Figure A.1. Comparison of the Proposed Controller with PID, Adaptive PID and Fuzzy Logic Controllers 

(Overshoot=90 degrees). 

https://drive.google.com/drive/folders/1pXxIzxSv4E4pwutwl6YH3U22_t25BFmo?usp=sharing
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Appendix D 

 

The 180-degree deviation (initial course angle=90° and final course angle=270°) that occurs at t=0: 

 

Figure A.2. Comparison of the Proposed Controller with PID, Adaptive PID and Fuzzy Logic Controllers 

(Overshoot=180 degrees). 

Appendix E 

 

Full dataset for the comparison of the proposed controller with PID, adaptive PID, and fuzzy logic 

controllers: 

https://drive.google.com/drive/folders/1hKw95cPygUFsar3mX7LvEBrtELQxxL96?usp=sharing 

https://drive.google.com/drive/folders/1hKw95cPygUFsar3mX7LvEBrtELQxxL96?usp=sharing

