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Retinal vessel segmentation plays a critical role in diagnosing and managing ophthalmic and systemic 

diseases, as abnormalities in retinal vasculature can indicate disease progression. Traditional manual 

segmentation by expert ophthalmologists is time-consuming, labor-intensive, and prone to variability, 

underscoring the need for automated methods. While deep learning approaches like U-Net have 

advanced retinal vessel segmentation, they often struggle to generalize across diverse datasets due to 

differences in image acquisition techniques, resolutions, and patient demographics. To address these 

challenges, I propose UKnow-Net, a knowledge-enhanced U-Net architecture designed to improve 

retinal vessel segmentation across multiple datasets. UKnow-Net employs a multi-step process involving 

knowledge distillation and enhancement techniques. First, I train four specialized teacher networks 

separately on four publicly available retinal vessel segmentation datasets—DRIVE, CHASE_DB1, 

DCA1, and CHUAC—allowing each to specialize in the unique features of its respective dataset. These 

teacher networks generate pseudo-labels representing their domain-specific knowledge. We then train a 

student network using the ensemble of pseudo-labels from all teacher networks, effectively distilling the 

collective expertise into a unified model capable of generalizing across different datasets. Experiments 

demonstrate that UKnow-Net outperforms traditional handcrafted networks (such as U-Net, UNet++, 

and Attention U-Net) and several state-of-the-art models in key performance metrics, including 

sensitivity, specificity, F1 score, and Intersection over Union (IoU). Specifically, our two variants, 

UKnowNet-A and UKnowNet-B, show well performance; UKnowNet-A, trained solely on pseudo-

labels, achieved higher sensitivity across all datasets, indicating a superior ability to detect true positives, 

while UKnowNet-B, which combines pseudo-labels with ground truth annotations, achieved balanced 

precision and recall, leading to higher F1 scores and IoU metrics. The integration of pseudo-labels 

effectively transfers the collective expertise of the teacher networks to the student network, enhancing 

generalization and robustness. I aim to ensure fair comparison and reproducibility in future research by 

publicly sharing our source code and model weights. 
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1. INTRODUCTION 

Retinal vessel segmentation is a crucial task in medical image analysis, vital for diagnosing and managing eye-

related and systemic conditions like diabetic retinopathy, glaucoma, hypertension, and cardiovascular diseases 

(Abràmoff et al., 2010). The retinal vasculature reflects the body's microcirculation state, and vessel 

morphology abnormalities can indicate disease progression (Patton et al., 2006; Fraz et al., 2012). Accurate 

segmentation of retinal vessels enables clinicians to quantify vascular changes, assess disease severity, and 

monitor treatment efficacy. 
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Traditionally, expert ophthalmologists have performed retinal vessel segmentation manually, which is a 

process that is time-consuming, work-intensive, and prone to variability between different observers. 

(Niemeijer et al., 2004). Manual feature extraction, while precise, is not feasible for large-scale screenings or 

real-time applications due to the high costs and resource requirements. Consequently, there is a pressing need 

for automated segmentation methods that can provide rapid, reliable, and reproducible analysis of retinal 

images. Early computational approaches employed handcrafted features and classical image processing 

techniques, such as matched filters (Chaudhuri et al., 1989), morphological operations (Zana & Klein, 2001), 

and multiscale analysis (Mendonca & Campilho, 2006). These methods aimed to enhance vessel-like structures 

and suppress background noise. However, they frequently encountered difficulties due to differences in image 

quality, lighting, and patient anatomy, which restricted their ability to generalize across various datasets and 

imaging modalities. 

The emergence of deep learning has transformed medical image segmentation by allowing models to learn 

hierarchical feature representations directly from samples (Litjens et al., 2017). Convolutional neural networks 

(CNNs), particularly fully convolutional networks and encoder-decoder architectures, have demonstrated 

remarkable success in biomedical segmentation tasks. U-Net (Ronneberger et al., 2015) introduced a 

symmetric encoder-decoder structure with skip connections, effectively fusing semantic and spatial 

information. U-Net has been successfully applied to brain tumor segmentation in MRI scans, demonstrating 

its capability to handle complex structures and improve diagnostic accuracy (Isensee et al., 2018). The model 

has also been used in dermatology for skin lesion segmentation, aiding in the early detection of melanoma by 

accurately segmenting lesions from surrounding skin (Anand et al., 2022). U-Net variants have been adapted 

for object detection tasks, providing precise localization and classification in images (Jaeger et al., 2019). The 

architecture has been instrumental in analyzing satellite imagery for land cover classification, urban planning, 

and environmental monitoring (Amritesh et al., 2023). In agriculture, U-Net has been applied to segment leaves 

for plant phenotyping and disease detection, contributing to advancements in crop management (Mu et al., 

2024). 

Variants of U-Net and other deep learning architectures have since been applied to retinal vessel segmentation 

with notable improvements in accuracy (Fu et al., 2016; Liskowski & Krawiec, 2016; Zhou et al., 2021; Liu 

et al., 2022; Qu et al., 2023). Mou et al. (2019) present CS-Net, a novel network architecture designed to 

segment curvilinear structures within various medical imaging modalities. CS-Net incorporates channel and 

spatial attention mechanisms to enhance feature extraction and improve segmentation accuracy, outperforming 

existing state-of-the-art methods across multiple datasets. Attention Guided Network (AG-Net) (Zhang et al., 

2019) enhances retinal image segmentation by preserving structural information through a novel attention-

guided filter. This filter integrates an attention mechanism to reduce background noise and improve the 

accuracy of segmenting retinal structures such as blood vessels and optic discs/cups. Wang et al. (2020) 

introduce RVSeg-Net, a new and efficient network for segmenting retinal vessels. It tackles challenges like 

different sizes, small blood vessels, and complex image structures. The network employs a feature pyramid 

cascade (FPC) module to capture multi-scale features and a multi-frequency convolution (MFC) module to 

reduce redundancy and improve efficiency, thereby overcoming overfitting issues. SCS-Net (Wu et al., 2021) 

is a novel scale and context-sensitive network designed for retinal vessel segmentation, addressing challenges 

such as large-scale variations and complex anatomical contexts. Zhou et al. (2021) present a Study Group 

Learning (SGL) framework designed to enhance the robustness of retinal vessel segmentation models trained 

with noisy labels. It introduces a novel method for synthesizing noisy labels and demonstrates improved 

performance on the DRIVE and CHASE DB1 datasets using a K-fold cross-validation-inspired training 

scheme. FR-UNet (Liu et al., 2022), combined with a dual-threshold iterative algorithm (DTI) for improved 

vessel segmentation images. It enhances vessel connectivity and sensitivity by maintaining full image 

resolution and integrating multiscale feature maps, outperforming state-of-the-art methods on several datasets. 

Qu et al. (2023) introduce TP-Net, a novel two-path network designed for refined retinal vessel segmentation, 

addressing challenges in segmenting thin and low-contrast vessels. TP-Net comprises a main-path for detecting 

vessel trunks, a sub-path for capturing edge information, and a multi-scale feature aggregation module 

(MFAM) to combine predictions, enhancing segmentation accuracy. Despite these advancements, developing 

models that generalize well across diverse retinal datasets remains challenging. Differences in image 

acquisition techniques, resolutions, and patient demographics can hinder a model's performance when applied 
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to unseen data sources. Addressing this issue requires strategies that enhance a model's ability to learn robust 

and transferable features. 

Knowledge distillation is an effective method for transferring knowledge from a larger, complex teacher model 

to a smaller, more efficient student model (Hinton et al., 2015). By learning to mimic the teacher's outputs, the 

student model can achieve competitive performance with reduced complexity. Knowledge enhancement 

extends this concept by leveraging the expertise of multiple teacher models, allowing the student model to 

capture a broader range of features and improve generalization (Wang & Yoon, 2021). Several studies have 

explored knowledge distillation and enhancement in medical imaging. These techniques have been explored 

to improve model efficiency and performance. For instance, Qin et al. (2021) employed knowledge distillation 

to enhance the segmentation of medical scans, achieving state-of-the-art results with reduced computational 

complexity. Shen et al. (2019) utilized knowledge distillation to improve lesion detection in mammography 

by transferring knowledge from a teacher model trained on a large dataset to a student model with fewer 

parameters. Zhang and Lu (2024) proposed a knowledge distillation framework for skin lesion segmentation, 

transferring knowledge from teacher network to enhance performance. 

In this study, we propose UKnow-Net, a knowledge-enhanced U-Net architecture designed to improve retinal 

vessel segmentation across multiple datasets. UKnow-Net addresses the challenges of variability and 

complexity in retinal images by employing a multi-step process that utilizes the strengths of multiple teacher 

networks. Each teacher network is trained separately on different datasets—DRIVE, CHASE_DB1, DCA1, 

and CHUAC—allowing them to specialize in the unique features and patterns specific to their respective 

datasets. This specialization ensures that each teacher network becomes an expert in its domain, which is 

crucial for accurately capturing the diverse characteristics of retinal images. A key aspect of UKnow-Net is 

using pseudo-labels generated by the teacher networks. These pseudo-labels represent the distilled knowledge 

and expertise of the teacher networks, serving as a rich source of information for training the student network. 

Using these pseudo-labels effectively distills the domain-specific knowledge from the teacher networks into 

the student network. This process allows the student network to learn from the teacher networks' collective 

expertise, enhancing its ability to generalize across different datasets. The experimental studies conducted 

demonstrate that UKnow-Net outperforms traditional handcrafted networks and state-of-the-art models in 

several key metrics, including sensitivity, specificity, F1 score, and intersection over union (IoU). UKnowNet-

A and UKnowNet-B, the two variants of the proposed model, show superior performance in detecting true 

positives and achieving balanced precision and recall across different datasets. For instance, UKnowNet-A 

achieved a sensitivity of 85.37% on the DRIVE dataset, surpassing the handcrafted networks. On the 

CHASE_DB1 dataset, UKnowNet-A excelled in sensitivity with 89.84%, significantly outperforming the 

handcrafted networks. The integration of pseudo-labels and ground truths in UKnowNet-B provides a more 

robust learning framework, allowing it to generalize better across different datasets. Our contributions are as 

follows: 

1. Unified Model for Multi-Dataset Segmentation: I develop a single student model capable of 

segmenting retinal vessels in four publicly available datasets (DRIVE, CHASE_DB1, DCA1, and 

CHUAC), addressing the challenge of variability across data sources. 

2. Knowledge Enhancement via Teacher Networks: I train separate teacher networks on each dataset 

to specialize in their respective domains. By generating pseudo-labels from these specialized networks, 

we capture diverse feature representations. 

3. Integration of Pseudo-Labels for Student Training: The student network is trained using the 

ensemble of pseudo-labels from all teacher networks, effectively distilling knowledge from multiple 

experts and enhancing generalization. 

4. Comprehensive Evaluation: We evaluate UKnow-Net on test sets from all four datasets, 

demonstrating improved segmentation performance and robustness compared to baseline models and 

existing methods. 

5. Fair Comparison and Reproducibility: I have publicly shared the source code on GitHub and the 

best model weight on the same platform. 
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The rest of this paper is structured as follows: Section 2 outlines the architecture of UKnow-Net and details 

the experimental setup. Section 3 presents the results and provides a comparative analysis with current state-

of-the-art methods. Lastly, Section 4 concludes the study and proposes possible directions for future research. 

2. MATERIAL AND METHOD 

2.1. UKnow-Net: Knowledge-Enhanced U-Net 

U-Net is a convolutional neural network architecture proposed for biomedical image segmentation 

(Ronneberger et al., 2015). It has a U-shaped structure and consists of encoder and decoder blocks. Encoder 

networks extract helpful information and features from a given image, followed by maximum pooling layers 

that decrease the image size by half. After performing encoder blocks, a latent representation of the image is 

obtained. Then, the image is reconstructed in decoder blocks using deconvolution operations, doubling the 

image size. It also has skip connections, which allow features from earlier layers to be reused in later layers. 

This design allows U-Net to effectively utilize both high-level and low-level features, making it particularly 

well-suited for applications in medical imaging, such as tumor detection and organ segmentation. Its ability to 

work with relatively small datasets and produce high-quality segmentation maps has led to its widespread 

adoption in various fields beyond medical imaging, including satellite image analysis and autonomous driving. 

Knowledge distillation is a machine learning method where a smaller, more efficient model, called the student, 

learns from a larger, more complex model, known as the teacher. The aim is to improve the student model's 

performance by leveraging the insights, patterns, and features learned by the teacher model. This allows the 

student model to reach a similar level of accuracy and effectiveness as the teacher while being more efficient 

and suitable for deployment in resource-limited environments. The process involves training the student model 

to mimic the teacher model's outputs by reducing the discrepancy between their predictions. Knowledge 

enhancement is the objective of distillation. Knowledge enhancement aims to train student networks to develop 

more generalized feature representations by leveraging the expertise of specialized teacher networks. This 

approach enables the student networks to consistently deliver strong performance across various tasks. 

In this study, I have proposed UKnow-Net to improve the segmentation performance of the U-Net model for 

different retinal vessel segmentation problems. Figure 1 illustrates the general structure of the proposed 

method. The proposed method includes three steps: (1) Four teacher networks are trained separately on 

different datasets: DRIVE, CHASEDB1, DCA1, and CHUAC. Each teacher network specializes in learning 

the features and patterns specific to its respective dataset, ensuring that it becomes an expert in that particular 

domain. I have selected the original U-Net structure (Ronneberger et al., 2015) as the teacher network for each 

dataset. (2) Step 2 involves using these pre-trained teacher networks to generate pseudo-labels. Each pre-

trained teacher network (trained at Step 1) produces pseudo-labels for its corresponding dataset, which are 

essentially the predictions made by the teacher networks. These pseudo-labels serve as a form of distilled 

knowledge that will be used to train the student network. (3) In Step 3, the student network is trained using the 

combination of pseudo-labels generated by all the teacher networks. This approach allows the student network 

to learn from the collective expertise of all the teacher networks, potentially enhancing its ability to generalize 

across different datasets. Finally, the student network is evaluated on test sets from all four datasets (DRIVE, 

CHASEDB1, DCA1, CHUAC) to evaluate its performance and generalization capabilities. This method 

leverages the strengths of multiple teacher networks to create a robust student model, aiming for improved 

performance on unseen data. 

UKnow-Net addresses the challenges of variability and complexity in retinal images by employing a multi-

step process that utilizes the strengths of multiple teacher networks. Each of these teacher networks is trained 

separately on different datasets—DRIVE, CHASEDB1, DCA1, and CHUAC—allowing them to specialize in 

the unique features and patterns specific to their respective datasets. This specialization ensures that each 

teacher network becomes an expert in its domain, which is crucial for accurately capturing the diverse 

characteristics of retinal images. A key aspect of UKnow-Net is using pseudo-labels generated by the teacher 

networks. These pseudo-labels represent the distilled knowledge and expertise of the teacher networks, serving 

as a rich source of information for training the student network. Using these pseudo-labels effectively distills 

the domain-specific knowledge from the teacher networks into the student network. This process allows the 

student network to learn from the teacher networks' collective expertise, enhancing its ability to generalize 
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across different datasets. The robustness and versatility of UKnow-Net are further highlighted by its ability to 

create a robust student model that performs well across various conditions and datasets. By training the student 

network on the combination of pseudo-labels from all teacher networks, the method ensures that the student 

network can generalize effectively to unseen data. This collective learning approach improves the model's 

performance on test sets from all four datasets and makes it a versatile tool for retinal vessel segmentation. 

Overall, UKnow-Net represents a significant step forward in developing models that can handle the 

complexities of retinal images, ultimately aiming for improved performance and generalization capabilities. 

 

Figure 1. Overview of the UKnow-Net 

2.2. Experimental Design 

2.2.1. Datasets 

I have selected the most commonly used retinal vessel segmentation datasets, DRIVE, CHASE_DB1, DCA1, 

and CHUAC, to evaluate the proposed method. These datasets are widely recognized and frequently used in 

the field of retinal vessel segmentation (Liu et al., 2022; Kuş & Kiraz, 2023; Qu et al., 2023). They offer a 

diverse range of imaging modalities (CHUAC-DCA1 vs DRIVE-CHASE_DB1), resolutions, and patient 

demographics, which are crucial for evaluating the generalization capabilities of our proposed model. 

Figure 2 presents the exemplary two images and corresponding ground truths for each dataset. 

Digital Retinal Images for Vessel Extraction (DRIVE) (Staal et al., 2004): It is a valuable resource for 

medical image analysis, specifically for retinal vessel segmentation. It consists of high-resolution retinal 

images from 40 subjects collected as part of a diabetic retinopathy screening program in the Netherlands. Each 

image is manually annotated by experts to identify the blood vessels. Researchers and practitioners use this 

dataset to develop and benchmark automated methods for detecting and analyzing retinal vasculature, crucial 

in diagnosing and monitoring conditions like diabetic retinopathy, hypertension, and cardiovascular diseases. 
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I have selected annotations created by the first expert. The dataset contains 40 images, each sized 565 × 584, 

and the first 20 images are used for training, while the rest are used for testing, as in other studies (Liu et al., 

2022). 

CHUAC (Carballal et al., 2018): The dataset originates from the University Hospital Complex of a Coruña in 

Spain. It is a collection of coronary angiography retinal images gathered for research focused on ophthalmic 

diseases. It is a valuable resource for developing and testing algorithms for the early detection and assessment 

of conditions such as diabetic retinopathy and age-related macular degeneration. The dataset contains 30 

samples with 512 × 512 sized images. The first 20 images are used to train the model, and others are used for 

evaluation (Samuel & Veeramalai, 2021). 

The Child Heart and Health Study in England Database 1 (CHASE_DB1) (Carballal et al., 2018): It is a 

specialized dataset consisting of retinal images collected from a pediatric population. Specifically, the images 

are obtained from children aged between 7 and 8 years old as part of a study investigating cardiovascular risk 

factors in early life. CHASE_DB1 includes high-quality retinal photographs along with expert annotations of 

the blood vessel network. This dataset is essential for researchers focusing on the development of image 

processing algorithms for vessel segmentation and analysis in children's retinal images. It consists of 28 

colored images sized at 999 × 960 sized. The images are annotated by two different experts, and I have used 

the annotations made by the first expert. I have used the first 20 images out of 28 for training and the remaining 

for testing (Liu et al., 2022; Li et al., 2023) 

DCA1 (Cervantes-Sanchez et al., 2019): The DCA1 dataset, which stands for Digital Retinal Images for Vessel 

Extraction, is a widely used collection of retinal images in the medical imaging community for developing and 

evaluating algorithms. The dataset contains color fundus images showing various retinal conditions, which are 

crucial for researchers working on automated detection and analysis of retinal diseases. Each image in DCA1 

is often accompanied by expert annotations, including segmentation maps of retinal vessels and identification 

of pathological features. Utilizing the DCA1 dataset enables the advancement of computer-aided diagnostic 

systems, contributing to improved screening processes and patient care in ophthalmology. It includes 134 

samples sized at 300x300. I have chosen 100 images for model training and the remaining 34 for model 

evaluation (Kuş & Kiraz, 2023). 

 

Figure 2. Exemplary images from DRIVE, CHUAC, CHASE_DB1, and DCA1 datasets. In the figure, the 

first row represents the input image, and the second row represents the corresponding ground truth image. 
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2.2.2. Pre-processing 

In the training phases, I employ several preprocessing steps. First, I transform colored images into grayscale 

and normalize them to standardize the input data. To increase the volume of training data, we extract image 

patches using a sliding window of size 48 × 48 pixels with a stride of 48 pixels; overlapping patches are 

excluded to maintain data independence. I further enhance the diversity of the training dataset by applying data 

augmentation techniques, including random horizontal and vertical flips and rotations at angles of 90°, 180°, 

and 270° (Kuş & Kiraz, 2023). Notably, I have not performed any augmentation steps or patch generation to 

samples in the test set. I have used raw test images to evaluate the actual performance of the model. 

2.2.3. Implementation Details 

Pytorch library is used for all implementations. During both the training and test phases, each network is trained 

for 200 epochs. For all experiments, the Adam optimizer and Binary Cross Entropy (BCE) loss are used. I 

have set the learning rate to 1 ×  10−3 and used the batch size of 128. The experiments are executed on a 

system equipped with a Ryzen 5600X processor, RTX 3060 GPU with 12 GB of memory, and 16 GB of RAM. 

The source codes are shared on Github. 

2.2.4. Performance Measures 

I have used several performance measures, including accuracy, sensitivity, specificity, intersection over union 

(IoU), and F1-score, to evaluate the proposed methods. Sensitivity and specificity measure the model's ability 

to correctly identify true positives and true negatives, respectively, which are critical for medical applications. 

The F1 score balances precision and recall, offering insight into the model's overall accuracy. IoU evaluates 

the spatial accuracy of the segmentation, which is essential for assessing the overlap between predicted and 

actual vessel structures. Each measure offers a unique perspective on the methods' effectiveness, ensuring a 

comprehensive assessment across different evaluation criteria. I have also selected these measures to make a 

fair comparison with reported results in recent literature. Accuracy indicates the overall correctness of the 

methods. It is the proportion of all predictions that were correct. While useful, accuracy alone might not be 

sufficient, especially if the data is imbalanced, with some classes being much more common than others. 

Sensitivity, also known as recall or true positive rate, measures how effectively the methods identify positive 

cases. It quantifies the percentage of true positives that are accurately identified. This metric shows the ability 

of the methods to detect the presence of a condition or feature. Specificity, or true negative rate, measures how 

effectively the methods identify negative cases. It calculates how many actual negatives are accurately 

classified. Intersection over Union (IoU) evaluates the overlap between the predicted results and the ground 

truth. Calculated as the area of overlap divided by the area of union between the prediction and the actual 

result, IoU provides insight into the spatial accuracy of the methods. The F1-score, which calculates their 

harmonic mean, offers a balance between recall and precision. This metric is especially useful when the data 

has an imbalanced class distribution, as it accounts for both false positives and false negatives.  

3. RESULTS AND DISCUSSION 

In this section, I have compared UKnowNet with handcrafted networks, other U-shaped networks, and neural 

architecture search studies in terms of Sensitivity, Specificity, F1 Score, and Intersection over Union measures. 

Tables 1 and 2 present the results DRIVE-CHASE_DB1 and DCA1-CHUAC datasets separately. In these 

tables, red and blue colors highlight the two best performance results obtained for each metric. 

3.1. Comparison with Handcrafted Networks 

The handcrafted networks, namely U-Net, UNet++, and Attention U-Net, have been foundational in medical 

image segmentation, particularly for tasks like retinal vessel segmentation. These models are characterized by 

their U-shaped architectures, which facilitate the capture of both local and global features through a series of 

downsampling and upsampling layers. Despite their simplicity and effectiveness, these models often rely 

heavily on the availability of labeled data for training. 

In contrast, UKnowNet-A and UKnowNet-B represent more recent advancements that leverage both pseudo-

labels and ground truths from multiple datasets, including DRIVE, CHASE_DB1, CHUAC, and DCA. 
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UKnowNet-A, trained solely on pseudo-labels, demonstrates the potential of semi-supervised learning to 

achieve competitive performance without extensive labeled data. This approach is particularly advantageous 

in scenarios where obtaining ground truth annotations is challenging or resource-intensive. UKnowNet-B, on 

the other hand, combines pseudo-labels with ground truths, likely enhancing its performance by utilizing the 

strengths of both semi-supervised and supervised learning paradigms. 

Table 1. Performance evaluation of retinal vessel segmentation methods on DRIVE and CHASE_DB1 

datasets. The comparison includes traditional handcrafted networks (U-Net, UNet++, Attention U-Net), 

state-of-the-art models, neural architecture search studies (MedUNAS GA, ODE) and our proposed 

UKnowNet variants. Metrics include Sensitivity (SEN), Specificity (SPE), F1 Score (F1), and Intersection 

over Union (IOU). The checkmark (✓) indicates U-shaped architecture. Red indicates the best performance 

for each metric across the evaluated methods, and blue signifies the second-best performance for each 

metric. 

Methods 
U 

shape 

DRIVE CHASE_DB1 

SEN SPE F1 IOU SEN SPE F1 IOU 

U-Net(Ronneberger et al., 2015) ✓ 80.57 98.33 81.41 68.64 76.50 98.84 78.98 65.26 

UNet++(Zhou et al., 2018) ✓ 78.91 98.50 81.14 68.27 83.57 98.32 80.15 66.88 

Attention U-Net(Oktay et al., 2018) ✓ 79.06 98.31 80.39 67.21 83.84 98.20 79.64 66.17 

HRNet(Sun et al., 2019) ✗ 80.40 98.64 82.65 70.43 84.43 98.47 81.48 68.75 

CS-Net(Mou et al., 2019) ✓ 81.70 98.54 80.39 70.17 84.00 98.32 80.42 67.25 

AG-Net(Zhang et al., 2019) ✓ 81.00 98.48 - 69.65 81.86 98.48 - 66.69 

RVSeg-Net(Wang et al., 2020) ✓ 81.07 98.45 - - 80.69 98.36 - - 

SCS-Net(Wu et al., 2021) ✓ 82.89 98.38 - - 83.65 98.39 - - 

SGL(Zhou et al., 2021) ✓ 83.80 98.34 83.16 - 86.90 98.43 82.71 - 

VSSCNet(Samuel& Veeramalai, 2021) ✗ 78.27 98.21 - - 72.33 98.65 - - 

RV-GAN(Kamran et al., 2021) ✗ 79.27 99.69 86.90 - 81.99 98.06 89.57 - 

FR-UNet(Liu et al., 2022) ✓ 83.56 98.37 83.16 71.20 87.98 98.14 81.51 68.82 

TP-Net(Qu et al., 2023) ✗ 87.49 97.58 85.69 - 86.00 98.41 85.18 - 

MedUNAS GA(Kuş & Kiraz, 2023) ✓ 84.54 98.64 82.06 69.59 86.52 98.44 79.50 66.03 

MedUNAS ODE(Kuş & Kiraz, 2023) ✓ 83.41 98.36 82.18 69.77 84.50 98.60 80.22 67.01 

UKnowNet-A ✓ 85.37 97.87 82.10 69.66 89.84 97.40 78.57 64.76 

UKnowNet-B ✓ 85.12 98.04 82.65 70.44 87.38 97.94 80.14 66.90 

When comparing the performance metrics, UKnowNet-A and UKnowNet-B generally outperform the 

handcrafted networks across several key metrics. For instance, UKnowNet-A achieves a sensitivity of 85.37% 

on the DRIVE dataset, surpassing the handcrafted networks, which range from 78.91% to 80.57%. Similarly, 

UKnowNet-B shows improved specificity and F1 scores, indicating better overall accuracy and balance 

between precision and recall. This suggests that the integration of pseudo-labels and ground truths in 

UKnowNet-B provides a more robust learning framework, allowing it to generalize better across different 
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datasets. On the DRIVE dataset, UKnowNet-A and UKnowNet-B both demonstrate superior sensitivity 

compared to the handcrafted networks, with UKnowNet-A achieving 85.37% and UKnowNet-B 85.12%, 

significantly higher than the 80.57% of U-Net, the best among the handcrafted models. This indicates that the 

UKnowNet models are more effective at correctly identifying true positives. In terms of specificity, the 

handcrafted networks maintain a slight edge, particularly UNet++ with 98.50%, while UKnowNet-B closely 

follows at 98.04%, suggesting a minor trade-off in specificity for the increased sensitivity seen in the 

UKnowNet models. For the F1 score, which balances precision and recall, UKnowNet-B leads with 82.65%, 

surpassing the handcrafted networks, with U-Net at 81.41% being the highest among them. This suggests that 

UKnowNet-B offers a more balanced performance. The Intersection over Union (IOU) metric further 

highlights UKnowNet-B's superior segmentation accuracy, achieving 70.44%, compared to U-Net's 68.64%, 

the best among the handcrafted models. 

On the CHASE_DB1 dataset, UKnowNet-A excels in sensitivity with 89.84%, significantly outperforming the 

handcrafted networks, where Attention U-Net achieves the highest at 83.84%. This highlights UKnowNet-A's 

strong ability to detect true positives, likely due to its training with pseudo-labels. However, in terms of 

specificity, the handcrafted networks, particularly U-Net with 98.84%, outperform the UKnowNet models, 

which show a slight decrease, with UKnowNet-B at 97.94%. This suggests a trade-off where the UKnowNet 

models prioritize sensitivity over specificity. The F1 score for UKnowNet-B on CHASE_DB1 is 80.14%, 

matching UNet++ and indicating a balanced performance between precision and recall. In terms of IOU, 

UKnowNet-B slightly surpasses UNet++ with 66.90%, reflecting its improved segmentation accuracy. 

Overall, the UKnowNet models, particularly UKnowNet-B, demonstrate the benefits of integrating pseudo-

labels and ground truths, achieving higher sensitivity and balanced F1 scores, while the handcrafted networks 

maintain high specificity, especially on the CHASE_DB1 dataset. This comparison underscores the 

effectiveness of modern training strategies in enhancing model performance across different datasets. 

Table 2. Performance evaluation of retinal vessel segmentation methods on DCA1 and CHUAC datasets. 

The comparison includes traditional handcrafted networks (U-Net, UNet++, Attention U-Net), state-of-the-

art models, neural architecture search studies (MedUNAS GA, ODE) and our proposed UKnowNet variants. 

Metrics include Sensitivity (SEN), Specificity (SPE), F1 Score (F1), and Intersection over Union (IOU). The 

checkmark (✓) indicates U-shaped architecture. Red indicates the best performance for each metric across 

the evaluated methods, and blue signifies the second-best performance for each metric. 

Methods 
U 

shape 

DCA1 CHUAC 

SEN SPE F1 IOU SEN SPE F1 IOU 

U-Net(Ronneberger et al., 2015) ✓ 78.16 98.66 77.35 63.07 58.81 99.40 67.68 51.15 

UNet++(Zhou et al., 2018) ✓ 79.54 98.62 77.86 63.75 66.87 99.37 73.23 57.77 

Attention U-Net(Oktay et al., 2018) ✓ 79.86 98.53 77.48 63.24 65.26 99.13 71.54 55.69 

HRNet(Sun et al., 2019) ✗ 80.07 98.76 79.19 65.54 74.56 99.06 75.26 60.33 

CS-Net(Mou et al., 2019) ✓ 78.95 98.67 77.90 63.80 67.35 99.18 71.71 55.89 

FR-UNet(Liu et al., 2022) ✓ 82.48 98.75 80.22 67.08 81.71 98.68 76.01 61.51 

VSSCNet(Samuel& Veeramalai, 2021) ✗ 77.28 98.09 - - 78.92 97.97 - - 

MedUNAS GA(Kuş & Kiraz, 2023) ✓ 80.89 99.05 78.20 64.33 78.65 99.16 71.96 56.31 

MedUNAS ODE(Kuş & Kiraz, 2023) ✓ 84.12 98.89 78.22 64.37 78.29 99.12 74.56 59.54 

UKnowNet-A ✓ 81.49 98.58 78.30 64.47 79.22 98.72 75.39 60.63 

UKnowNet-B ✓ 83.18 98.38 78.01 64.11 73.42 99.04 74.01 58.94 
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On the DCA1 dataset, UKnowNet-A and UKnowNet-B demonstrate superior performance compared to the 

handcrafted networks (U-Net, UNet++, and Attention U-Net) across all evaluated metrics. In terms of 

sensitivity, UKnowNet-B achieves 83.18%, and UKnowNet-A follows with 81.49%, both surpassing the 

handcrafted networks, where the highest sensitivity is 79.86% by Attention U-Net. This indicates that the 

UKnowNet models are more effective at detecting true positives. Although the handcrafted networks maintain 

slightly higher specificity, with U-Net leading at 98.66%, the UKnowNet models show a trade-off, achieving 

slightly lower specificity but significantly higher sensitivity. For the F1 score, which balances precision and 

recall, UKnowNet-A and UKnowNet-B achieve 78.30% and 78.01%, respectively, outperforming the 

handcrafted networks, with UNet++ having the highest F1 score among them at 77.86%. In terms of IOU, both 

UKnowNet models also lead, with UKnowNet-A achieving 64.47% and UKnowNet-B 64.11%, compared to 

UNet++'s 63.75%, the best among the handcrafted models. 

On the CHUAC dataset, UKnowNet-A particularly excels, achieving a sensitivity of 79.22%, which is 

significantly higher than the handcrafted networks, where UNet++ reaches 66.87% as the highest. This 

highlights UKnowNet-A's superior ability to detect true positives. In terms of specificity, the handcrafted 

networks perform slightly better, with U-Net achieving 99.40%, while UKnowNet-B maintains a competitive 

specificity of 99.04%. For the F1 score, UKnowNet-A achieves 75.39%, surpassing all handcrafted networks, 

with UNet++ having the highest F1 score among them at 73.23%. This suggests that UKnowNet-A offers a 

more balanced performance between precision and recall. In terms of IOU, UKnowNet-A again leads with 

60.63%, compared to UNet++'s 57.77%, indicating superior segmentation accuracy. 

Overall, the comparison highlights the evolution from traditional handcrafted networks to more sophisticated 

models like UKnowNet-A and UKnowNet-B, which effectively utilize both labeled and unlabeled data to 

enhance performance. This shift underscores the growing importance of leveraging diverse data sources and 

advanced training strategies in developing state-of-the-art models for medical image analysis. 

3.2. Comparison with State-of-the-art Networks 

When comparing UKnowNet-A and UKnowNet-B with other state-of-the-art models, it's insightful to separate 

the analysis based on whether the network architecture is U-shaped, as the UKnowNet models are proposed as 

U-shaped networks. 

For the DRIVE dataset, UKnowNet-A and UKnowNet-B demonstrate strong performance among U-shaped 

networks. UKnowNet-A achieves a sensitivity of 85.37%, and UKnowNet-B follows closely with 85.12%, 

both outperforming other U-shaped models like SGL and SCS-Net, which have sensitivities of 82.89% and 

83.80%, respectively. This indicates that the UKnowNet models are particularly effective at identifying true 

positives. In terms of specificity, UKnowNet-B achieves 98.04%, which is competitive with other U-shaped 

models such as CS-Net (98.54%) and AG-Net (98.48%). The F1 score for UKnowNet-B is 82.65%, surpassing 

CS-Net (80.39%) and closely matching FR-UNet (83.16%), suggesting a balanced performance between 

precision and recall. For the IOU metric, UKnowNet-B achieves 70.44%, slightly lower than FR-UNet's 

71.20% but higher than CS-Net's 70.17%, reflecting strong segmentation accuracy. 

On the CHASE_DB1 dataset, UKnowNet-A excels with a sensitivity of 89.84%, leading all U-shaped models 

and highlighting its capability in detecting true positives effectively. However, in terms of specificity, 

UKnowNet-B's 97.94% is slightly lower than other U-shaped models like AG-Net, which achieves 98.48%. 

The F1 score for UKnowNet-B is 80.14%, competitive but slightly lower than FR-UNet's 81.51%. For IOU, 

UKnowNet-B achieves 66.90%, close to FR-UNet's 68.82%, indicating robust segmentation performance. 

In contrast, non-U-shaped models like HRNet and RV-GAN show different strengths. On the DRIVE dataset, 

HRNet achieves high specificity (98.64%) and IOU (70.43%), comparable to UKnowNet-B. RV-GAN excels 

in specificity (99.69%) and F1 score (86.90%), outperforming the UKnowNet models in these metrics. On the 

CHASE_DB1 dataset, VSSC Net achieves the highest specificity (98.65%) but has lower sensitivity (72.33%). 

RV-GAN leads in F1 score (89.57%), significantly higher than the UKnowNet models. 

On the DCA1 dataset, UKnowNet-A and UKnowNet-B demonstrate superior performance among U-shaped 

networks. UKnowNet-B achieves a sensitivity of 83.18%, and UKnowNet-A follows closely with 81.49%, 
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both showing robust performance in detecting true positives. In terms of specificity, UKnowNet models have 

slightly lower values, with UKnowNet-A at 98.58% and UKnowNet-B at 98.38%, compared to FR-UNet's 

98.75%. This suggests a trade-off where UKnowNet models prioritize sensitivity over specificity. For the F1 

score, UKnowNet-A achieves 78.30%, and UKnowNet-B achieves 78.01%, both competitive but slightly 

lower than FR-UNet's leading score of 80.22%. In terms of IOU, UKnowNet-A achieves 64.47%, and 

UKnowNet-B achieves 64.11%, both slightly lower than FR-UNet's 67.08%. 

On the CHUAC dataset, UKnowNet-A achieves a better sensitivity value with 79.22% than other U-shaped 

models (except FR-UNet). UKnowNet-B, with a sensitivity of 73.42%, also performs well, though slightly 

lower than some other models. In terms of specificity, UKnowNet-B achieves 99.04%, which is competitive 

with other U-shaped models like CS-Net, which achieves 99.18%. For the F1 score, UKnowNet-A achieves 

75.39%, the second highest among U-shaped models, indicating a balanced performance between precision 

and recall. This surpasses FR-UNet's 76.01%, which is the highest among other models. In terms of IOU, 

UKnowNet-A achieves 60.63%, the second highest among U-shaped models, reflecting its strong 

segmentation accuracy. UKnowNet-B achieves an IOU of 58.94%, which is competitive but slightly lower 

than FR-UNet's 61.51%. 

In contrast to U-shaped models, non-U-shaped models like HRNet and VSSC Net demonstrate distinct 

advantages. On the DCA1 dataset, HRNet achieves a high specificity of 98.76% and an F1 score of 79.19%, 

making its performance comparable to that of UKnowNet models. However, VSSC Net exhibits lower 

sensitivity at 77.28% compared to UKnowNet models. On the CHUAC dataset, HRNet again shows strong 

performance with a sensitivity of 74.56% and an F1 score of 75.26%, remaining competitive with UKnowNet 

models. In contrast, VSSC Net achieves a higher sensitivity of 78.92%, but its specificity is lower at 97.97%. 

3.3. Comparison with Neural Architecture Search Studies 

A detailed comparison of UKnowNet-A and UKnowNet-B with neural architecture search studies (MedUNAS 

GA and MedUNAS ODE) reveals distinct performance characteristics across different metrics and datasets. 

On the DRIVE dataset, UKnowNet models demonstrate superior sensitivity, with UKnowNet-A achieving 

85.37% and UKnowNet-B reaching 85.12%, both surpassing MedUNAS GA (84.54%) and MedUNAS ODE 

(83.41%). This indicates that UKnowNet models are more effective at detecting true positives in vessel 

segmentation. However, in terms of specificity, MedUNAS GA leads with 98.64%, followed by MedUNAS 

ODE at 98.36%, while UKnowNet-B achieves 98.04% and UKnowNet-A reaches 97.87%. The F1 score 

comparison on the DRIVE dataset shows UKnowNet-B achieving the highest value at 82.65%, slightly 

outperforming both MedUNAS ODE (82.18%) and MedUNAS GA (82.06%), with UKnowNet-A following 

closely at 82.10%. This indicates that UKnowNet-B offers the most balanced performance between precision 

and recall. In terms of IOU, UKnowNet-B leads with 70.44%, demonstrating superior segmentation accuracy 

compared to MedUNAS ODE (69.77%) and MedUNAS GA (69.59%), while UKnowNet-A achieves 69.66%. 

On the CHASE_DB1 dataset, the performance differences become more pronounced. UKnowNet-A achieves 

remarkable sensitivity at 89.84%, significantly outperforming MedUNAS GA (86.52%) and MedUNAS ODE 

(84.50%), with UKnowNet-B also showing strong performance at 87.38%. However, the specificity results 

show MedUNAS ODE leading at 98.60%, followed by MedUNAS GA at 98.44%, while UKnowNet-B 

achieves 97.94% and UKnowNet-A reaches 97.40%. This further emphasizes the sensitivity-specificity trade-

off in the UKnowNet models' design. The F1 score comparison on CHASE_DB1 shows MedUNAS ODE 

achieving 80.22%, closely followed by UKnowNet-B at 80.14% and MedUNAS GA at 79.50%, while 

UKnowNet-A reaches 78.57%. For IOU, MedUNAS ODE leads with 67.01%, followed by UKnowNet-B at 

66.90% and MedUNAS GA at 66.03%, with UKnowNet-A achieving 64.76%. These results suggest that while 

UKnowNet models excel in sensitivity, MedUNAS models maintain more balanced performance across all 

metrics. 

On the DCA1 dataset, MedUNAS ODE demonstrates the highest sensitivity at 84.12%, followed closely by 

UKnowNet-B at 83.18%, while UKnowNet-A achieves 81.49% and MedUNAS GA reaches 80.89%. This 

indicates that MedUNAS ODE is particularly effective at detecting true positives, though UKnowNet-B 

maintains very competitive performance. In terms of specificity, MedUNAS models show superior 
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performance, with MedUNAS GA achieving the highest value at 99.05% and MedUNAS ODE following at 

98.89%, while UKnowNet-A and UKnowNet-B achieve 98.58% and 98.38% respectively. This suggests that 

MedUNAS models are more effective at reducing false positives. The F1 score comparison reveals a close 

competition, with UKnowNet-A slightly leading at 78.30%, followed by MedUNAS ODE at 78.22%, 

MedUNAS GA at 78.20%, and UKnowNet-B at 78.01%. These nearly identical F1 scores indicate that all 

models maintain a similar balance between precision and recall. For the IOU metric, UKnowNet-A achieves 

the highest value among these models at 64.47%, slightly surpassing MedUNAS ODE (64.37%), MedUNAS 

GA (64.33%), and UKnowNet-B (64.11%), suggesting slightly better segmentation accuracy. 

On the CHUAC dataset, UKnowNet-A leads in sensitivity with 79.22%, slightly outperforming MedUNAS 

GA (78.65%) and MedUNAS ODE (78.29%), while UKnowNet-B achieves 73.42%. This demonstrates 

UKnowNet-A's superior ability to detect true positives in this dataset. However, in terms of specificity, 

MedUNAS models again show stronger performance, with MedUNAS GA achieving 99.16% and MedUNAS 

ODE reaching 99.12%, compared to UKnowNet-B's 99.04% and UKnowNet-A's 98.72%. The F1 score 

comparison on CHUAC shows UKnowNet-A achieving 75.39%, followed by MedUNAS ODE at 74.56%, 

UKnowNet-B at 74.01%, and MedUNAS GA at 71.96%. This indicates that UKnowNet-A provides the most 

balanced performance between precision and recall. In terms of IOU, UKnowNet-A leads with 60.63%, 

followed by MedUNAS ODE at 59.54%, UKnowNet-B at 58.94%, and MedUNAS GA at 56.31%, 

demonstrating UKnowNet-A's superior segmentation accuracy on this dataset. 

Overall, this comparison highlights the distinct strengths of each approach: UKnowNet models, particularly 

UKnowNet-A, outperform in sensitivity, true positive detection, and balanced performance, while MedUNAS 

models offer higher specificity. UKnowNet-B emerges as a strong compromise, achieving competitive results 

across all metrics while maintaining the sensitivity advantages of the UKnowNet architecture. These 

differences reflect the underlying design and training strategies of each approach, with UKnowNet models 

potentially being more suitable for applications where high sensitivity and balanced performance are crucial, 

while MedUNAS models might be preferred in scenarios requiring more specificity. 

3.4. Evaluation of Pre-trained Networks with Fine-tuning 

In this study, I have conducted an ablation analysis to evaluate whether conventional pre-trained convolutional 

neural networks—DenseNet-121, EfficientNet, ResNet-18, ResNet-34, and ResNet-50—initialized with 

ImageNet weights and fine-tuned over 50 epochs (200 epochs for UKnowNet-A) using identical training 

protocols as proposed UKnowNet-A model (see Section 2.1), could achieve performance comparable to 

UKnowNet-A. I have selected these pre-trained convolutional neural networks for the following reason: 

DenseNet-121 offers a good balance between model complexity and performance, making it suitable for 

medical image analysis tasks where feature reuse is beneficial. EfficientNet models are designed to achieve 

high performance with fewer parameters by scaling depth, width, and resolution. ResNet architectures are 

renowned for their residual learning framework, which helps in training deeper networks by diminishing the 

vanishing gradient problem. The evaluation focused on key performance metrics: Sensitivity, Specificity, F1 

Score, and Intersection over Union across the four datasets. The results are shown in Figure 3. In Figure 3, 

Best represents the obtained results from UKnowNet-A for each metric and dataset. 

For DRIVE, EfficientNet stands out with the highest Sensitivity (83.15%) and IOU (67.18%), indicating its 

superior ability to identify positive instances correctly and accurately overlap predictions with ground truth. 

ResNet-50 also performs commendably, with a SEN of 76.83% and an IOU of 66.71%. However, the "Best" 

results surpass all models, achieving a SEN of 85.37%, SPE of 97.87%, F1 of 82.1%, and IOU of 69.66%, 

demonstrating the potential of UKnowNet with pseudo-labels. 

On CHASE_DB1, EfficientNet again leads with a high SEN of 87.32%, significantly outperforming other 

models. ResNet-34 follows with a respectable SEN of 80.04%. The IOU metrics reveal ResNet-34 as the best-

performing network among the models with 62.57%, closely following the "Best" result of 64.76%. Notably, 

despite EfficientNet's high SEN, its F1 score (72.76%) is lower than the "Best," highlighting a trade-off 

between sensitivity and overall balance captured by the F1 metric. 
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Performance across models is more uniform in DCA1 dataset. ResNet-34 achieves the highest SEN (82.2%) 

and competitive IOU (61.49%), while DenseNet-121 and ResNet-18 maintain solid performances with SENs 

around 81%. The "Best" results continue to lead with an SEN of 81.49% and IOU of 64.47%, indicating that 

even marginal improvements can be crucial in specific applications. The F1 scores are relatively close among 

models, with the "Best" achieving the highest at 78.3%. 

CHUAC dataset presents the most significant performance gaps among the models. EfficientNet achieves the 

highest SEN (72.95%) among the networks, yet it falls short of the "Best" result by over 6 percentage points. 

ResNet variants exhibit lower SENs, with ResNet-18 at 62.12%. Specificity remains high across all models, 

hovering around 98%, which underscores their effectiveness in correctly identifying negative instances. The 

"Best" results dramatically outperform individual models across all metrics, particularly in SEN (79.22%) and 

F1 Score (75.39%), highlighting substantial gains possible through UKnowNet and pseudo-label techniques. 

 

Figure 3. Performance comparison of different neural network architectures (DenseNet-121, EfficientNet, 

ResNet-18, ResNet-34, ResNet-50, and Best) across four datasets (DRIVE, CHASE_DB1, DCA1, and 

CHUAC) using four evaluation metrics (SEN: Sensitivity, SPE: Specificity, F1: F1-Score, and IOU: 

Intersection over Union). Best represents the obtained results from UKnowNet-A for each metric and 

dataset. 

Across all evaluated datasets, EfficientNet consistently demonstrated strong sensitivity, while ResNet 

architectures, particularly ResNet-34 and ResNet-50, maintained high specificity and balanced performances 

across other metrics. DenseNet-121 also showed competitive specificity and F1 scores. However, UKnowNet-

A consistently outperformed all individual pre-trained models across all metrics and datasets. This superior 

performance can be attributed to the use of pseudo-labels from multiple datasets, which likely enhances the 

model’s ability to generalize and accurately segment diverse retinal images The ablation study confirms that 

while standard pre-trained networks provide robust baseline performances with limited fine-tuning, the 

comprehensive training approach employed by UKnowNet-A—utilizing multi-dataset pseudo labeling and 

advanced fine-tuning strategies—yields significant improvements. This confirms its efficacy in achieving 

state-of-the-art results in retinal image segmentation. 

These findings underscore the critical importance of customized training methods in medical image 

segmentation tasks. While pre-trained models offer a strong baseline performance, integrating pseudo-labels 

from diverse sources and using specialized training techniques significantly improve segmentation accuracy 

and robustness. Future research could investigate the combined effects of ensemble learning and the further 

augmentation of training data to enhance the precision of segmentation models. 
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4. CONCLUSION 

In this study, I have introduced UKnow-Net, a knowledge-enhanced U-Net architecture designed to improve 

retinal vessel segmentation across multiple datasets. By leveraging the strengths of multiple teacher networks, 

each trained on distinct retinal image datasets (DRIVE, CHASE_DB1, DCA1, and CHUAC), UKnow-Net 

addresses the challenges posed by variability and complexity in retinal images. UKnow-Net involves a multi-

step process where specialized teacher networks use pseudo-labels to train a unified student network. This 

approach allows the student network to distill domain-specific knowledge from the teacher networks, 

enhancing its ability to generalize across diverse datasets. The integration of pseudo-labels effectively transfers 

the collective expertise of the teacher networks to the student network, resulting in improved segmentation 

performance. 

The experimental results demonstrate that UKnow-Net outperforms traditional handcrafted networks (U-Net, 

UNet++, and Attention U-Net) and several state-of-the-art models in key performance metrics, including 

sensitivity, specificity, F1 score, and intersection over union (IoU). Specifically, UKnowNet-A, trained solely 

on pseudo-labels, achieved higher sensitivity across all datasets, indicating its superior ability to detect true 

positives. UKnowNet-B, which combines pseudo-labels with ground truth annotations, achieved a balanced 

performance in precision and recall, leading to higher F1 scores and IoU metrics. Our ablation study further 

confirms the effectiveness of the proposed knowledge enhancement approach. The comparison with pre-

trained convolutional neural networks fine-tuned on the same datasets revealed that UKnow-Net consistently 

delivers superior performance. This underscores the importance of leveraging pseudo-labels from multiple 

specialized networks to improve generalization and robustness in medical image segmentation tasks. I aim to 

ensure fairness in comparison and reproducibility in future research by publicly sharing the source code and 

the best model weights. This study highlights the potential of knowledge enhancement techniques in medical 

imaging and encourages further exploration of multi-teacher knowledge distillation methods.  

Future work could explore integrating additional datasets to enhance generalization further, applying the 

knowledge enhancement framework to other medical imaging tasks, and optimizing the model for real-time 

clinical applications. 
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