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ABSTRACT Inspired by the human brain’s structure and function, Artificial Neural Networks (ANN) were developed for data classification.
However, existing Neural Networks, including Deep Neural Networks, do not mimic the brain’s rich structure. They lack key features such
as randomness and neuron heterogeneity, which are inherently chaotic in their firing behavior. Neurochaos Learning (NL), a chaos-based
neural network, recently employed one-dimensional chaotic maps like Generalized Lüroth Series (GLS) and Logistic map as neurons. For
the first time, we propose a random heterogeneous extension of NL, where various chaotic neurons are randomly placed in the input layer,
mimicking the randomness and heterogeneous nature of human brain networks. We evaluated the performance of the newly proposed
Random Heterogeneous Neurochaos Learning (RHNL) architectures combined with traditional Machine Learning (ML) methods. On
public datasets, RHNL outperformed both homogeneous NL and fixed heterogeneous NL architectures in nearly all classification tasks.
RHNL achieved high F1 scores on the Wine dataset (1.0), Bank Note Authentication dataset (0.99), Breast Cancer Wisconsin dataset
(0.99), and Free Spoken Digit Dataset (FSDD) (0.98). These RHNL results are among the best in the literature for these datasets. We
investigated RHNL performance on image datasets, where it outperformed stand-alone ML classifiers. In low training sample regimes,
RHNL was the best among stand-alone ML. Our architecture bridges the gap between existing ANN architectures and the human brain’s
chaotic, random, and heterogeneous properties. We foresee the development of several novel learning algorithms centered around
Random Heterogeneous Neurochaos Learning in the coming days.
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INTRODUCTION

Brain consists of complex networks of enormous number of neu-
rons which are inherently non-linear (Ramachandran et al. 1998).
Inspired by the human brain in the way biological neurons are sig-
naling to one another, Artificial Neural Networks (ANN) were de-
veloped for purposes of information processing and classification.
With the rapid growth of Artificial Intelligence (AI) algorithms and
easy availability of highly efficient and inexpensive computing
hardware, almost all application domains today utilize Machine
Learning (ML) algorithms/techniques and Deep Learning (DL)
architectures for various tasks.

Applications of AI include (and not limited to) speech process-
ing (Graves et al. 2013), cybersecurity (Harikrishnan et al. 2018),
computer vision (Sebe 2005), and medical diagnosis (Harikrishnan
et al. 2019; Remya Ajai and Gopalan 2020; Krishna and Ajai 2019;
Asif et al. 2023). There are also algorithms that were developed
to relate with the human brain in terms of learning and memory
encoding (Aihara et al. 1990). The learning algorithms perform
internal weight updates and optimize their hyperparameter values
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so that error functions are minimized. Even though ANN is a
huge success today, it needs to be greatly improved in order to
mimic the human brain in terms of energy-efficient performance
of complex tasks. Thus, in recent times, there has been a focus
towards developing novel biologically-inspired algorithms and
learning architectures by various researchers (Delahunt and Kutz
2019; Balakrishnan et al. 2019).

There are fundamental differences between the way the hu-
man brain functions at the level of a single neuron (the basic unit
that receives, processes and transmits information) and how ANN
processes information (see Table 1). Brain neurons are found to
exhibit chaotic behaviour (Korn and Faure 2003) whereas neurons
in ANNs perform simple weighted addition of input data. Typi-
cally, in existing ANNs, homogeneous neurons are used whereas
in the central nervous system/brain (Perez-Nieves et al. 2021), neu-
rons are known to be heterogeneous. These neurons in biological
neural networks are differentiated based on structure and function.
Sensory neurons are activated by input of sensory stimuli from the
external environment. Motor neurons of the spinal cord connect
to the muscle glands and organs throughout the human body. In-
terneurons connect spinal motor and sensory neurons. Based on
structure of the neurons, they are classified as either being unipolar,
bipolar, pseudounipolar or multipolar (Weis et al. 2019). Based on
these observations, we can correctly say that current ANNs are
only loosely inspired by the brain.

CHAOS Theory and Applications 10

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
RESEARCH ARTICLE

Vol.7 / No.1 / 2025 / pp.10-30
https:/ /doi .org/10.51537/chaos.1578830

https://orcid.org/0000-0002-7920-3374
https://orcid.org/0000-0003-0097-4131


■ Table 1 A brief comparison of ANNs and biological neural networks.

Artificial Neural Networks (ANN) Biological Neural Networks

Homogeneous neurons Heterogeneous neurons

Every neuron performs a weighted linear
combination of inputs followed by nonlin-
ear activation

Neurons classified based on structure
(unipolar, bipolar, pseudounipolar or mul-
tipolar) and function (sensory, motor, in-
terneurons)

Scalar valued output at every neuron Vector valued output as different neurons
fire at different rates and duration

Non-chaotic neurons Chaotic neurons (spiking and bursting be-
haviour)

Complexity of network of neurons is
achieved through depth

Complexity achieved through depth, het-
erogeneity, randomness and differentiated
processing

Causal structures of input dataset is not pre-
served internally in ANNs (NB et al. 2022)

Internal representation of input stimuli pre-
serves causal structures (NB et al. 2022)

Neurochaos Learning (or NL) is a recently developed brain-
inspired chaos-based artificial neural network for data classifica-
tion (Balakrishnan et al. 2019; Harikrishnan and Nagaraj 2020).
Majority of Machine Learning (ML) algorithms have relied heavily
on substantial datasets for acquiring knowledge about the under-
lying distribution. The first of NL architectures, dubbed ChaosNet,
has demonstrated state-of-the-art performance in classification
tasks with only a fraction of training samples needed for learning.
Subsequently, NL was shown to perform equally well on imbal-
anced datasets, as well as, boost the performance of standard ML
classifiers (SVM, kNN and others) (Sethi et al. 2023). Moderate
levels of noise within the context of neurochaos learning are found
to optimize performance in classification tasks (Harikrishnan and
Nagaraj 2021). It is no surprise that NL has found to preserve
causal structures of input dataset in its internal representation of
chaotic neural traces (NB et al. 2022) which is completely missing
in the internal representation of ANNs.

In our previous study (AS et al. 2023), we have proposed an
extension of NL architecture to incorporate heterogeneous neurons.
We first demonstrated that the NL architecture with homogeneous
neurons, but with a different 1D chaotic map (the logistic map)
than the one used in ChaosNet (1D Generalized Lüroth Series or
GLS map) is also equally good at learning tasks. Classification accu-
racies for Ionosphere, Statlog (Heart), Bank Note Authentication, Breast
Cancer Wisconsin, Haberman’s Survival and Seeds increased with the
use of one-dimensional (1D) logistic map (with chaotic behaviour
regime) as neurons compared with GLS maps as neurons. We
then proposed HNL: Heterogeneous Neurochaos Learning which

combined GLS maps as neurons and logistic maps as neurons in a
simple odd-even structure of the input layer (AS et al. 2023). HNL
gave comparable performance to homogeneous NL and in the case
of Seeds and Haberman’s Survival datasets, it outperformed. We also
studied the effect of degree of chaos on classification accuracies, as
characterized by the lyapunov exponent of the chaotic 1D neurons
in HNL.

In this work, for the first time, we propose
Random Heterogenous Neurochaos Learning (RHNL) archi-
tecture. As noted in Table 1, the human brain not only has
heterogeneous neurons organized in layers, but there is an
element of randomness involved. No two human brains have the
same topological connectivity of neurons in their networks. The
randomness is due to differences in early development that is a
function of environment, learning and genetic factors. Inspired
by this fact, we incorporate randomness and heterogeneity in NL.
Specifically, we have analyzed three different RHNL architectures.
The first one consists of 25% of logistic map neurons and the
remaining 75% of GLS neurons, all randomly placed in the input
layer. The second one consists of 50% − 50% of logistic-GLS
neurons (again randomly placed) while the third architecture
is composed of 75% − 25% of logistic-GLS neurons. We have
rigorously tested these architectures (on classification tasks) in
conjunction with different classifiers (cosine similarity and other
ML classifiers) on a number of publicly available datasets.

This paper is structured as follows. The proposed RHNL ar-
chitecture is introduced for the first time (in Section 2). This is
followed by a description of datasets in Section 3 and classifiers
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used in our study (Section 4). Experiments along with their results
follow in Section 5. Section 5.1 gives the results obtained for Time
Series Dataset. Discussion on the classification performance of
ChaosFEXRHNL for debris and urban images are included in sec-
tion 5.2. Results and analysis of the classification performance of
ChaosFEXRHNL for brain tumor image dataset are included in sec-
tion 5.3. Performance analysis of ChaosFEXRHNL in comparison
with stand-alone ML classifiers in included in section 5.4. Section
5.5 contains the discussion on the performance of RHNL in low
training sample regime. The paper then concludes with discussion,
followed by potential research directions for the future in Section
6. The appendix contains the complete details of hyperparameter
tuning of all the learning architectures used in this study.

PROPOSED ARCHITECTURE

In order to mimic the randomness and heterogeneity of neuronal
structures present in our brains, we propose a novel neurochaos
learning architecture depicted in Figure 1. The input layer of this
Random Heterogeneous Neurochaos Learning architecture (RHNL)
consists of both chaotic 1D Logistic map and Generalized Lüroth
Series (GLS) map neurons, but at randomized locations. Contrast
this with the Heterogeneous Neurochaos Learning or HNL proposed
in (AS et al. 2023) where we had employed a simple odd-even
structure (odd positions for GLS map neurons and even positions
for logistic map neurons). In RHNL, we control the proportion of
the randomly placed GLS and logistic neurons in the input layer
to yield three distinct RHNL architectures: 25% − 75%, 50% − 50%
and 75% − 25%. In each case, the locations of the neurons are
chosen uniformly at random. Following the flow in Figure 1,
each neuron (either a GLS or a logistic map neuron) starts firing
chaotically as soon as it encounters an input stimuli (xi).

Each input stimuli is a data (text/image/video etc.) sample
of a particular class which RHNL is tasked to learn and classify.
Each neuron stops firing as soon as it detects the input stimuli
(when it lands in an ϵ-neighbourhood). This completes a chaotic
neural trace. Since different neurons detect their corresponding
stimuli at different times, the chaotic neural traces are of unequal
length (similar to the brain). These chaotic neural traces are then
analyzed to extract features (ChaosFEX) such as entropy, energy,
firing time and firing rate. Subsequently, the ChaosFEX features
are fed to a classifier - that may consist of a basic Cosine Similarity-
based classifier (Balakrishnan et al. 2019) or one of the standard ML
classifiers (Sethi et al. 2023) such as SVM: Support Vector Machines,
DT: Decision Trees, kNN: k-Nearest Neighbour, AB: AdaBoost, RF:
Random Forests, or GNB: Gaussian Naive Bayes.

Each neuron (logistic or GLS) starts of with a fixed initial neu-
ral activity value q which is one of the hyperparameters of the
learning algorithm. The other hyperparameters are the value of ϵ
(noise intensity) that determines the stopping criteria of the neural
firing/trajectory (which is chaotic) and the Discrimination Thresh-
old (b) which is needed to compute Shannon Entropy (one of the
ChaosFEX features) from the symbolic sequence of the chaotic neural
trace (Balakrishnan et al. 2019; Harikrishnan and Nagaraj 2020;
Sethi et al. 2023). These three hyperparameters (q, ϵ, b) are de-
termined by a cross-validation strategy (of five folds). We now
describe the GLS and logistic map neurons.

The Generalized Lüroth Series (GLS) Neuron
In (Balakrishnan et al. 2019), the one dimensional discrete dy-
namical system known as the GLS: Generalized Lüroth Series
is used as the neuron. Skew-tent/tent maps, skew-binary/binary
maps are commonly used among the GLS maps. This class of

one-dimensional systems/maps have demonstrated high effec-
tiveness in various engineering applications (Nagaraj 2022). In
our proposed Random Heterogenous Neurochaos Learning (RHNL)
architecture, skew-tent maps are used as chaotic neurons. The
Skew-tent map CSkew−Tent : [0.0, 1.0) 7→ [0.0, 1.0) is mathemati-
cally defined as :

CSkew−Tent(z) =


z
b , 0 ≤ z < b,

(1−z)
(1−b) , b ≤ z < 1,

(1)

where z ϵ [0.0, 1.0) and 0.0 < b < 1.0.

The Logistic Map Neuron
The one-dimensional dynamical system/map known as the Logis-
tic map is arguably the simplest example of a chaotic map (Phatak
and Rao 1995). We explore the use of this one-dimensional
map/dynamical system (in chaotic state) as neurons for RHNL.
The equation for this dynamical system/map is:

xz+1 = rxz(1 − xz), (2)

where 0.0 ≤ xz < 1.0 and the bifurcation parameter is: 0 < r ≤ 4.0.
z is the iteration/time step. It is widely recognized that the logistic
map displays chaotic behavior for r values that are greater than
3.56995. However, there exist certain regions of r referred to as
islands of stability where chaotic behavior is lost. Figure 2 shows
the first return map of the logistic dynamical system/map with r
set to 4.0. The lyapunov exponent is also plotted alongside.

Logistic map displays an infinite number of periodic orbits for
each integer value of the period (only for specific values of r),
indicating intricate dynamics (Alligood et al. 1998). For numerous
r values, this map exhibits high sensitivity to initial conditions
(Butterfly Effect) – a characteristic hallmark/feature of chaos. The
degree of sensitivity to initial values can be quantified through the
Lyapunov exponent. A lyapunov exponent value greater than zero is
a symptom of chaotic behavior. Alternatively, a lyapunov exponent
= 0 or < 0 suggests either a periodic/eventually periodic/quasi-
periodic behaviour. For the difference equation (first-order):

xj+1 = G(xj), (3)

the lyapunov exponent is defined as:

λG(x) = lim
k→∞

1
k

k−1

∑
j=0

ln |G′
(xj)|, (4)

where G(·) is assumed to be differentiable. The initial value x0 is
randomly chosen (from an uniform distribution) to lie between
0.0 and 1.0. x0 → G(x0) → G2(x0) → . . . is the trajectory. G(x) is
given by equation 2 for the logistic map/dynamical system.

Feature Transformation, Extraction and Classification
As depicted in Figure 1, in the newly proposed RHNL structure,
both 1D chaotic Logistic and GLS neurons are employed in ran-
domly selected locations of input layer. Each neurons transforms
the input stimulus (data sample) into respective chaotic neural
traces (or chaotic trajectories). From these trajectories, required
features are derived for further classification process. The quantity
of neurons, denoted as (C1, C2, ....Cn) as illustrated in Figure 1, will
precisely match the quantity of features of the input data/samples.
All input layer neurons independently start firing (when an input
value/stimulus triggers it), say xi. These start of with an initial
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Figure 1 Random Heterogenous Neurochaos Learning (RHNL) Architecture: (X1, X2...Xn) are the input stimuli (data sample),
(C1, C2, C3, ...., Cn−1, Cn) are neurons which can be either 1D Logistic map or GLS map. Each neuron fires chaotically until it detects the

input stimuli. From the neural traces of every neuron (which is chaotic), four features namely firing-time, firing-rate, entropy and energy
are extracted. These ChaosFEX features would now be fed to either a cosine similarity classifier or any of the standard machine learning

classifiers. The logistic map and GLS neurons are randomly placed in the input layer with one of the three following proportions:
25% − 75%, 50% − 50% and 75% − 25%.
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Figure 2 (I) Left: One dimensional logistic map with r value set to 4.0. (II) Right: The lyapunov exponent computed for different r values
(varied from 3.5 to 4.0). The initial neural activity q was set to 0.01.

value/neural-activity of q units. Each of the input values are scaled
to fall within the range of [0, 1]. Upon entering the open ϵ-ball (or
neighbourhood) of the input stimulus, the neural trace comes to
a halt. In the context of classification using Neurochaos Learning
(NL) architecture, a straightforward decision rule is employed, rely-
ing on mean-representation vectors (Balakrishnan et al. 2019). Tuning
of the three essential hyper-parameters is necessary: noise intensity
(ϵ), initial neural-activity (q) and discrimination-threshold (b). To
determine the optimal performance, a cross-validation approach
(with five-folds) is utilized for hyperparameter tuning. Following
the tuning and stabilization of these for a specific data-set, we
generate the neurochaos features. These features that are obtained
from the neural trajectories/traces (which are chaotic) of the input
layer neurons of the NL architecture (could be homogeneous NL
or HNL or RHNL) are referred to as ChaosFEX (Sethi et al. 2023)
features. These include firing-rate, firing-time, Shannon entropy
and energy (briefly described below).

Firing time is defined as the duration of the chaotic neural
trajectory/trace to align with input value (or stimulus) (Sethi et al.
2023). This duration is measured in terms of iteration steps. The
firing rate is determined by that fraction of time during which
the chaotic neural trajectory is greater than the discrimination
threshold (Sethi et al. 2023). Energy of the chaotic trace/trajectory
c(t) is defined as:

Ec =
M

∑
t=1

|c(t)|2, (5)

where M = firing-time. Let symbolic sequence (binary) of the
trace/trajectory, be denoted by s(t), which is expressed as:

s(tj) =

0, c(tj) < b

1, b ⩽ c(tj) < 1,
(6)

where j = 1 to M (the firing-time). The Shannon first-order entropy
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for s(t) is determined using the following calculations:

H(s) = −
2

∑
t=1

pi log2(pi) bits, (7)

where p1 corresponds to the probability of symbol 0 while p2 per-
tains to the probability of symbol 1. Dimensions of these features
are similar to the size of the inputs. For an input of dimensions
m × n, the output features will have a size of m × 4n. This process
involves converting the input data into a feature space character-
ized by high-dimensional chaos.

In the training phase of the algorithm, for each data sample
of each class, a representation vector is formed with the set of
ChaosFEX features namely energy, entropy, firing time and firing
rate. These representation vectors of all the data samples within a
particular class are collected and its mean is computed to yield a
single mean representation vector for each class. Thus every class has
its own distinct mean representation vector that is like a signature
of the neurochaos features of that class. These mean representation
vectors are fed to a classifier to perform the classification. In the
testing phase, when a test sample appears at the NL architecture’s
input layer, it undergoes a similar transformation to yield the
ChaosFEX features. These features are compared with the mean
representation vectors of each class to determine the closest one
and the class label of the closet one is declared to be the class of
input test sample. For the ChaosNet version of NL, we employ the
cosine similarity measure to determine closeness. Alternatively,
we could pass on the representation vectors corresponding to the
data samples (within a class) to a traditional ML classifier and
learn the decision boundary.

DATASETS

To conduct our analysis, we picked datasets spanning various
application domains. Before feeding the data samples to the chaotic
neurons of RHNL’s input layer, the data samples of the input is
normalized to lie within [0, 1]. Class labels are assigned numerical
names, starting from 0. Further information about the datasets
utilized can be found in Table 2. The data-sets are described briefly
here.

The Iris dataset (Fisher 1936; Dua et al. 2017) comprises 150
instances distributed across 3 classes: Setosa, Versicolour, and Vir-
ginica. The classification features include sepal length, sepal width,
petal length, and petal width. The distribution of data instances
into train and test sets for our analysis is presented in Table 2. The
Ionosphere dataset (Sigillito et al. 1989; Dua et al. 2017) is divided
into 2 classes, labeled as Good or Bad. Radar signal reflects back if
any structure is present in the ionosphere. This state is represented
as ‘Good’. ‘Bad’ denotes the condition in which the ionosphere is
penetrated by this (radar) signal. The data-set comprises 126 in-
stances labeled as Good, 225 instances labeled as Bad, and includes
34 attributes. The distribution of instances into train and test sets
for our analysis is outlined in Table 2. The Wine dataset (Vandegin-
ste 1990; Dua et al. 2017) comprises 178 instances categorized into
3 classes labeled as 1, 2, and 3. The chemical constituents of each
data are considered for classification. The distribution of instances
into train and test sets for our analysis is presented in Table 2.

The Bank Note Authentication dataset (Gillich and Lohweg 2010;
Dua et al. 2017) has two classes:Genuine or Forgery based on the
images of the banknotes. Wavelet transformation is applied on
images and the features such as variance, skewness, kurtosis,
and entropy are derived. In total, the dataset comprises 1372
instances, with 762 instances classified as Genuine and 610 in-
stances as Forgery. The distribution of instances into train and test

sets for our analysis is outlined in Table 2. The Haberman’s Sur-
vival dataset (Haberman 1973; Dua et al. 2017) encompasses three
attributes (collected from those patients who underwent breast
cancer surgery). The label1 class represent the patients survived
for ≥ 5 years. Class 2 represent the patients who died in a span
of 5 years. The train and test sets distribution for our analysis is
presented in Table 2. Nine parameters are considered for Breast
Cancer Wisconsin dataset (Street et al. 1993; Dua et al. 2017). Data
instances are categorized to be either Malignant or Benign. In total,
there are 699 instances, with 241 being classified as Malignant and
458 as Benign. The distribution of instances into train and test sets
for our analysis is outlined in Table 2.

The Statlog (Heart) dataset (Dua et al. 2017) contains two classes
of data: patients having heart problems are classified in Class-1 and
patients without any heart disease are represented in Class-2. The
distribution of instances into train and test sets for our analysis is
presented in Table 2. The Seeds dataset (Dua et al. 2017) is employed
to distinguish between three types of wheat, namely Kama, Rosa,
and Canadian. Wheat kernels are used for identification among
the types with seven parameters that represent various features
of the kernels. In all, 210 data instances are in consideration, with
70 instances allocated for each class. The distribution of instances
into train and test sets for our analysis is outlined in Table 2.

In our analysis, we also included a time series dataset namely
Free Spoken Digit Dataset (FSDD). Recordings of six speakers recit-
ing numbers from 0 to 9 (Jackson et al. 2018) is contained in this
data-set. There are 50 recordings for each number per speaker. The
samples in the FSSD data set are preprocessed using fast fourier
transform (or FFT). We considered Jackson (one of the speakers)
that has instances of data numbering 500. We filtered 480 data
instances for feeding into our proposed algorithms and analysed.
For our analysis, the train/test sets of FSDD are shown in Table 2.

Around 85 images of debris scars and urban settlements from
five Asian countries (India, Nepal, Japan, Taiwan and China) were
obtained from Planet labs (Planet Labs Inc. Accessed: 2019-10-09)
imagery with 3− 5m resolution for our analysis to identify the clas-
sification performance of RHNL, specifically ChaosFEXRH25L75G
architecture. For our analysis, we also have considered 100
MRI brain images from Kaggle online repository (Chakrabarty
Accesed:2019-10-09).

CLASSIFIERS

As mentioned previously, RHNL supports the use of traditional
popular ML classifiers. The neurochaos features (ChaosFEX) can
be fed to one of the many widely available machine learning classi-
fiers to perform classification. Previously, it has been demonstrated
that neurochaos features boost the performance of the ML clas-
sifiers (Sethi et al. 2023). In our study we use the following ML
classifiers: Support Vector Machine (SVM) (Boser et al. 1992), Ad-
aBoost (Schapire 2013), Decision Tree (Quinlan 1986), Guassian
Naive Bayes (Berrar 2018), k-NN (Cover and Hart 1967) and Ran-
dom Forests (RF) (Breiman 2001). Whenever a traditional ML clas-
sifier was used on the neurochaos featuers, the hyperparameters (q,
b, ϵ) that were already tuned for the various RHNL architectures
(ChaosFEX) were maintained and only the ML hyperparameters
are further tuned. This reduces the computational burden.

The Adaptive Boosting (AdaBoost) classifier has the following
hyperparameters:

• n_estimator: The maximum limit on the number of estimators
at which boosting is terminated.
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■ Table 2 Datasets (with their details) employed in our study.

Data-set Num. of Classes Samples per class (Training) Samples per class (Testing) Ref.

Iris 3 (40, 41, 39) (10, 9, 11) Fisher (1936); Dua et al. (2017)

Ionoshpere 2 (98, 182) (28, 43) Sigillito et al. (1989); Dua et al. (2017)

Wine 3 (45, 57, 40) (14, 14, 8) Vandeginste (1990); Dua et al. (2017)

Bank Note Authentication 2 (614, 483) (148, 127) Gillich and Lohweg (2010); Dua et al. (2017)

Haberman’s Survival 2 (181, 63) (44, 18) Haberman (1973); Dua et al. (2017)

Breast Cancer Wisconsin 2 (367, 193) (91, 48) Street et al. (1993); Dua et al. (2017)

Statlog (Heart) 2 (117, 99) (33, 21) Dua et al. (2017)

Seeds 3 (59, 56, 53) (59, 56, 53) Dua et al. (2017)

FSDD 10 (40, 35, 44, 42, 38, 34, 37, 44, 33, 37) (10, 15, 6, 8, 8, 7, 13, 6, 10, 13) Jackson et al. (2018)

All other hyperparameters are maintained at their default val-
ues provided by scikit-learn. Tuned hyperparameters for all the
datasets for RHNL that uses the AdaBoost classifier are given in
Tables 21, 22 and 23(Appendix).

The Decision Tree (DT) classifier has the following hyperparam-
eters: min_samples_lea f (varied from 1 to 10 in increments of 1),
max_depth (1 to 10 in increments of 1), and ccp_alpha.

All other hyperparameters are maintained at their default val-
ues provided by scikit-learn. The tuned hyperparameters for all the
datasets for RHNL that uses the Decision Trees classifier are given
in Tables 24, 25 and 26 (Appendix).

The k-Nearest Neighbours (k-NN) classifier has the value of k
as a hyperparameter. This is varied from 1.0 to 6.0 (in incremets
of 2). All other hyper-parameters are maintained at their default
values provided by scikit-learn. The tuned hyperparameters for all
the datasets for RHNL that uses the kNN classifier are given in
Tables 27, 28 and 29 (Appendix).

The Random Forests (RF) classifier has the following hy-
perparameters: n_estimators (can take values in the set
{1, 10, 100, 1000, 10000}), max_depth (1 to 10 in steps of 1). All
other hyperparameters are maintained at their default values
provided by scikit-learn. The tuned hyperparameters for all the
datasets for RHNL that uses the Random Forests classifier are
given in Tables 30, 31 and 32 (Appendix).

For Support Vector Machines classifier (SVM), all hyperparame-
ters (offered for linear support vector classification) are maintained
at their default values provided by scikit-learn. Gaussian Naive
Bayes (GNB) classifier calculates the likelihood and prior prob-
abilities for making predictions. GNB assumes that the features
follow a Gaussian distribution. Default parameters offered for
GNB by scikit-learn are retained for our analysis. For ease of un-
derstanding, Table 3 gives a summarized view of all the different
neurochaos learning (NL) architectures with the corresponding
notations that are used in this paper.

For RHNL, as noted in Table 3, ChaosFEXRH25L50G,
ChaosFEXRH50L50G, and ChaosFEXRH75L25G refers to the three dis-
tinct random heterogeneous neurochaos learning architectures
with 25% − 75%, 50% − 50% and 75% − 25% proportion of 1D
chaotic Logistic neurons and GLS neurons respectively. These
chaotic neurons are placed at random locations in the input layer
of RHNL.

EXPERIMENTS AND RESULTS

The performance of ChaosFEXRH architectures are analysed for
various datasets using Macro F1-score (a function of both macro Re-
call as well as macro Precision). True-Positive rate (TP) signifies a
positive target-value correctly identified as Positive. True-Negative
rate (TN) denotes a ‘negative target-value’ correctly classified as
Negative. False Positive rate (FP) accounts those instances when
a ‘negative target value’ is inaccurately deemed/classified as Pos-
itive. False-Negative rate (FN) accounts those instances when a
‘positive target value’ is erroneously deemed/classified as Nega-
tive. Mathematically, they are described as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (8)

Precision =
TP

(TP + FP)
, (9)

Recall =
TP

(TP + FN)
, (10)

F1 = 2.0 × Precision × Recall
Precision + Recall

. (11)

The Macro F1-score is computed as the average of all F1-scores
(for the m classes), given by:

Macro F1 − score =
F1Class1 + F1Class2 + . . . + F1Classm

m
. (12)

Tuning of the 3 hyper-parameters (q, b, ϵ) are performed across
various datasets for the three RHNL architectures proposed namely
ChaosFEXRH25L75G, ChaosFEXRH50L50G and ChaosFEXRH75L25G.
Tuned values of hyperparameters for all architectures are given
in tables 4, 5 and 6. Cross validation using five folds is utilized
to fine tune hyper-parameters and determine the best achieved
performance.

We also analysed the performance of our proposed RHNL ar-
chitectures in combinations with other traditional ML classifiers
such as AdaBoost, Decision Trees, Gaussian Naive Bayes, kNN
and Random Forests. The ML classifier parameters are tuned for
various datasets to obtain the best accuracy possible.
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■ Table 3 Various learning architectures of Neurochaos Learning (NL). These include homogenous NL, heterogeneous NL (HNL) and
random heterogeneous NL (RHNL), including combinations with ML classifiers.

No. NL Architec-
ture

Type of Neurons Notation Classifiers Ref.

1 ChaosNet Homogeneous, GLS ChaosFEX Cosine similarity Balakrishnan
et al.
(2019)

2 ChaosNet Homogeneous, Logistic ChaosFEXlogistic Cosine similarity AS
et al.
(2023)

3 NL Homogeneous, GLS ChaosFEX+ML SVM, AB, DT, kNN,
GNB, RF

Sethi
et al.
(2023)

4 NL Homogeneous, Logistic ChaosFEXlogistic+ML SVM, AB, DT, kNN,
GNB, RF

AS
et al.
(2023)

5 HNL: Chaos-
Net

Heterogeneous, GLS, Lo-
gistic in odd-even struc-
ture

ChaosFEXHetero Cosine similarity AS
et al.
(2023)

6 HNL Heterogeneous, GLS, Lo-
gistic in odd-even struc-
ture

ChaosFEXHetero+ML SVM, AB, DT, kNN,
GNB, RF

AS
et al.
(2023)

7 RHNL: Chaos-
Net

Heterogeneous & Ran-
dom, GLS, Logistic in
randomized locations

ChaosFEXRH25L75G ,
ChaosFEXRH50L50G ,
ChaosFEXRH75L50G

Cosine similarity This
work.

8 RHNL Heterogeneous & Ran-
dom, GLS, Logistic in
randomized locations

ChaosFEXRH25L75G+ML,
ChaosFEXRH50L50G+ML,
ChaosFEXRH75L50G+ML

SVM, AB, DT, kNN,
GNB, RF

This
work.

■ Table 4 Tuned hyperparameters for ChaosFEXRH25L75G for the
eight datasets.

Data-set q b ϵ

Iris 0.062 0.185 0.298

Ionosphere 0.010 0.409 0.051

Wine 0.460 0.469 0.141

Bank-Note-Authentication 0.360 0.419 0.121

Haberman’s-Survival 0.050 0.269 0.031

Breast-Cancer-Wisconsin 0.170 0.460 0.050

Statlog (Heart) 0.470 0.489 0.030

Seeds 0.050 0.189 0.161

Macro F1 scores obtained for various datasets with
ChaosFEXRH25L75G and ChaosFEXRH25L75G+SVM are reported
in Table 7. For Haberman’s Survival dataset, we achieved an
improved macro F1 score of 0.73 compared to the best F1 score
reported in earlier works (Sethi et al. (2023); AS et al. (2023)). Macro

■ Table 5 Tuned hyperparameters for ChaosFEXRH50L50G for the
eight datasets.

Data-set q b ϵ

Iris 0.050 0.359 0.221

Ionosphere 0.099 0.479 0.061

Wine 0.460 0.469 0.131

Bank-Note-Authentication 0.090 0.289 0.041

Haberman’s-Survival 0.140 0.489 0.021

Breast-Cancer-Wisconsin 0.069 0.139 0.041

Statlog (Heart) 0.180 0.169 0.011

Seeds 0.050 0.139 0.151

F1 score of Statlog (Heart) dataset is also increased to 0.84 with
ChaosFEXRH25L75G+SVM classifier.

Table 8 gives the macro F1 score obtained with
ChaosFEXRH50L50G and ChaosFEXRH50L50G+SVM. Table 9
gives the macro F1 score obtained with ChaosFEXRH75L25G and
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■ Table 6 Tuned hyperparameters for ChaosFEXRH75L25G for the
eight datasets.

Data-set q b ϵ

Iris 0.15 0.299 0.231

Ionosphere 0.02 0.219 0.809

Wine 0.47 0.479 0.131

Bank-Note-Authentication 0.01 0.259 0.071

Haberman’s-Survival 0.23 0.1 0.011

Breast-Cancer-Wisconsin 0.14 0.489 0.021

Statlog (Heart) 0.13 0.1 0.051

Seeds 0.05 0.189 0.151

ChaosFEXRH75L25G+SVM.

■ Table 7 Macro F1 scores reported for ChaosFEXRH25L75G and
ChaosFEXRH25L75G+SVM.

Data-set ChaosFEXRH25L75G ChaosFEXRH25L75G+SVM

Iris 1 1

Ionosphere 0.6 0.88

Wine 0.6 0.94

Bank-Note-Authentication 0.75 0.9

Haberman’s-Survival 0.73 0.56

Breast-Cancer-Wisconsin 0.85 0.98

Statlog (Heart) 0.77 0.84

Seeds 0.81 0.84

Random Heterogenous Neurochaos Learning architectures
which incorporate ChaosFEX features with other ML classifiers
such as AdaBoost (AB), Decision Trees (DT), k-NN, Gaussian Naive
Bayes (GNB), and Random Forests (RF) are implemented and the
results indicate that randomness and heterogeneity introduced in
the NL architectures yields superior performance when compared
with homogeneous or fixed heterogeneous structures.

The macro F1 scores obtained for
ChaosFEXRH25L75G+AdaBoost, ChaosFEXRH50L50G+AdaBoost
and ChaosFEXRH75L25G+AdaBoost structures are given in
Table 10. Accuracy of 100% is obtained for Wine dataset
with ChaosFEXRH50L50G+AdaBoost architecture. Macro
F1-score = 0.99 is successfully achieved for Bank Note au-
thentication data-set for both ChaosFEXRH50L50G+AdaBoost
and ChaosFEXRH75L25G+AdaBoost. High F1-score = 0.99

■ Table 8 Macro F1 scores reported for ChaosFEXRH50L50G and
ChaosFEXRH50L50G+SVM.

Data-set Name ChaosFEXRH50L50G ChaosFEXRH50L50G+SVM

Iris 1 1

Ionosphere 0.58 0.9

Wine 0.59 0.94

Bank-Note-Authentication 0.59 0.72

Haberman’s-Survival 0.68 0.47

Breast-Cancer-Wisconsin 0.77 0.92

Statlog (Heart) 0.78 0.79

Seeds 0.72 0.81

■ Table 9 Macro F1 scores reported for ChaosFEXRH75L25G and
ChaosFEXRH75L25G+SVM.

Data-set Name ChaosFEXRH75L25G ChaosFEXRH75L25G+SVM

Iris 1 0.97

Ionosphere 0.71 0.94

Wine 0.63 0.97

Bank-Note-Authentication 0.65 0.84

Haberman’s-Survival 0.6 0.51

Breast-Cancer-Wisconsin 0.79 0.94

Statlog (Heart) 0.65 0.85

Seeds 0.78 0.86

is also achieved for Breast Cancer Wisconsin data-set when
ChaosFEXRH75L25G+AdaBoost is implemented.

The macro F1 scores obtained for ChaosFEXRH25L75G+Decision
Trees, ChaosFEXRH50L50G+Decision Trees and
ChaosFEXRH75L25G+Decision Trees can be found in Ta-
ble 11. High F1 score = 0.98 for Breast Cancer Wiscon-
sin data-set with ChaosFEXRH25L75G+Decision Trees and
ChaosFEXRH75L25G+Decision Trees has been achieved.

The macro F1 scores obtained for ChaosFEXRH25L75G+GNB,
ChaosFEXRH50L50G+GNB and ChaosFEXRH75L25G+GNB can
be found in Table 13. The macro F1 scores obtained
for ChaosFEXRH25L75G+kNN, ChaosFEXRH50L50G+kNN and
ChaosFEXRH75L25G+kNN is seen in Table 12.

The macro F1 scores obtained for ChaosFEXRH25L75G+Random
Forests, ChaosFEXRH50L50G+Random Forests and
ChaosFEXRH75L25G+Random Forests can be found in Table
14. High performance is obtained for Breast Cancer Wisconsin
dataset using ChaosFEXRH25L75G+Random Forests with F1 score
of 0.98.
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■ Table 10 Macro F1 scores obtained for different ChaosFEXRH+AdaBoost architectures.
Bold fonts indicate the highest F1 score achieved for the respective dataset.

Data-set Name ChaosFEXRH25L75G+AB ChaosFEXRH50L50G+AB ChaosFEXRH75L25G+AB

Iris 1 1 0.967

Ionosphere 0.97 0.97 0.97

Wine 0.97 1 0.944

Bank-Note-Authentication 0.93 0.99 0.989

Haberman’s-Survival 0.5 0.56 0.66

Breast-Cancer-Wisconsin 0.98 0.98 0.99

Statlog (Heart) 0.81 0.85 0.88

Seeds 0.86 0.77 0.73

■ Table 11 Macro F1 score obtained for different ChaosFEXRH+Decision Trees architectures.
Bold fonts indicate the highest F1 score achieved for the respective dataset.

Data-set Name ChaosFEXRH25L75G+DT ChaosFEXRH50L50G+DT ChaosFEXRH75L25G+DT

Iris 1 0.97 0.97

Ionosphere 0.92 0.91 0.97

Wine 0.95 0.94 0.95

Bank-Note-Authentication 0.95 0.90 0.89

Haberman’s-Survival 0.60 0.65 0.63

Breast-Cancer-Wisconsin 0.98 0.97 0.98

Statlog (Heart) 0.92 0.84 0.86

Seeds 0.81 0.81 0.76

■ Table 12 Macro F1-scores obtained for different ChaosFEXRH+kNN architectures.
Bold fonts indicate the highest F1 score achieved for the respective dataset.

Data-set Name ChaosFEXRH25L75G+kNN ChaosFEXRH50L50G+kNN ChaosFEXRH75L25G+kNN

Iris 1 1 1

Ionosphere 0.74 0.85 0.80

Wine 0.66 0.72 0.77

Bank-Note-Authentication 0.93 0.83 0.89

Haberman’s-Survival 0.64 0.61 0.61

Breast-Cancer-Wisconsin 0.98 0.93 0.94

Statlog (Heart) 0.60 0.81 0.78

Seeds 0.76 0.70 0.79

When compared with earlier architectures which were either
homogeneous NL Sethi et al. (2023) or heterogeneous NL but with
fixed structure (odd-even) AS et al. (2023), we report that RHNL
yields either comparable or superior classification performance.

For ease of comparison, we summarize these results in Table 15.
Macro F1 scores obtained with RHNL are among the best for the
various datasets considered in our study.
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■ Table 13 Macro F1-scores obtained for different ChaosFEXRH+GNB architectures.
Bold fonts indicate the highest F1-score achieved for the respective dataset.

Data-set Name ChaosFEXRH25L75G+GNB ChaosFEXRH50L50G+GNB ChaosFEXRH75L25G+GNB

Iris 1 1 1 0.97

Ionosphere 0.83 0.83 0.91

Wine 0.94 0.94 0.94

Bank-Note-Authentication 0.73 0.67 0.70

Haberman’s-Survival 0.62 0.61 0.52

Breast-Cancer-Wisconsin 0.94 0.89 0.91

Statlog (Heart) 0.77 0.81 0.74

Seeds 0.72 0.63 0.70

■ Table 14 Macro F1 scores obtained for all datasets using ChaosFEXRH+RF architectures.
Bold fonts indicate the highest F1 score achieved for the respective dataset.

Data-set Name ChaosFEXRH25L75G+RF ChaosFEXRH50L50G+RF ChaosFEXRH75L25G+RF

Iris 1 1 0.97

Ionosphere 0.96 0.93 0.97

Wine 0.97 0.97 0.97

Bank-Note-Authentication 0.93 0.92 0.94

Haberman’s-Survival 0.66 0.57 0.59

Breast-Cancer-Wisconsin 0.98 0.99 0.97

Statlog (Heart) 0.86 0.87 0.71

Seeds 0.83 0.76 0.78

Results Obtained for Time Series Dataset

We analysed the performance of our proposed RHNL architectures
with a time series dataset – namely Free Spoken Digit Dataset (FSDD).
The hyperparameters tuned are given in Tables 33, 34, 35 and 36
(Appendix). Macro F1 scores obtained for various ChaosFEXRHNL
architectures are seen in Figures 3, 4 and 5 (respectively).

Classification performance of ChaosFEXRHNL for Debris Scars
and Urban Images

Satellites images are processed to detect and estimate vulnerability
of human settlements. Machine Learning algorithms are used now
a days to identify areas with high risk of landslide Sridharan et al.
(2020). Around 85 images of debris scars and urban settlements
from five Asian countries (India, Nepal, Japan, Taiwan and China)
were obtained from Planet labs Planet Labs Inc. (Accessed: 2019-
10-09) imagery with 3 − 5m resolution for our analysis to identify
the classification performance of Neurochaos Learning Architec-
ture (NL), specifically ChaosFEXRH25L75G algorithm. Images are
labelled either as “debris” or as “urban” based on visual recogni-
tion. We have used 35 debris scar images and 50 urban settlement
images for our analysis. Figure 6(a) and Figure 6(b) shows the
sample images from class “debris” and class “urban”. Out of total
85 satellite images captured, 80% of the data are used for training

Cosine SVM AB DT GNB kNN RF

0.2

0.4

0.6

0.8

1

0.88

0.97

0.41

0.2

0.73

0.9

0.7

Figure 3 Macro F1 scores obtained for FSDD data set for
ChaosFEXRH25L75G with various classifiers. Classifiers are labeled

along the x-axis.

and the remaining 20% are used for testing. We have used 5−fold
cross validation for our analysis.

The images are initially pre-processed using Otsu global thresh-
olding algorithm and then filtered using Discrete Wavelet Trans-
form(DWT). Daubechies-4 wavelets are used for the DWT im-
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■ Table 15 Comparison of best macro F1-scores obtained for RHNL structures (proposed in this study) with the other architectures
reported in AS et al. (2023). Best macro F1 scores are highlighted in bold font.

Data-set Best
macro
F1 score

RHNL architectures with best
macro F1-scores

NL with best macro F1 scores reported in (AS et al. 2023)

Iris 1

ChaosFEXRH25L75G ,
ChaosFEXRH50L50G ,
ChaosFEXRH75L25G ,

ChaosFEXRH25L75G+SVM,
ChaosFEXRH50L50G+SVM,
ChaosFEXRH25L75G+AB,

ChaosFEXRH50L50G+AB,
ChaosFEXRH25L75G+DT,
ChaosFEXRH25L75G+kNN,

ChaosFEXRH25L75G+GNB,
ChaosFEXRH25L75G+RF,
ChaosFEXRH50L50G+RF

1

ChaosFEXLogistic,
ChaosFEXLogistic+SVM,

ChaosFEXHetero ,
ChaosFEXHetero+SVM

Ionosphere 0.97

ChaosFEXRH25L75G+AB,
ChaosFEXRH50L50G+AB,

ChaosFEXRH75L25G+AB,
ChaosFEXRH75L25G+DT,

ChaosFEXRH75L25G+RF 0.97 ChaosFEXLogistic+SVM

Wine 1 ChaosFEXRH50L50G+AB 0.98 ChaosFEXGLS

Bank-Note-
Authentication

0.99 ChaosFEXRH50L50G+AB,
ChaosFEXRH75L25G+AB

0.96 ChaosFEXLogistic+SVM

Haberman’s-
Survival

0.73 ChaosFEXRH25L75G 0.72 ChaosFEXHetero

Breast-Cancer-
Wisconsin

0.99 ChaosFEXRH75L25G ,
ChaosFEXRH50L50G+RF

0.97 ChaosFEXLogistic+SVM

Statlog (Heart) 0.92 ChaosFEXRH25L75G+DT 0.89 ChaosFEXLogistic+SVM

Seeds 0.86 ChaosFEXRH25L75G+AdaBoost,
ChaosFEXRH75L25G+SVM

0.86 ChaosFEXHetero
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Figure 4 Macro F1 scores obtained for FSDD data set for
ChaosFEXRH50L50G with various classifiers. Classifiers are labeled

along the x-axis.
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Figure 5 Macro F1 scores obtained for FSDD data set for
ChaosFEXRH75L25G with various classifiers. Classifiers are labeled

along the x-axis.
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(a) (b)

Figure 6 (a) Debris scar image (class “debris”). (b) Urban
settlement image (class “urban”).

plementation. Grey-level co-occurrence matrix (GLCM) is then
created which analyses the pairs of horizontally adjacent pixels
in a scaled version of the image. From the GLCM matrix, 12 fea-
tures namely Contrast, Correlation, Energy, Homogeneity, Mean,
Standard Deviation, Entropy, RMS, Variance, Smoothness, Kurto-
sis and Skewness are extracted. These features are fed to various
ChaosFEXRHNL.

Parameters tuned for various structures considered for analysis
with debris-urban dataset are shown in Appendix Tables 37, 38
and 39.

Performance analysis is done and the macro F1 score ob-
tained for the various architectures considered are given in Ta-
ble 16. We analysed the structures and found that high F1 score
of 0.94 is obtained with ChaosFEXRH25L75G, ChaosFEXRH25L75G
+SVM, ChaosFEXRH25L75G +kNN, ChaosFEXRH25L75G +DT and
ChaosFEXRH25L75G+RF for the debris-urban dataset considered.

■ Table 16 Macro F1 scores for debris-urban dataset using
ChaosFEXRHNL with various classifiers (cosine similarity and

other ML classifiers).

Classifier CosSim SVM k-NN AB DT GNB RF

ChaosFEXRH25L75G 0.94 0.94 0.94 0.70 0.94 0.88 0.94

ChaosFEXRH50L50G 0.70 0.70 0.74 0.81 0.82 0.80 0.88

ChaosFEXRH75L25G 0.66 0.94 0.70 0.88 0.88 0.87 0.88

Classification performance of ChaosFEXRHNL for Brain Tumor
Dataset
Brain tumors are the leading cause of cancer death in children.
They are caused by the abnormal and uncontrolled growth of cells
inside the brain or spinal canal. Classification of brain tumors
using machine learning technology is very relevant for radiologists
to confirm their analysis more effectively and quickly.

For our analysis, we have considered 100 MRI brain images
from Kaggle online repository Chakrabarty (Accesed:2019-10-09).
Images are labelled as “malignant” or “benign”. We considered
40 malignant and benign images for our analysis. We split 80% of
data for training and the remaining 20% for testing. Five-fold cross
validation is adopted in this analysis. Figure 7(a) and Figure 7(b)
shows sample images from each of the two classes (malignant and
benign).

Preprocessing is done by applying anisotropic filtering of all
images. Grey-level co-occurrence matrix (GLCM) is then created
which analyses the pairs of horizontally adjacent pixels in a scaled
version of the image. From the GLCM matrix, we can calculate
the features needed for classification. The twelve features gen-
erated are Contrast, Correlation, Energy, Homogeneity, Mean, Stan-
dard Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis and

(a) (b)

Figure 7 (a) MRI image showing malignant brain tumour (class
“malignant”). (b) MRI image showing benign brain tumour (class

“benign”).

Skewness. These extracted features are subsequently fed to stand-
alone SVM, stand-alone k-NN, and ChaosFEXRH25L75G +SVM and
ChaosFEXRH25L75G +k-NN. The hyperparameters tuned for vari-
ous architectures under analysis for brain tumor dataset is given
in Appendix Tables 40, 41 and 42.

■ Table 17 Macro F1 scores for MRI brain tumor dataset using
ChaosFEXRHNL with various classifiers (cosine similarity and

other ML classifiers).

Classifier CosSim SVM k-NN AB DT GNB RF

ChaosFEXRH25L75G 0.88 0.81 0.72 0.76 0.81 0.48 0.83

ChaosFEXRH50L50G 0.44 0.50 0.69 0.78 0.73 0.78 0.73

ChaosFEXRH75L25G 0.83 0.78 0.76 0.82 0.60 0.50 0.73

The results (Table 17) show classification performance is better
with ChaosFEXRH25L75G (F1 score = 0.881) for brain tumor dataset.
We may further improve the classification performance with other
ChaosFEXRHNL architectures with properly tuned hyperparame-
ters.

Performance of ChaosFEXRHNL compared with Stand-alone ML
Classifiers
When compared with either homogeneous NL or heterogeneous
NL but with fixed structure (odd-even placement of GLS and
Logistic neurons), we have reported that RHNL yields either
comparable or superior classification performance. Table 18
compares the highest F1 score obtained with various stand-alone
ML classifiers (SA-ML) and RHNL architectures for all the 11
datasets in this study. For Iris, Wine and Bank Note Authentication
datasets, RHNL architectures perform equally well with some of
the stand-alone ML classifiers. It is interesting to note that a 16%
increase in performance is achieved for Haberman’s Survival dataset
with our proposed RHNL structure when compared with GNB
which gives the best F1 score among all the stand-alone ML classi-
fiers (F1-score = 0.57). Also for Ionosphere, Breast Cancer Wisconsin
and Statlog (Heart) datasets, our newly proposed RHNL structures
outperform stand-alone classifiers significantly well. However for
Seeds dataset alone, RHNL gives a lower performance. Table 19
shows that ChaosFEXRH25L75G, ChaosFEXRH25L75G+SVM,
ChaosFEXRH25L75G+kNN, ChaosFEXRH25L75G+DT and
ChaosFEXRH25L75G+RF give higher performance (F1 Score
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= 0.94) than any of the stand-alone ML classifiers for the debris-
urban dataset. For brain tumor dataset also ChaosFEXRH25L75G
outperforms all the stand-alone ML classifiers.

■ Table 18 Comparison of RHNL architecture with the best
stand-alone ML classifiers. Only the standalone ML classifier

which yielded the highest F1-score is mentioned. (SA:
Standalone).

Dataset Best F1 (SA-ML) SA-ML Best F1 (RHNL)

Iris 1.00 RF, k-NN 1.00

Ionosphere 0.96 SVM 0.97

Wine 1.00 GNB 1.00

Bank Note 0.99 SVM, k-NN 0.99

Haberman’s 0.57 GNB 0.73

Breast Cancer 0.95 k-NN 0.99

Statlog (Heart) 0.84 k-NN, SVM 0.92

Seeds 0.92 k-NN 0.86

FSDD 0.97 RF 0.98

■ Table 19 Comparison of the performance (F1-scores) of
ChaosFEXRH25L75G architecture with stand-alone ML classifiers

for the debris-urban and brain tumor image datasets. SA: Stand alone
ML classifiers. RHNL gives the best F1-scores (emphasized in

bold).

Dataset SA-SVM SA-kNN SA-AB SA-DT SA-GNB SA-RF ChaosFEXRH25L75G

Debris-Urban 0.71 0.71 0.71 0.71 0.71 0.82 0.94

Brain Tumor 0.70 0.60 0.70 0.70 0.55 0.75 0.88

Table 20 shows that highest macro F1 score is obtained for
ChaosFEXRHNL structures for all dataset except Seed.

Performance of RHNL in low training sample regime
One of the major significance of Neurochaos Learning archi-
tectures is that they perform well in the low training sample
regime (Balakrishnan et al. 2019). We analysed the performance
of ChaosFEXRH25L75G for the MRI brain tumor dataset in the low
training sample regime and compared its performance with the
standalone ML classifiers. The 12 features generated from the
selected 100 brain tumor MRI images from Kaggle dataset online
repository (Chakrabarty Accesed:2019-10-09) are used for our anal-
ysis. Analysis is done starting with one sample per class in the
training set and the remaining samples were used for testing. The
process is repeated with 2 to 15 samples per class in train data set
and the remaining samples in test dataset. In every case, we did 10
independent random trials. The average F1 score of these 10 trials
are reported in each case and compared with the results obtained
for stand-alone classifiers namely Decision Tree (DT), Random
Forest (RF), AdaBoost (AB), SVM, k-NN, Guassian Naive Bayes
(GNB) and ChaosFEXRH25L75G. In ChaosFEXRH25L75G, 25% of the
locations are randomly allotted to logistic map neurons and the
remaining locations with GLS neurons. Cosine Similarity classifier
is used in ChaosFEXRH25L75G architecture. Figure 8 shows that

■ Table 20 Performance comparison of ChaosFEXRHNL+ML
structures proposed in this study with stand-alone ML classifiers.
Checkmark (✓) indicates that the algorithm gives highest F1 score
(value reported in the second column). As it can be seen RHNL

yields the best performance in 10 out of 11 datasets.

Dataset Best F1 Score SA-ML RHNL+ML

Iris 1.00 ✓ ✓

Ionosphere 0.96 ✓

Wine 1.00 ✓ ✓

Bank Note 0.99 ✓ ✓

Haberman’s 0.73 ✓

Breast Cancer 0.99 ✓

Statlog (Heart) 0.92 ✓

Seed 0.86 ✓

FSDD 0.98 ✓

Debris-Urban 0.94 ✓

Brain Tumor 0.83 ✓

Figure 8 Comparative performance of ChaosFEXRHNL25L75G with
stand-alone ML classifiers in the regime of low number of training

instances for the brain tumour image dataset.

for low training samples, ChaosFEXRH25L75G consistently high
performance with respect to other standalone ML algorithms.
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For training dataset with one sample per class,
ChaosFEXRHNL25L75G gives high performance and Decision
Tree and K-NN gives low performance. For training dataset with 4
and 5 samples per class, SVM outperforms ChaosFEXRH25L75G.
k-NN gives high performance with 6 samples per class in
training dataset. However from 8 samples per class in train
dataset onwards, ChaosFEXRHNL25L75G performed well again and
continues to outperform other classifiers. This shows that RHNL
architecture is able to learn with very few training samples per
class making it very desirable in practical applications where there
is a paucity of training data.

CONCLUSION

Incorporation of both heterogeneity and randomness into Neurochaos
Learning is one step in the right direction of mimicking the com-
plex neural organization of the human brain. In this study, we find
that such Random Heterogeneous Neurochaos Learning (RHNL)
architectures perform very well. When compared with earlier ar-
chitectures which were either homogeneous NL (Sethi et al. 2023)
or heterogeneous NL but with fixed structure (odd-even) (AS
et al. 2023), we report that RHNL yields either comparable or
superior classification performance.Table 15 shows that the macro
F1 scores obtained with RHNL are among the best for all the
datasets considered in our study. RHNL architectures beat both
homogeneous NL and fixed heterogeneous NL architectures on
nearly all classification tasks. RHNL achieved a high level of
F1 score for Wine dataset (1.0), Bank Note Authentication dataset
(0.99), Breast Cancer Wisconsin dataset (0.99) and FSDD dataset
(0.98). RHNL is also superior on time series dataset. For the FSDD
dataset, ChaosFEXRH75L25G+SVM achieves the highest macro F1
score of 0.98. This is infact higher than the best F1 score ob-
tained with homogeneous NL architecture reported in (Sethi
et al. 2023). These results of RHNL are clearly among the best
in the literature on the same datasets. For the debris-urban image
data, ChaosFEXRH25L75G gave a high F1 score of 0.94 with cosine
similarity, SVM, k-NN, Decision Tree and Random Forest classi-
fiers. Brain tumor image dataset gives high F1 score of 0.881 with
ChaosFEXRH25L75G. RHNL also yields best F1 score when com-
pared with standalone-ML classifiers except for the Seeds dataset.
In the case of low training sample regime, RHNL outperforms
almost all traditional ML classifiers.

This line of work can be applied to classification of other
datasets in various application domains. We will undertake exten-
sive evaluation of the proposed architectures for image datasets
in the future. For future research, we will explore incorporating
other chaotic maps such as Standard map, Circle map, Ikeda map,
Hénon map, Gumowski-Mira map, Arnold’s cat map, Lorenz sys-
tem, Baker’s map, Lozi map, Hindmarsh-Rose neuronal model,
Rössler system and other such dynamical systems as neurons in
RHNL.

APPENDIX

This section contains the additional supplementary details related
to the main manuscript. It contains the hyperparameter tuned
values for each dataset used in this study, for different classifiers
namely AdaBoost, Decision Trees, kNN and Random Forests that
were used in ChaosFEXRH architectures. The hyperparameters
tuned for FSSD dataset for various ChaosFEXRH architectures are
also included in this section.

■ Table 21 Tuned hyperparameters for ChaosFEXRH25L75G +
AdaBoost.

Dataset q b ϵ n_estimators

Iris 0.062 0.185 0.298 10

Ionosphere 0.01 0.409 0.051 50

Wine 0.46 0.469 0.141 10

Bank Note 0.36 0.419 0.121 10

Haberman’s 0.05 0.269 0.031 5000

Breast Cancer 0.17 0.46 0.05 100

Statlog (Heart) 0.47 0.489 0.0309 5000

Seeds 0.05 0.189 0.161 50

■ Table 22 Tuned hyperparameters for ChaosFEXRH50L50G +
AdaBoost.

Dataset q b ϵ n_estimators

Iris 0.05 0.359 0.221 10

Ionosphere 0.099 0.479 0.061 1000

Wine 0.46 0.469 0.131 10

Bank Note 0.09 0.289 0.041 1000

Haberman’s 0.14 0.489 0.021 1000

Breast Cancer 0.069 0.139 0.041 10

Statlog (Heart) 0.18 0.169 0.011 100

Seeds 0.05 0.139 0.151 10

■ Table 23 Tuned hyperparameters for ChaosFEXRH75L25G +
AdaBoost.

Dataset q b ϵ n_estimators

Iris 0.15 0.299 0.231 10

Ionosphere 0.02 0.219 0.809 50

Wine 0.47 0.479 0.131 10

Bank Note 0.01 0.259 0.071 5000

Haberman’s 0.23 0.1 0.011 5000

Breast Cancer 0.14 0.489 0.021 1000

Statlog (Heart) 0.13 0.1 0.051 10

Seeds 0.05 0.189 0.151 50

ACKNOWLEDGEMENTS

Nithin Nagaraj would like to acknowledge the financial sup-
port of Anusandhan National Research Foundation (ANRF), De-
partment of Science & Technology, Govt. of India (Grant No.
TAR/2021/000206) towards this research. Authors are thankful for
the help received by Harikrishnan NB and Deeksha S with Python
programs of homogeneous Neurochaos Learning architecture. RA
is grateful to the computing facilities provided by Amrita Vishwa

CHAOS Theory and Applications 23



■ Table 24 Tuned hyperparameters for ChaosFEXRH25L75G + Decision Trees.

Dataset q b ϵ min_samples_lea f max_depth ccp_alpha

Iris 0.062 0.185 0.298 1 2 0.0

Ionosphere 0.01 0.409 0.051 3 7 0.0

Wine 0.46 0.469 0.141 1 4 0.0

Bank Note 0.36 0.419 0.121 1 6 0.0

Haberman’s 0.05 0.269 0.031 7 4 0.0

Breast Cancer 0.17 0.46 0.05 10 4 0.0022

Statlog (Heart) 0.47 0.489 0.0309 1 3 0.0

Seeds 0.05 0.189 0.161 2 3 0.0

■ Table 25 Tuned hyperparameters for ChaosFEXRH50L50G + Decision Trees.

Dataset q b ϵ min_samples_lea f max_depth ccp_alpha

Iris 0.05 0.359 0.221 1 2 0.0

Ionosphere 0.099 0.479 0.061 3 4 0.0

Wine 0.46 0.469 0.131 1 4 0.0

Bank Note 0.09 0.289 0.041 1 8 0.0

Haberman’s 0.14 0.489 0.021 4 5 0.0

Breast Cancer 0.069 0.139 0.041 3 3 0.0

Statlog (Heart) 0.18 0.169 0.011 1 4 0.0

Seeds 0.05 0.139 0.151 1 3 0.0

■ Table 26 Tuned hyperparameters for ChaosFEXRH75L25G + Decision Trees.

Dataset q b ϵ min_samples_lea f max_depth ccp_alpha

Iris 0.15 0.299 0.231 1 2 0.0

Ionosphere 0.02 0.219 0.809 1 6 0.0

Wine 0.47 0.479 0.131 2 4 0.0

Bank Note 0.01 0.259 0.071 8 7 0.0

Haberman’s 0.23 0.1 0.011 5 6 0.0

Breast Cancer 0.14 0.489 0.021 6 9 0.00218

Statlog (Heart) 0.13 0.1 0.051 1 3 0.004

Seeds 0.05 0.189 0.151 1 4 0.0
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■ Table 27 Tuned hyperparameters for ChaosFEXRH25L75G +
kNN.

Dataset q b ϵ k

Iris 0.062 0.185 0.298 3

Ionosphere 0.01 0.409 0.051 3

Wine 0.46 0.469 0.141 5

Bank Note 0.36 0.419 0.121 1

Haberman’s 0.05 0.269 0.031 5

Breast Cancer 0.17 0.46 0.05 5

Statlog (Heart) 0.47 0.489 0.0309 3

Seeds 0.05 0.189 0.161 3

■ Table 28 Tuned hyperparameters for ChaosFEXRH50L50G +
kNN.

Dataset q b ϵ k

Iris 0.05 0.359 0.221 3

Ionosphere 0.099 0.479 0.061 3

Wine 0.46 0.469 0.131 1

Bank Note 0.09 0.289 0.041 1

Haberman’s 0.14 0.489 0.021 5

Breast Cancer 0.069 0.139 0.041 3

Statlog (Heart) 0.18 0.169 0.011 3

Seeds 0.05 0.139 0.151 3

■ Table 29 Tuned hyperparameters for ChaosFEXRH75L25G +
kNN.

Dataset q b ϵ k

Iris 0.15 0.299 0.231 5

Ionosphere 0.02 0.219 0.809 5

Wine 0.47 0.479 0.131 5

Bank Note 0.01 0.259 0.071 1

Haberman’s 0.23 0.1 0.011 1

Breast Cancer 0.14 0.489 0.021 1

Statlog (Heart) 0.13 0.1 0.051 5

Seeds 0.05 0.189 0.151 3

■ Table 30 Tuned hyperparameters for ChaosFEXRH25L75G +
Random Forests.

Dataset q b ϵ n_estimators max_depth

Iris 0.062 0.185 0.298 10 3

Ionosphere 0.01 0.409 0.051 100 5

Wine 0.46 0.469 0.141 100 3

Bank Note 0.36 0.419 0.121 10 4

Haberman’s 0.05 0.269 0.031 10 6

Breast Cancer 0.17 0.46 0.05 10 5

Statlog (Heart) 0.47 0.489 0.0309 10 4

Seeds 0.05 0.189 0.161 100 4

■ Table 31 Tuned hyperparameters for ChaosFEXRH50L50G +
Random Forests.

Dataset q b ϵ n_estimators max_depth

Iris 0.05 0.359 0.221 100 3

Ionosphere 0.099 0.479 0.061 1000 8

Wine 0.46 0.469 0.131 1000 5

Bank Note 0.09 0.289 0.041 100 7

Haberman’s 0.14 0.489 0.021 1000 4

Breast Cancer 0.069 0.139 0.041 10 8

Statlog (Heart) 0.18 0.169 0.011 100 5

Seeds 0.05 0.139 0.151 100 4

■ Table 32 Tuned hyperparameters for ChaosFEXRH75L25G +
Random Forests.

Dataset q b ϵ n_estimators max_depth

Iris 0.15 0.299 0.231 10 2

Ionosphere 0.02 0.219 0.809 10 5

Wine 0.47 0.479 0.131 100 6

Bank Note 0.01 0.259 0.071 100 7

Haberman’s 0.23 0.1 0.011 10 5

Breast Cancer 0.14 0.489 0.021 10 10

Statlog (Heart) 0.13 0.1 0.051 10 2

Seeds 0.05 0.189 0.151 100 4
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■ Table 33 Tuned hyperparameters for ChaosFEXRH25L75G for
FSDD.

Hyper-parameter Tuned Value

q .086

b .303

ϵ .055

■ Table 34 Tuned hyperparameters for ChaosFEXRH50L50G for
FSDD.

Hyper-parameter Tuned Value

q .106

b .032

ϵ .104

■ Table 35 Tuned hyperparameters for ChaosFEXRH75L25G for
FSDD.

Hyper-parameter Tuned Value

q .40

b .20

ϵ .15

■ Table 36 Tuned hyperparameters for various classifiers for
FSDD.

Classifiers ChaosFEXRH25L75G ChaosFEXRH50L50G ChaosFEXRH75L25G

AdaBoost n_estimators = 50 n_estimators = 1 n_estimators = 10

Decision Trees

min_samples_lea f = 1 min_samples_lea f = 1 min_samples_lea f = 4

max_depth = 2 max_depth = 2 max_depth = 7

ccp_alpha = 0.0074 ccp_alpha = 0.0 ccp_alpha = 0.00723

k-NN k = 3 k = 5 k = 1

Random Forests
n_estimators = 2 n_estimators = 2 n_estimators = 2

max_depth = 1000 max_depth = 1000 max_depth = 10

■ Table 37 Parameters tuned for various ChaosFEXRH25L75G
structures considered for analysis with debris-urban dataset

Algorithm Hyper Parameters

ChaosFEXRH25L75G

q=.3649

b=.430

ϵ=.259

ChaosFEXRH25L75G+SVM

q=.3649

b=.430

ϵ=.259

ChaosFEXRH25L75G+k-NN

q=.3649

b=.430

ϵ=.259

k=3

ChaosFEXRH25L75G+AdaBoost

q=.3649

b=.430

ϵ=.259

n_estimator=1

ChaosFEXRH25L75G+Decision Tree

q=.3649

b=.430

ϵ=.259

min_samples_lea f = 1

random_state = 42

max_depth = 6

ccp_alpha = 0

ChaosFEXRH25L75G+GNB

q=.3649

b=.430

ϵ=.259

ChaosFEXRH25L75G+RF

q=.3649

b=.430

ϵ=.259

n_estimators = 1000,

max_depth= 8

26 | Remya Ajai A S and Nithin Nagaraj CHAOS Theory and Applications



■ Table 38 Parameters tuned for various ChaosFEXRH50L50G
structures considered for analysis with debris-urban dataset

Algorithm Hyper Parameters

ChaosFEXRHNL50L50G

q = .121

b = .0041

ϵ = .015

ChaosFEXRHNL50L50G+SVM

q = .121

b = .0041

ϵ = .015

ChaosFEXRHNL50L50G+k-NN

q = .121

b = .0041

ϵ = .015

k = 1

ChaosFEXRHNL50L50G+Decision Tree

q = .121

b = .0041

ϵ = .015

min_samples_lea f = 1

max_depth= 4

ccp_alpha = 0

ChaosFEXRHNL50L50G+GNB

q = .121

b = .0041

ϵ = .015

ChaosFEXRHNL50L50G+AdaBoost

q = .121

b = .0041

ϵ = .015

n_estimators=3

ChaosFEXRHNL50L50G+Random Forest

q = .121

b = .0041

ϵ = .015

n_estimators = 1000

max_depth = 5

■ Table 39 Parameters tuned for various ChaosFEXRH75L25G
structures considered for analysis with debris-urban dataset

Algorithm Hyper Parameters

ChaosFEXRHNL75L25G

q= .491

b= .010

ϵ= .0856

ChaosFEXRHNL75L25G+SVM

q= .491

b= .010

ϵ= .0856

ChaosFEXRHNL75L25G+k-NN

q= .491

b= .010

ϵ= .0856

k = 5

ChaosFEXRHNL75L25G+Decision Tree

q= .491

b= .010

ϵ= .0856

random_state=42

min_samples_lea f = 1

max_depth= 4

ccp_alpha = 0

ChaosFEXRHNL75L25G+GNB

q= .491

b= .010

ϵ= .0856

ChaosFEXRHNL75L25G+AdaBoost

q= .491

b= .010

ϵ= .0856

n_estimators=100

ChaosFEXRHNL75L25G+Random Forest

q= .491

b= .010

ϵ= .0856

n_estimators = 100

max_depth = 4
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■ Table 40 Parameters tuned for various ChaosFEXRH25L50G
structures considered for analysis with Brain Tumor dataset

Algorithm Parameters

ChaosFEXRH25L75G

q=.01

b=.36

ϵ=.090

ChaosFEXRH25L75G+SVM

q=.01

b=.36

ϵ=.090

ChaosFEXRH25L75G+k-NN

q=.01

b=.430

ϵ=.230

k=3

ChaosFEXRH25L75G+Decision Tree

q=.01

b=.430

ϵ=.230

min_samples_lea f = 1

max_depth = 6

ccp_alpha = 0

ChaosFEXRH25L75G+GNB

q=.01

b=.430

ϵ=.230

ChaosFEXRH25L75G+AdaBoost

q=.01

b=.430

ϵ=.230

n_estimator= 1000

ChaosFEXRH25L75G+Random Forest

q=.01

b=.430

ϵ=0.230

n_estimator= 1000

max_depth = 8

■ Table 41 Parameters tuned for various ChaosFEXRH50L50G
structures considered for analysis with Brain Tumor dataset

Algorithm Hyper Parameters

ChaosFEXRH50L50G

q = .094

b = .0065

ϵ = .0092

ChaosFEXRH50L50G+SVM

q = .094

b = .0065

ϵ = .0092

ChaosFEXRH50L50G+k-NN

q = .094

b = .0065

ϵ = .0092

k=1

ChaosFEXRH50L50G+Decision Tree

q = .094

b = .0065

ϵ = .0092

min_samples_lea f = 1

max_depth = 4

ccp_alpha = 0

ChaosFEXRH50L50G+GNB

q = .094

b = .0065

ϵ = .0092

ChaosFEXRH50L50G+AdaBoost

q = .094

b = .0065

ϵ = .0092

n_estimator= 3

ChaosFEXRH50L50G+Random Forest

q = .094

b = .0065

ϵ = .0092

n_estimator= 1000

max_depth = 5
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■ Table 42 Parameters tuned for various ChaosFEXRH75L25G
structures considered for analysis with Brain Tumor dataset

Algorithm Parameters

ChaosFEXRH75L25G

q = .156

b = .107

ϵ= .059

ChaosFEXRH75L25G+SVM

q = .156

b = .107

ϵ= .059

ChaosFEXRH75L25G+k-NN

q = .156

b = .107

ϵ= .059

k=5

ChaosFEXRH75L25G+Decision Tree

q = .156

b = .107

ϵ= .059

min_samples_lea f = 10

max_depth = 4

ccp_alpha = 0.0

ChaosFEXRH75L25G+GNB

q = .156

b = .107

ϵ= .059

ChaosFEXRH75L25G+AdaBoost

q = .156

b = .107

ϵ= .059

n_estimator= 10

ChaosFEXRH75L25G+Random Forest

q = .156

b = .107

ϵ= .059

n_estimator= 100

max_depth = 4

Vidyapeetham (Amritapuri Campus).

Availability of data and material

Not applicable.

Conflicts of interest

The authors declare that there is no conflict of interest regarding
the publication of this paper.

Ethical standard
The authors have no relevant financial or non-financial interests to
disclose.

LITERATURE CITED

Aihara, K., T. Takabe, and M. Toyoda, 1990 Chaotic neural net-
works. Physics letters A 144: 333–340.

Alligood, K. T., T. D. Sauer, J. A. Yorke, and D. Chillingworth, 1998
Chaos: an introduction to dynamical systems. SIAM Review 40:
732–732.

AS, R. A., N. Harikrishnan, and N. Nagaraj, 2023 Analysis of
logistic map based neurons in neurochaos learning architectures
for data classification. Chaos, Solitons & Fractals 170: 113347.

Asif, S., M. Zhao, F. Tang, and Y. Zhu, 2023 An enhanced deep
learning method for multi-class brain tumor classification using
deep transfer learning. Multimedia Tools and Applications pp.
1–28.

Balakrishnan, H. N., A. Kathpalia, S. Saha, and N. Nagaraj, 2019
Chaosnet: A chaos based artificial neural network architecture
for classification. Chaos: An Interdisciplinary Journal of Nonlin-
ear Science 29: 113125.

Berrar, D., 2018 Bayes’ theorem and naive bayes classifier. Ency-
clopedia of bioinformatics and computational biology: ABC of
bioinformatics 403: 412.

Boser, B. E., I. M. Guyon, and V. N. Vapnik, 1992 A training al-
gorithm for optimal margin classifiers. In Proceedings of the fifth
annual workshop on Computational learning theory, pp. 144–152.

Breiman, L., 2001 Random forests. Machine learning 45: 5–32.
Chakrabarty, N., Accesed:2019-10-09 Brain mri images for

brain tumor detection. https://www.kaggle.com/datasets/navoneel/
brain-mri-images-for-brain-tumor-detection/code.

Cover, T. and P. Hart, 1967 Nearest neighbor pattern classification.
IEEE transactions on information theory 13: 21–27.

Delahunt, C. B. and J. N. Kutz, 2019 Putting a bug in ml: The moth
olfactory network learns to read mnist. Neural Networks 118:
54–64.

Dua, D., C. Graff, et al., 2017 Uci machine learning repository .
Fisher, R. A., 1936 The use of multiple measurements in taxonomic

problems. Annals of eugenics 7: 179–188.
Gillich, E. and V. Lohweg, 2010 Banknote authentication. 1.

Jahreskolloquium Bild. Der Autom pp. 1–8.
Graves, A., A.-r. Mohamed, and G. Hinton, 2013 Speech recogni-

tion with deep recurrent neural networks. In 2013 IEEE inter-
national conference on acoustics, speech and signal processing, pp.
6645–6649, Ieee.

Haberman, S. J., 1973 The analysis of residuals in cross-classified
tables. Biometrics pp. 205–220.

Harikrishnan, J., A. Sudarsan, A. Sadashiv, and R. A. Ajai,
2019 Vision-face recognition attendance monitoring system for
surveillance using deep learning technology and computer vi-
sion. In 2019 international conference on vision towards emerging
trends in communication and networking (ViTECoN), pp. 1–5, IEEE.

Harikrishnan, N. and N. Nagaraj, 2020 Neurochaos inspired hy-
brid machine learning architecture for classification. In 2020
International Conference on Signal Processing and Communications
(SPCOM), pp. 1–5, IEEE.

Harikrishnan, N. and N. Nagaraj, 2021 When noise meets chaos:
Stochastic resonance in neurochaos learning. Neural Networks
143: 425–435.

Harikrishnan, N., R. Vinayakumar, and K. Soman, 2018 A ma-
chine learning approach towards phishing email detection. In
Proceedings of the Anti-Phishing Pilot at ACM International Work-

CHAOS Theory and Applications 29

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/code
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/code


shop on Security and Privacy Analytics (IWSPA AP), volume 2013,
pp. 455–468.

Jackson, Z., C. Souza, J. Flaks, Y. Pan, H. Nicolas, et al., 2018
Jakobovski/free-spoken-digit-dataset: v1. 0.8. Zenodo, August .

Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experi-
mental evidence and related models. Comptes rendus biologies
326: 787–840.

Krishna, S. and A. R. Ajai, 2019 Analysis of three point checklist
and abcd methods for the feature extraction of dermoscopic
images to detect melanoma. In 2019 9th International Symposium
on Embedded Computing and System Design (ISED), pp. 1–5, IEEE.

Nagaraj, N., 2022 The unreasonable effectiveness of the chaotic
tent map in engineering applications. Chaos Theory and Appli-
cations 4: 197–204.

NB, H., A. Kathpalia, and N. Nagaraj, 2022 Causality preserv-
ing chaotic transformation and classification using neurochaos
learning. Advances in Neural Information Processing Systems
35: 2046–2058.

Perez-Nieves, N., V. C. Leung, P. L. Dragotti, and D. F. Goodman,
2021 Neural heterogeneity promotes robust learning. Nature
communications 12: 5791.

Phatak, S. and S. S. Rao, 1995 Logistic map: A possible random-
number generator. Physical review E 51: 3670.

Planet Labs Inc., Accessed: 2019-10-09 Planet Imagery and Archive.
https://www.planet.com.

Quinlan, J. R., 1986 Induction of decision trees. Machine learning
1: 81–106.

Ramachandran, V., S. Blakeslee, and R. J. Dolan, 1998 Phantoms in
the brain probing the mysteries of the human mind. Nature 396:
639–640.

Remya Ajai, A. and S. Gopalan, 2020 Analysis of active contours
without edge-based segmentation technique for brain tumor
classification using svm and knn classifiers. In Advances in Com-
munication Systems and Networks: Select Proceedings of ComNet
2019, pp. 1–10, Springer.

Schapire, R. E., 2013 Explaining adaboost. In Empirical Inference:
Festschrift in Honor of Vladimir N. Vapnik, pp. 37–52, Springer.

Sebe, N., 2005 Machine learning in computer vision, volume 29.
Springer Science & Business Media.

Sethi, D., N. Nagaraj, and N. Harikrishnan, 2023 Neurochaos fea-
ture transformation for machine learning. Integration .

Sigillito, V. G., S. P. Wing, L. V. Hutton, and K. B. Baker, 1989
Classification of radar returns from the ionosphere using neural
networks. Johns Hopkins APL Technical Digest 10: 262–266.

Sridharan, A., R. A. AS, and S. Gopalan, 2020 A novel methodology
for the classification of debris scars using discrete wavelet trans-
form and support vector machine. Procedia computer science
171: 609–616.

Street, W. N., W. H. Wolberg, and O. L. Mangasarian, 1993 Nuclear
feature extraction for breast tumor diagnosis. In Biomedical image
processing and biomedical visualization, volume 1905, pp. 861–870,
SPIE.

Vandeginste, B., 1990 Parvus: An extendable package of programs
for data exploration, classification and correlation, m. forina,
r. leardi, c. armanino and s. lanteri, elsevier, amsterdam, 1988,
price: Us $$$645 isbn 0-444-43012-1. Journal of Chemometrics 4:
191–193.

Weis, S., M. Sonnberger, A. Dunzinger, E. Voglmayr, M. Aichholzer,
et al., 2019 pp. 225–265 in Histological Constituents of the Nervous
System, Springer Vienna.

How to cite this article: Ajai, A. S. R., and Nagaraj, N. Random
Heterogeneous Neurochaos Learning Architecture for Data Classi-
fication. Chaos Theory and Applications, 7(1), 10-30, 2025.

Licensing Policy: The published articles in CHTA are licensed
under a Creative Commons Attribution-NonCommercial 4.0 Inter-
national License.

30 | Remya Ajai A S and Nithin Nagaraj CHAOS Theory and Applications

https://www.planet.com
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

