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ABSTRACT. This research examines the potential of pre-trained deep learning models for the fine-
grained classification of military aircraft, to achieve accurate identification and extraction of unique
tail numbers. The study uses a publicly available dataset comprising 43 classes of military aircraft,
with a total of 24,164 images for training and 6,042 images for testing. The performance of five
distinct pre-trained convolutional neural network (CNN) architectures, including DenseNet121, Mo-
bileNetV2, ResNet50, ResNet101, and VGG19, is evaluated and compared. Furthermore, the paper
examines the effectiveness of the YOLO11 model family for aircraft classification,with the YOLO11x-
cls model achieving the highest accuracy of 95.9, demonstrating its superior performance. particu-
larly emphasizing the YOLO11x-cls model’s superior performance. The study analyses the train-
ing results and confusion matrix of the YOLO11x-cls model, demonstrating its accuracy and ability
to generalize well to unseen data. This work contributes to the advancement of AI-powered image
recognition for military aviation applications, potentially improving data collection, monitoring, and
analysis processes.

1. INTRODUCTION

Aircraft are an important part of military forces when it comes to performing duties related to national
defense and security. In this advanced technological area, Artificial Intelligence (AI) and Optical Char-
acter Recognition (OCR) have combined to provide an unprecedented boost in processing textual infor-
mation, while persistently gaining interest in the art of classifying the aircraft themselves and reading off
their wing numbers. OCR technology, being the process of extraction of written content from the visual
appearance of data to textual form, has undergone a profound change by integrating Al capabilities [1]].
Besides the critical role that military aircraft play in national defense, their efficient classification, and
precise identification, including the reading of the wing numbers precisely, is also an essential aspect of
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ensuring maximum operational effectiveness. Al and OCR came together to cause a revolution in pro-
cessing textual information and turned out to be important tools for dealing with complications regarding
military aircraft data [2].

This integration has augmented not only the accuracy and speed of OCR but also its application in var-
ious fields such as finance, healthcare, and legal services [3]. Among the innovative techniques is Layout
Agnostic Alignment (LAA) [4], which solves the problem of harmonizing document layouts across dif-
ferent systems using OCRs. Very recently, the integration of OCR and Text-based Visual Question An-
swering has reached a milestone, underlining the exacting integration of both technologies seamlessly.
This includes the design of specific deep neural network models for dedicated tasks like automatic li-
cense plate recognition with BLPnet. Newer efforts like Clip-OCR and Master Object (COME) [5] have
moved the goalposts further in the case of representations for text and images by contrastive learning and
representation learning through multi-modal feature extraction. Moreover, post-correction of the errors
generated by OCR and optimization of document recognition and data extraction [6,/7] have acted to
stress the emerging primacy of Al-based OCR. In particular, the recent innovative research in the unsu-
pervised ranking of name entities from garbled OCR text [8] and OCR-based product classification in
the retail sector [9] has widened the horizon for the spread of OCR applications. Finally, the statistical
learning models built recently for correction of OCR errors are extremely promising in further raising
accuracy and reliability [10].

Another related area in which the recent works have significantly brought about a revolution in image
processing and classification related to aircraft is the damage detection in aircraft engine bore scope
images using deep learning where a new benchmark was established regarding the accuracy of inspection.
The Scattering Characteristics Analysis Network (SCAN) has significantly altered the way the type of
aircraft classification was done in few-shot image settings where high-quality Synthetic Aperture Radar
images are available. Besides, several deep learning approaches have been revealing their encouraging
performance for small aircraft detection. In particular, a modified ResNet-50 architecture applied to the
large-satellite image processing and the Scattering Topology Network-ST-Net significantly reduces the
processing time, thereby improving object recognition in the Synthetic Aperture Radar (SAR) images.
Also, deep learning frameworks have been designed in the case of automatically detecting aircraft in
remotely sensed satellite images to find small objects in a complex scene. On the other hand, machine
learning models using radar data from small unmanned aerial systems have opened ways for scalable
traffic management and safety improvements. One of the recent end-to-end aircraft detection algorithms
outperformed other methods by a margin: [[11]. Aircraft classification research has focused on Principle
Component Analysis (PCA) and feature fusion techniques. This has vastly improved the performance
of feature classification. Specific research on identifying aircraft types by Mask R-CNN enables the
accurate identification and classification of aircraft types from high-resolution satellite images: [12].
Comparative studies have finally established the efficacy of deep learning methods for object detection,
further enhancing the accuracy of detection [[13]].

Deep learning represents a class of machine learning methodologies using neural networks that can
perform complex tasks on vast volumes of data [14]. It employed several robust pre-trained models
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including ResNet50 [[15], ResNet101 [16], ShuffleNet [17], Xception [18], GooglLeNet [19], Inception-
V3 [20], MobileNet-V2 [21], Inception-ResNet-V2 [22] and NASNet-Mobile [23]]. These pre-trained
models achieved a lot of success in deep learning and, hence, are considered to show excellent perfor-
mance in several parts of computer vision tasks, object recognition, natural language processing [24],
and other artificial intelligence applications.

Additionly Gao and Wen-jun presented the IDBO-KELM model, which remarkably enhanced the
accuracy of identification of aerodynamic parameters due to the reduction of errors in transonic re-
gions [25]], hence proving its potential in precise aircraft performance analysis. Proposed the MPSA-
DenseNet model, a multi-task learning model with attention mechanisms that had achieved high accu-
racy for complex datasets classification tasks [26]. This methodology can also be extended to aerial data
analysis. Also applied the Harris Hawks Optimization algorithm in feature selection to optimize model
efficiency by minimizing feature sets while retaining high predictive accuracy [27]. This is important
for computationally intensive domains in aircraft classification. Further evidence is derived from health
diagnostics applications [28]], where Rough Neutrosophic Attribute Reduction was combined with DL-
based techniques to show how deep learning frameworks are really strong in handling big and complex
datasets and improving decision-making processes therein. Collectively, these works present an overview
of the developments around deep learning and machine learning models, emphasizing aspects related to
accuracy, efficiency, and adaptability that make them highly relevant for advanced classification tasks,
including aircraft identification.

2. METHODOLOGY

2.1. Data:

The dataset shown in Figure [I| used in this study was obtained from Kaggle and is named “Military
Aircraft Detection Dataset” [29]]. The dataset consists of 43 classes, containing 24,164 images in the
training set and 6,042 in the test set. Each image belonging to a specific aircraft is stored in a folder with
the name of the corresponding class. Notably, there is no dedicated test dataset; therefore, a separation
has been implemented that allocates twenty percent of the images from each class as test data, while the
remaining eighty percent constitutes the training data.

Table [I] provides a tabular format that has different object categories, presumably aircraft, with numer-
ical values provided in two separate columns labeled as ”Train” and Validation.” The tabular structure
represents one format of a dataset to train and then validate types of aircraft through machine learning.

Each row in the table represents a unique category, potentially corresponding to a specific aircraft
model or type. The “Train” column indicates the number of instances available in the training set for
a given category. The training set serves as the basic data used to instruct the model to recognize and
distinguish between the different categories. Conversely, the ”Validation” column denotes the number of
instances present within the validation set, which serves as a means to assess the model’s accuracy when
confronted with previously unseen data, thereby ensuring its ability to effectively generalize to novel
instances.
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FIGURE 1. Military aircraft class examples from different angles.

This dataset is to be used in a k-fold cross-validation framework. K-fold cross-validation is a procedure
where the data is divided into a number of K equally sized folds or subsets. Then, the model is going
to be trained on k-1 of these folds, while the remaining fold will be used for its validation. It repeats
K times where each fold acts once as a validation set. This technique enables the testing of the model’s
performance against independent datasets, thus becoming helpful when there is a lack of data resources.

The classes listed above represent some of the known model variants for aircraft models, such as F16,
Rafale, and B52. Numerical values show how many images or data points within a particular category are
available to train and validate the model for gaining knowledge and improving the model classification
capability.

The information in Table [I] clearly elucidates how many training and validation data as shown Figure
[2] each class of aircraft has. The composition of the dataset has been rich by applying data augmentation
techniques as per the poor count of instances for some classes of military aircraft. Though there are
classes with more than 890 instances in their training data, some classes have less than 400 instances.
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TABLE 1. Distribution of aircraft classes

Class Name | Train | Validation | Class | Train | Validation | Class | Train | Validation
MQ9 561 140 B2 631 158 J20 562 141
JAS39 639 160 C130 | 611 153 F22 513 129
V22 546 137 YF23 | 424 106 F16 1339 335
Rafale 662 165 SR71 | 519 130 Vulcan | 299 75
Mig31 554 139 U2 516 130 A400M | 366 92
C17 666 167 C2 549 137 Bl 500 126
AG600 480 119 F18 | 890 223 F117 284 71
F14 640 160 B52 | 645 161 F15 1147 287

F35 741 185 Su57 | 541 136 E7 146 37
Tornado 599 149 C5 583 145 XB70 | 137 35
EF2000 351 88 Tu95 | 500 124 AV8B | 345 87

P3 459 115 E2 600 151 Be200 | 224 56
Tul60 513 129 US2 | 448 111 Al10 550 138

F4 378 95 Su34 | 540 135 - - -

Mirage2000 | 585 146 RQ4 | 236 59 - - -

Train and Validation Number
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FIGURE 2. Train and validation number of each class.

2.2. Methods:

These models utilized for military aircraft classification in the current study are DenseNet121, Mo-
bileNetV2, ResNet50, ResNet101, and VGG19. These will be fine-tuned using ImageNet weights, the
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weights that were developed during pre-training using the weights from the ImageNet dataset as training
data. ImageNet is a dataset that has been trained for several object classification tasks and very frequently
is used to fine-tune pre-trained models.

It has been shown that these models classify military aircraft with high accuracy. The goals of this
study were to evaluate the performance of various deep learning architectures on tasks of military air-
craft classification. Models with different architectures, such as DenseNet121, MobileNetV?2, ResNet50,
ResNet101, and VGG19, have been tried out to determine which is best for this particular task.

2.2.1. DenseNet121. Among such famous CNN architectures is DenseNetl121, which stands out be-
cause of its dense connectivity pattern. While in a traditional CNN, each layer feeds only its subsequent
layer, DenseNet introduces direct connections from every layer to every other layer in a feed-forward
fashion. The successive reuse of features through the dense connectivity makes it possible for gradients
to propagate efficiently in the network, hence alleviating the vanishing gradient problem of deep net-
works. DenseNet121 explicitly contains 121 layers and is also built by stacking dense blocks composed
of several convolutional layers with batch normalization and ReLLU activation, followed by a transition
layer for the purpose of reducing dimensionality. This architecture results in better parameter efficiency
and feature extraction; hence, it is quite suitable for image classification tasks.

2.2.2. MobileNetV2. MobileNetV2 is a light-weight CNN architecture that was proposed targeting mo-
bile and embedded vision applications. It aimed at striking a good balance between model size and
performance. Among the striking features include depthwise separable convolutions, whereby the stan-
dard convolution is split into two separate layers: depthwise convolution and pointwise convolution. This
separation causes a dramatic reduction in the computational cost while keeping the capability of the net-
work for representation intact. MobileNetV2 further uses the concept of an inverted residual with linear
bottlenecks for swiftness. The bottlenecks expand the number of channels, apply depthwise convolution,
and then project the features back to a lower-dimensional space to reduce the computational costs.

2.2.3. ResNet50. ResNet50 is a part of the ResNet family, which initially introduced skip connections or
shortcuts; this allowed the gradients to flow more directly through the network. That helped to mitigate
the vanishing-gradient problem so that very deep networks could be trained. It has 50 layers and is
constructed by a series of residual blocks. Considering the residual block, each of the blocks includes
two convolutional layers with batch normalization and ReLLU activation. Each block adds the input to
the output, before passing on the result through the activation function. This enables the network to learn
residual functions—that is, those where the input is close to the output. This architecture enables deeper
networks to be trained, since optimization becomes considerably easier.

2.2.4. ResNetl101. ResNetl01 is an extension of ResNet50 with 101 layers. It follows the same basic
principles as ResNet50 but with a deeper architecture, which can capture more complex features and
patterns in the data. The additional layers in ResNetl101 allow for more refined feature extraction, po-
tentially leading to improved performance on challenging tasks. However, deeper networks also require
more computational resources and may be more prone to overfitting, so careful tuning and regularization
are essential.
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2.2.5. VGGI19. VGG19 is a variant of the VGG (Visual Geometry Group) network, known for its sim-
plicity and effectiveness. It consists of 19 layers and is characterized by its uniform architecture, with
a stack of convolutional layers followed by max-pooling layers, culminating in fully connected layers
for classification. VGG networks are praised for their easy-to-understand architecture and strong perfor-
mance, especially in capturing fine details in images. However, VGG19 is deeper and has more param-
eters than earlier VGG models, which can make it computationally expensive and prone to overfitting,
especially on smaller datasets.

3. EXPERIMENTAL STUDIES
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FIGURE 3. DenseNet121 Accuracy and Loss Plots.

3.1. DenseNet121. The Figure[3|displays the training and validation accuracy and loss of a DenseNet121
model over 150 epochs. The training loss rapidly decreases in the first few epochs, from an initial value
of approximately 2.5 to around 1.0 by epoch 10. It then continues to decrease gradually until it reaches a
minimum of around 0.3 at epoch 150. Similarly, the validation loss also decreases in the first few epochs,
from an initial value of around 2.0 to approximately 1.0 by epoch 10. However, after about 50 epochs, the
value starts to increase again and reaches a maximum of approximately 1.8 at epoch 100. Subsequently,
it decreases to around 1.5 at epoch 150. Optimization of the model was conducted utilizing the Adam
optimizer with an initial learning rate of 0.001. The loss function applied was categorical cross-entropy,
a method frequently employed in addressing multi-class classification problems.

3.2. MobileNetV2. Figure 4| shows the training and validation loss of a MobileNetV2 model over 150
epochs is displayed in the graph. Initially, the training loss decreases rapidly and then slows as it reaches a
minimum value of approximately 0.3. The validation loss also drops quickly during the first few epochs
but begins to increase after about 50 epochs, signaling potential overfitting. The provided details also
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FIGURE 4. MobileNetV2 Accuracy and Loss Plots.

cover training and validation accuracy over the same period. Training accuracy starts at around 0.3 and
quickly rises to about 0.95 by epoch 50. The validation accuracy begins similarly at 0.3 but climbs more
slowly, reaching around 0.85 by epoch 150. The notable gap between training and validation accuracy
suggests that the model is overfitting to the training data, excelling at recognizing training patterns but
struggling to generalize to new data. The model was optimized using the Adam optimizer, initialized
with a learning rate of 0.001. The categorical cross-entropy loss function, commonly used for multiclass
classification tasks, was employed.

ResNet50 Model Accuracy ResNet50 Loss
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FIGURE 5. ResNet50 Accuracy and Loss Plots.
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3.3. ResNet50. Figure [5] depicts the training and validation accuracy of ResNet50, after it has been
trained for 150 epochs. The accuracy of the training starts at around 0.05 and goes all the way up to
approximately 0.38. That of the validation also starts at approximately 0.05 but increases to around
0.35, though it sometimes fluctuated up and down in that process. Since the gap between training and
validation accuracy is relatively small, overfitting does not happen in this model. This graph represents
the training and verification loss for the ResNet50 model during 150 epochs. The training loss starts
higher at approximately 3.8 and decreases linearly to about 2.4; also, the smooth validation loss starts
from roughly 3.8 and goes down to about 2.4, with fluctuations during most of this training process. The
relatively small difference between the training and verification loss suggests that this is not an overfitting
model.
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FIGURE 6. ResNet101 Accuracy and Loss Plots.

3.4. ResNet101. These following graphs represent the accuracy and loss of the ResNet101 model con-
cerning 150 epochs of training and validation in Figure[6] It is crystal clear that the training and validation
accuracy both increase with time; however, the accuracy of training always outpaces that of validation.
This would support the interpretation that the model overfits to the training dataset, learning the patterns
in the training dataset perhaps too well and thereby limiting its eventual performance on new data. In
similar fashion, while the training loss decreases steadily as time progresses, although validation loss is
becoming less regular and skewed higher than training loss. That would mean the model has overfit to
the training data. If improving the model’s generalization ability, some techniques like regularization or
data augmentation could be done.

3.5. VGG19. VGGI19 was proposed by Simonyan and Zisserman in 2014 and also follows a deep CNN
model architecture with stacks of convolution layers followed by fully connected layers. It is a very
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simple yet effective network. VGGI19 contains 19 layers, amounting to approximately 143.7 million
parameters, and has achieved state-of-the-art performance for most image classification challenges.
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FIGURE 7. VGG19 Accuracy and Loss Plots.

Top graphic describes the accuracy curve, while the bottom graph depicts the loss curve, segregated
for training and validation phases for VGG19 architecture in Figure

It is observed from the accuracy figure that the model first increases in the initial epochs and then
saturates at approximately 90 percent for the training set. Also, the validation accuracy increases, but
it does so at a more gradual pace and stabilizes a little over 80 percent. That’s good because it reflects
appropriate generalization to unseen data.

This is reflected in the loss graph, wherein the training loss drops rapidly within the first few epochs
before it stabilizes. The validation loss does decrease but at a much slower rate compared to the training
loss, and it plateaus at a higher value; this is expected, as the validation set is not used for training.

In Figure [§] confusion matrix indicates that the model correctly classifies most images in the test set,
although there are some misclassifications. There are instances where the model misclassifies images.
For instance, some images of F-16s are misclassified as F-22s. However, this is a common occurrence
with machine learning models. Overall, the results indicate that the VGG19 model can accurately classify
images and generalize well to unseen data, making it a valuable deep learning model.

The confusion matrix reveals significant misclassifications between classes C130 and C17, with 14
occurrences of class C130 being erroneously labeled as C17 and 10 occurrences of class C17 being
incorrectly identified as C130. This finding suggests that the model encounters difficulties in differenti-
ating between these two classes, likely due to their visual similarities. A similar pattern is observed with
classes F15 and F18, where 35 instances of F15 are misclassified as F18. This recurring misclassifica-
tion suggests that these classes also possess visually similar attributes, posing challenges to the model’s
ability to accurately differentiate them.
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FIGURE 8. Confusion matrix of VGG19.

There is a notable level of misclassification between certain classes, such as F22 and F35, with ob-
served values of 33 and 25, respectively. Though the model has some capacity to distinguish between

these classes, a considerable overlap in their features leads to classification errors.

ing between similar classes. On the other hand, the model shows low misclassification rates for classes

like A10 and A400M, and Tornado and Tul60, with values close to zero, indicating high accuracy for

these presumably visually distinct classes. To enhance classification accuracy for often misclassified cat-

egories, several strategies can be employed. Increasing the size and diversity of training data for specific
classes, such as C130, C17, F15, and F18, can improve the model’s ability to distinguish among them.

Moreover, employing data augmentation techniques, such as rotating, scaling, and flipping images, can

help in creating a more robust training set.

3.6. YOLO11. The performance of the YOLO11x-cls model is evaluated in comparison with that of

other YOLOI11 classifier models, including YOLO11n-cls, YOLO11s-cls, YOLO11m-cls, and YOLO111-

cls. Table 2] of the paper presents a comprehensive comparison of these models based on key metrics,

including accuracy, precision, recall, and F1-score.

The best performance is exhibited by the YOLO11x-cls model, which reaches class accuracy of 95.9,
precision of 94.1, Recall of 95.6, and an F1-score as high as 94.8. Definitely the best results among all
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TABLE 2. YOLO11 models metrics

Model Accuracy Precision Recall F1  Params (M)
YOLOlln-cls  0.919 0.900  0.908 0.904 1.6
YOLO11s-cls 0.935 0918  0.933 0.925 5.5
YOLOlIm-cls  0.950 0.937  0.941 0.939 10.4
YOLOl11l-cls 0.955 0.936  0.952 0.944 12.9
YOLOll1x-cls  0.959 0.941 0.956 0.948 28.4

four variants of YOLO 11. However, they are achieved at the expanse of a dramatic increase compared
to the number of this model’s parameters: 28.4 million, more than that of YOLOI11L-cls (12.9M) by
more than two times, and more than that one of YOLO 11n-cls in 17 times (1.6M). The same model,
YOLOI11x-cls, can serve as an example illustrative of tradeoffs between model complexity and achieve-
ments.

By comparing these models, YOLOI11n-cls outperforms YOLO11scls with a moderate increase in
network parameters, from 1.6M to 5.5M, yielding substantial precision improvement, from 91.9 to 93.5,
and further improving the Fl-score from 90.4 up to 92.5. A similar trend presents when going from
YOLO11s-cls to more powerful YOLO11m-cls (increasing parameters to 10.4M), this further increases
the accuracy to the level of 95.0 and F1 up to 93.9. However, this increase diminishes as the scaling factor
increases. Considering YOLO111-cls for example, it has a very limited increase of +0.4 in accuracy and
+0.4 in F1-score compared to YOLO11x-cls, while the number of parameters increased 2.2 times.

Considering only the YOLO11 family of classifiers, the much larger YOLO11x-cls achieves state-
of-the-art, but the two variants described here, the YOLO11m-cls and YOLOI11l-cls, are offering top
performance with considerably fewer parameters and hence may be excellent candidates for a practical
realization. This clearly points towards at least further investigating some methodologies for optimizing
such models—e.g., model pruning, quantization, knowledge distillation—for limited computing power
contexts.

TABLE 3. Military aircraft classification models metrics

Al Model Used Classes Methods Accuracy
Linear SVM [30] 20 CNN, data augmentation 96.8%
Artificial Neural Net- 4 Sound signal processing, NN 96.2%
works [31]

Feedforward NN [32] 4 Image processing, NN 97.0%
Signal Processing Al 5 Radar signal feature extraction 95.0%
[33]

YOLOl1x-cls (Pro- 43 CNN, data augmentation 95.9%

posed)
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FIGURE 9. YOLO11x-cls train metrics.

As can be seen from the table, the YOLO11x-cls model outperforms all other models across all metrics.
It exhibits the highest accuracy (0.959), precision (0.941), recall (0.956), and F1-score (0.948). These
results indicate that the YOLO11x-cls model not only achieves high accuracy in classifying military
aircraft but also demonstrates a remarkable ability to correctly identify positive instances (high recall)
while minimizing false positives (high precision). The superior performance of the YOLO1 1x-cls model
can be attributed to its larger size and complexity compared to other models. This enables the model to
learn more complex features and patterns from the data, resulting in improved generalization and higher
accuracy.

Figure [9) of the paper shows some training metrics for the YOLO11x-cls model. The focus of the
above graph lies in the training loss and model accuracy over the epochs. It is observed that its training
loss keeps decreasing step by step with growing epochs, a good signal for indicating this model learns
well. More importantly, high training accuracy shows that the model learns from the training data and
generalizes well. This would tend to suggest that the model is learning useful patterns in the training set
and generalizing this by properly classifying military aircraft in the environment.
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FIGURE 10. Confusion metrics of YOLO11x-cls.

Figure [I0] is confusion matrix of the YOLO11x-cls model. From it, insight into the classification
behavior of the model can be viewed. A confusion matrix depicts visually that the model has been able
to classify most of the military aircraft in the test set correctly. It has, however, also revealed some
misclassifications that are not out of the ordinary in any real-world machine learning application. A
closer look into these misclassifications may hold a silver lining in the form of suggestions that could be
obtained regarding the model’s points of failure. For example, it could be very useful to study why some
F-16 images were classified as F-22s with the aim of bringing improvement in the model’s discrimination
capability.

3.7. Training Configuration for YOLO11. YOLOI11x classification was trained using the well-defined
set of hyperparameters to have the best performance on the military airforce dataset. Training for 100
epochs, it has early stopping set with 10 epochs of patience to avoid overfitting by stopping when vali-
dation loss stops improving. Batch size 16 balances memory efficiency with gradient stability, and input
image size 224x224 pixels was chosen for a good balance between computational efficiency and retain-
ing enough spatial information. Optimization is guided by an initial learning rate (Ir0) = 0.01 that is
gradually decreased according to the learning rate factor (Irf) = 0.01. The momentum parameter is set to
0.937 for accelerated convergence. It stabilizes the gradient update, while weight decay equals 0.0005
and serves as a regularization factor against overfitting. During the first three epochs, the warmup policies
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are used to smoothly increase the initial learning rate and momentum factor in favor of finding stability
in training. Putting warmup momentum at 0.8 and warm up bias learning rate at 0.1 allows the model’s
bias to somewhat adapt more quickly.

The training regimen incorporates a suite of data augmentation techniques to enhance the robustness
and generalization capacity of the classification model. Color jittering is applied through perturbations
of hue, saturation, and value channels with respective magnitudes of 0.015, 0.7, and 0.4, introducing
variations in image color characteristics. Geometric transformations, including translation up to 10%
of the image dimensions and scaling by a factor up to 50%, are utilised, while rotation, shear, perspec-
tive, and vertical flips are intentionally deactivated. Horizontal flips are applied with a probability of
0.5. Mosaic augmentation, a technique that combines multiple images into a single training sample, is
enabled.Furthermore, RandAugment is employed as an automated augmentation strategy to apply a di-
verse set of transformations. The training configuration is further augmented by the deliberate exclusion
of random erasing (40% probability), cropping of the entire image during training, and the exclusion
of mixup and copy-paste augmentations. These strategies are designed to diversify the training data,
mitigate overfitting, and enhance the model’s capacity for generalization to unseen data.

This work has designed an effective regularization that could balance the loss between the localization
and classification tasks. The threshold for IoU is set to 0.7, and one can rest assured of getting high
accuracy in overlap with the real results during the prediction stage. The box loss weighs 7.5; the classi-
fication loss is weighed at 0.5 while DFL takes 1.5-the loss weighs nicely manages the object detection
and localization. Data augmentation involves a hue, saturation, and value adjustment in order to further
generalize the model on hsv-h 0.015, hsv-s 0.7, and hsv-v is also 0.4. Additionally, the model does not
use dropout, which was set to 0.0, and it is without label smoothing, while relying on weight decay and
data augmentation for regularization. This combination of hyperparameters provides a robust and effi-
cient training process, optimizing model generalization and convergence for the accurate classification
of military aircraft.

3.8. Classification Test on Real Data. These testing results on your deep learning classifier illustrate
that the model works excellent for aircraft type identification when the images are clear, frontal, or in
ideal condition. The top-1 predictions have very high scores: 1.00 for F-16, C-130, and A-10, proving the
strength of the model to pick out unique structural features like the configurations of wings, placement of
engines, and shapes of fuselage. On challenging views of the aircraft, such as the F-22 at 0.59 confidence
with alternative predictions of F-35 at 0.33, the model only shows slight ambiguity. While the classifier is
robust in this matter, it struggles with classes that really do tend to look somewhat similar with the stealth
factors of an aircraft taken into consideration. The meaningful secondary predictions in the top-5 results,
such as F-18 with F-16 and Rafale, reflect the nuanced understanding of aircraft classes developed by the
model but point to areas for improvement. To further improve the performance, more training on datasets
that include diverse angles, lighting conditions, and occlusions would enhance the model’s ability to tell
apart visually similar aircraft.

This efficiency and applicability to real-world performance metrics further validate your classifier. The
11.8 ms/image preprocessing time just shows how well-optimized the pipeline in charge of preparing
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FIGURE 11. Performance evaluation of aircraft classification model: Top-5 predic-
tions and confidence scores across diverse aircraft types with processing metrics
(Preprocess: 11.8 ms, Inference: 266.4 ms) on Dual Intel Xeon CPUs (2.20 GHz).

the inputs before feeding into the model is. This gives a model inference of 266.4ms for the input
shape [(1,3,224,224)] that becomes competitive in efficiency for any deep neural network and a rather
complicated task of aircraft type recognition. Consequentially, the full processing time equals about
278.2 msec per image, as was noticed perfectly streamlined and fast end-to-end pipeline. This level of
performance can be delivered by, but may not be limited to a hardware setup with 2 Intel Xeon CPUs-2.20
GHz since the system has multi-threading at the parallel processing level. Since this model has a very
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FIGURE 12. OCR output used without image preprocessing aircraft-1.

high degree of confidence in addition with sub-second processing time will perform remarkably in real-
life applications such as in military recognitions, auto surveillance and aircraft recognition systems. With
further refinement, this classifier should be able to differentiate better between visually similar aircraft
and optimize the inference time to perform well in complex and time-critical situations.

3.9. Optical Character Recognition (OCR). The presented image dataset demonstrates the application
of OCR via the EasyOCR library on images of military aircraft tail numbers. An initial assessment shows
that direct OCR application on the original images, which are characterised by varying lighting condi-
tions and potentially low contrast, produces sub-optimal results with low confidence scores or inaccurate
character recognition. This is due to the inherent challenges that OCR systems face when processing
images that lack sharp transitions and distinct features. The presence of noise, blurred text and inconsis-
tent lighting also contributes to the OCR’s struggle to accurately decipher the alphanumeric sequences
that make up the tail numbers. The result is an unacceptable level of recognition, indicating the need for
pre-processing techniques.

The presented image dataset demonstrates the application of OCR via the EasyOCR on images of
military aircraft tail numbers. An initial assessment shows that direct OCR application on the original
images [35]], which are characterised by varying lighting conditions and potentially low contrast, pro-
duces sub-optimal results with low confidence scores or inaccurate character recognition. This is due to
the inherent challenges that OCR systems face when processing images that lack sharp transitions and
distinct features. The presence of noise, blurred text and inconsistent lighting also contributes to the
OCR’s struggle to accurately decipher the alphanumeric sequences that make up the tail numbers. The
result is an unacceptable level of recognition, indicating the need for pre-processing techniques.
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FIGURE 13. OCR result after histogram equalisation aircraft-1.

FIGURE 14. OCR result of the image after histogram equalisation and contrast
boosting process aircraft-1.

To overcome the limitations of direct OCR, a pre-processing step using histogram equalisation is in-
troduced. Histogram equalisation increases the contrast of the image by redistributing pixel intensities,
effectively stretching the dynamic range of grey levels within the image. This adjustment significantly
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FIGURE 16. OCR result of the image after histogram equalisation followed by con-
trast boosting aircraft-2.

increases the contrast between the tail number characters and the background, improving the visual dis-
tinction of the text. After histogram equalisation, EasyOCR’s performance shows a marked improve-
ment, providing accurate character recognition with increased confidence scores. This confirms that
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pre-processing techniques such as histogram equalisation play a key role in optimising the OCR process,
particularly for images with difficult contrast or lighting conditions, and underlines the importance of
pre-processing in text recognition applications.

4. CONCLUSION

This study focuses on the fine-grained classification of military aircraft using deep learning models that
are pre-trained, focusing on uniquely identifying tail numbers correctly. Five CNN architectures were
compared: DenseNetl21, MobileNetV2, ResNet50, ResNet101, and VGG19. Whereas all the models
built had a degree of success, the best performing family was the YOLO11 family, with a high accuracy
achieved of 0.959 by YOLOI11x-cls. The precision, recall, and Fl-score were all superior with this
model; hence, this classifier had great capability in recognizing the aircraft and generalizing to unseen
data. This probably is due to the YOLO11x-cls being bigger in size and more complicated; hence, it can
learn far more complicated features and patterns from data. The consistent decrease in training loss of
the model and the high training accuracy are a witness to how effectively it gets to learn from the training
data and does the right thing in classifying the aircraft correctly. More evidence can be seen with regard
to the performance of the model from the confusion matrix; it performs high in classifying most of the
aircraft in the test set.

In future investigations, the dataset will be greatly expanded to encompass a more diverse range of
aircraft categories. The integration of Optical Character Recognition (OCR) techniques will enable the
automatic extraction of tail numbers from images, thereby improving both the precision and efficiency
of data processing. The research will also evaluate various pre-trained models to determine the most
effective options for this task, potentially enhancing both performance and accuracy. These initiatives
are essential for advancing the core technology and ensuring the solution’s capability to manage a wider
array of aircraft identification cases.

Moreover, the research will explore the adaptation of these models for real-time use cases, like video
surveillance systems. This entails evaluating their performance in real-time scenarios and optimizing
them for ongoing monitoring and swift data processing. The primary objective of this investigation is to
create a highly reliable Al-driven image recognition solution specifically designed for military aviation
purposes. Such advancements are anticipated to greatly enhance processes of data collection, monitoring,
and analysis, ultimately bolstering national defense and security capabilities. The outcomes of these
studies will form the foundation for developing a thorough and efficient system capable of meeting the
stringent requirements of military operations.
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