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 Simultaneous localization and mapping (SLAM) is used in many fields to enable robots to map 
their surroundings and locate themselves in new circumstances. Visual-SLAM (VSLAM), which 
uses a camera sensor, and LiDAR-SLAM, which uses a light detection and ranging (LiDAR) 
sensor, are the most prevalent SLAM methods. Thanks to its benefits, including low-cost 
compared to LiDAR, low energy consumption, durability, and extensive environmental data, 
VSLAM is currently attracting much attention. This study aims to produce a three-dimensional 
(3D) model of an indoor environment using image data captured by the stereo camera located 
on the Unmanned Ground Vehicle (UGV). Easily measured objects from the field of operation 
were chosen to assess the generated model’s accuracy. The actual dimensions of the objects 
were measured, and these values were compared to those derived from the VSLAM-based 3D 
model. When the data were evaluated, it was found that the size of the object produced from 
the model could be varied by ±2cm. The surface accuracy of the 3D model produced has also 
been analysed. For this investigation, areas where the walls and floor surfaces were flat in the 
field were selected, and the plane accuracy of these areas was analysed. The plain accuracy 
values of the specified surfaces were determined to be below ±1cm.  
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1. Introduction  
 

The emergence of sensor, robotic, and artificial 
intelligence technologies has attracted corporate and 
academic interest in autonomous vehicle (AV) research. 
These vehicles must be able to locate themselves and 
map their environment precisely to operate safely [1]. In 
open-sky areas, Global Navigation Satellite Systems 
(GNSS) systems can satisfy the requirement for highly 
accurate positioning of AV’s [2]. Multiple satellite system 
data integration enables more received signals to 
improve position accuracy [3-4]. The inability to receive 
sufficient and healthy satellite signals in locations like 
urban areas, where direct access to the receiver is 
prohibited, might cause the position accuracy to drop to 
an undesirable level even with numerous satellite signals 
[5]. Differential GNSS positioning techniques like Real-
Time Kinematic (RTK) offer accuracy at the centimetre 
level in open areas but not in places where signals are 
predominantly obstructed [6-7]. In these places, GNSS is 
frequently integrated with the Inertial Measurement Unit 
(IMU) to provide continuous and precise coordinates [8]. 
For AVs to operate securely in any environment, they 
must be able to map their surroundings, precisely 

position themselves, and distinguish between moving 
and stationary objects. Light detection and ranging 
(LiDAR) or camera sensors included with GNSS/IMU 
integration are used for mapping in AVs. Using LiDAR 
and camera sensors, Simultaneous Localization and 
Mapping (SLAM), which has recently gained much 
attention, is also utilized for positioning and mapping. 

Autonomous robots are another kind of vehicle that 
technology is bringing into our lives and using more and 
more of each day. These robots are frequently used in 
huge indoor environments, such as shopping malls, 
airports, and warehouses, and moreover, they are used 
in our houses as robotic vacuum cleaners. As with AVs, 
these robots must be able to accurately locate themselves 
and simultaneously map their surroundings inside the 
indoor spaces to move around safely. Since the signals 
cannot reach the receiver, location accuracy in GNSS-
based positioning in interior environments is either non-
existent or erroneous. While there are studies on the use 
of Inertial Navigation System (INS) [9], Wi-Fi [10-11], 
UWB (Ultra-Wide Band) [12], and Radio Frequency 
Identification (RFID) [13] sensors for indoor position 
determination where GNSS systems cannot be used 
efficiently, camera [14-16], Radio Detection and Ranging 
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(RADAR) [17], and LiDAR [18-20] based sensor solutions 
are generally studied for mapping.  

SLAM is a method of determining the vehicle’s 
position and generating a map of its surroundings using 
one or more sensor data. The SLAM method collects two-
dimensional (2D) or three-dimensional (3D) geometric 
information from an unknown environment by sensor 
systems, then uses this data to predict the system’s 
location and create a map [21]. In addition to its use in 
indoor space robots, SLAM can be used in a variety of 
areas, including outdoor [22], underwater [23] and 
aviation system [24] applications. The most widely used 
SLAM methods are LiDAR-SLAM and Visual-SLAM 
(VSLAM). LiDAR uses its laser signals to detect and 
visualize objects up to 300 meters away [25]. The LiDAR-
based SLAM method has the ability to create precise 
maps of indoor and outdoor spaces. However, long-range 
LiDAR sensors are quite expensive, and low-cost LiDAR 
sensors are unsuitable for giant areas and outdoor 
applications [26].  

Compared to LiDAR sensors, the camera-based SLAM 
method attracts great attention due to the advantages of 
cameras, such as being cheaper, requiring low energy 
consumption, and providing rich environmental 
information [27-28]. According to their functions, the 
cameras can be classified as monocular, stereo, and 
depth [29]. Monocular cameras use only one lens to 
capture an image of a target. Reflecting a scene onto the 
camera plane results in a two-dimensional 
representation of a three-dimensional world, and 
therefore, it is impossible to calculate the distance 
between the target and the camera using a single 
photograph. Stereo cameras are merged with multiple 
cameras used to calculate depth information. Unlike 
monocular and binocular cameras, RGB-D cameras can 
obtain direct pixel depth using light or time-of-flight 
(TOF) without the need for complicated calculations. 
SLAM applications typically use cameras that can provide 
depth information [30]. 

Many sensors that can be used for SLAM are being 
introduced to the market daily. However, analysing the 
accuracy of the models obtained from processing sensor 
data with SLAM algorithms is vital for the method’s 
usability. This study investigated the object dimensions 
and surface accuracy in the 3D model produced by the 
VSLAM method. For this aim, we produce an accurate 3D 
model of an indoor area by using stereo camera data 
mounted on an Unmanned Ground Vehicle (UGV). The 
VSLAM method was used to produce the model from 
camera images. The produced 3D model was visualized, 
and the accuracy of the model was tested by comparing 
the dimensions of the objects on the model with the 
actual dimensions. Furthermore, a plane-fitting analysis 
was carried out to test the accuracy of the surfaces 
chosen from the walls and the ground. 

 
2. Method 
 
2.1. Simultaneous localization and mapping 
 

In recent years, some state-of-the-art sensors have 
been adopted to generate new fusion technologies to 
exceed the inaccurate localization problem of AVs. One 

well-known alternative sensor fusion methodology for 
localization and mapping is SLAM, which combines a set 
of perception sensors. The SLAM method simultaneously 
reconstructs a map of the vehicle’s environment during 
movement according to the collected sensor data and 
determines the AV’s current position within the built 
map [31–35]. In the SLAM method, the error accumulates 
through time and distance, and the vehicle’s position is 
estimated in the local coordinate system [36-37]. The 
accuracy, reliability, and robustness of SLAM-based 
methods must also be enhanced for use in complicated 
scenarios [38]. The growing amount of data increases the 
computational difficulty and strains available storage 
[39-40]. Camera and LiDAR are commonly used sensors 
to perceive surroundings using VSLAM and LiDAR-SLAM 
methods [41]. 

 
2.1.1. Visual-SLAM  

 
GNSS, IMU, RADAR, and LiDAR have been used in the 

majority of SLAM investigations; however, in the last few 
years, VSLAM has developed with better information, 
thanks to components like colour and tissue received 
from cameras or RGB-D sensors. Thus, VSLAM has 
become an alternative that performs positioning and 
mapping tasks in indoor and outdoor environments with 
only visual data [42]. In recent years, VSLAM has been 
frequently used in different applications, such as 
robotics, AVs, augmented reality (AR), and service 
robots, where a 3D environment model needs to be 
created [43]. Using the visual data, VSLAM estimates the 
relative orientation and translation while tracking the 
features of successive images [44]. The classic structure 
of the VSLAM system is divided into five sections: camera 
sensors, front-end, back-end, loop closure, and mapping 
modules [45]. 

• The camera sensor module collects image data, 
• The front-end module involves processes in 

order to obtain the prediction of the first motion of the 
camera and local matching, such as monitoring and 
extracting characteristics from two sequential images 
and matching or following the extracted features on 
different video frames, 

• The back-end module is responsible for the 
geometric calculation, which converts these traces into 
camera positions and 3D coordinates based on the theory 
of multiple-image geometry, 

• The loop-closure module calculates image 
similarity in large-scale environments, eliminates 
accumulated errors, and recreates the mapping module. 

According to the adopted error model, VSLAM can be 
classified as a feature-based and direct approaches [46]. 
The feature-based approach works by referencing 
distinctive points. This approach saves key points to local 
sub-maps or keyframes and improves with a graphically 
based optimisation approach [47]. The feature-based 
approach can quickly fail in dynamic situations with poor 
texture and pure rotation, but it is accurate and reliable 
in static areas with rich texture [46]. Some shortcomings 
of the feature-based approach are remedied by the direct 
method, which optimises the photogrammetric error of 
the sensor measurement by directly using the intensity 
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of the image [48]. Direct approaches record all pixels of 
images directly to local maps and use photometric losses 
for measurement error predictions [49]. 

The commonly used feature-based approaches are 
MonoSLAM, Parallel Tracking and Mapping (PTAM), and 
Oriented FAST and Rotated BRIEF-SLAM (ORB-SLAM). 
The first feature-based monocular approach, MonoSLAM, 
was developed by [50]. In MonoSLAM, a typical filter-
based approach, monitoring and mapping are carried out 
sequentially and simultaneously using the Extended 
Kalman Filter (EKF).  The monitoring and mapping of the 
PTAM method, introduced in [51], is carried out in 
parallel on the CPU. This solves the calculated burden 
problem in MonoSLAM. ORB-SLAM is an open-source 
monocular SLAM method recommended for large-scale 
environments, consisting of three stages: monitoring, 
mapping, and loop detection. ORB-SLAM2, an enhanced 
version of ORB-SLAM, has extended the use of the 
method from monocular cameras to stereo and RGB-D 
cameras [52]. ORB-SLAM3 is the first system to use fish-
eye lens models to process VSLAM with monocular, 
stereo, and RGB-D cameras, using only visual, visual-
inertial, or multiple sensors. 

Unlike feature-based approaches, direct approaches 
pose an optimization problem by predicting camera 
movements directly from pixel information. In the Direct 
Tracking and Mapping (DTAM) method proposed by 
[53], the camera’s position is determined by the whole 
image directly aligned with the depth map. Another 
direct SLAM method, the Large-Scale Direct SLAM (LSD-
SLAM), was developed by [54]. LSD-SLAM directly 
predicts the camera’s position and recreates large-scale, 
consistent, and 3D maps of the environment in real-time 
using image alignment and depth prediction. Another 
direct method, the Direct Sparse Odometry SLAM (DSO-
SLAM), is considered the best solution for estimating 
current accuracy and work efficiency [55]. 

Many studies have been carried out to solve the 
VSLAM problem. [56] indicates that it is more 
challenging to map and estimate the position in outdoors 
due to the continuous changes in the sun’s angle at 
different times of the day. The study suggested an instant 
visual trajectory estimation method for AVs, considering 
that the mobile platform moves on a constant route. The 
proposed model was tested on the SeqSlam data set for 
classifying the images of the track followed, and a success 
rate of 78.5% was achieved. [57] proposed a VSLAM-
based low-cost indoor positioning system and examined 
the threshold of acceptable positioning accuracy of basic 
features per image. The number of image entries that 
users need to collect for reliable positioning is also 
examined. A comprehensive VSLAM method has been 
developed to study matching and accuracy problems in 
the event of changes in lighting conditions. The proposed 
approach has achieved a positioning success of over 94% 
in a real building. The Semantic Optical Flow SLAM (SOF-
SLAM) was improved based on the RGB-D mode of ORB-
SLAM2 and was introduced as a visually meaningful 
SLAM system for dynamic environments [58]. This 
method proposes a dynamic attribute detection 
approach called semantic optical flow. This approach is 
designed with an integration that allows the efficient and 

reasonable extraction of dynamic properties based on 
semantic and geometric knowledge. The pixel-based 
semantic segmentation results are used as a mask in flow 
to obtain a reliable base matrix to filter real dynamic 
properties. The monitoring and optimization module 
focus only on fixed features for accurate camera position 
estimates in dynamic environments. This method has 
been evaluated in general TUM RGB-D datasets and 
experiments in real-world environments. Compared to 
ORB-SLAM2, SOF-SLAM has improved 96.73% in highly 
dynamic scenarios. 

 

2.2. Site survey  
 

2.2.1. Mobile platform 
 

In this study, a remote-controllable UGV was 
developed to produce a 3D model of indoor areas. This 
vehicle consists of the motion and imaging systems. The 
six-wheel drive (6WD) was used as a carrier platform for 
the motion system. The vehicle’s motion is controlled 
remotely through telemetry. The motion of the vehicle is 
accomplished by the motor driver transmitting 
commands to the engines from the remote control. 
Lithium Polymer (LiPo) batteries power the vehicle’s 
motion system. The vehicle imaging system consists of a 
stereo camera (ZED 2i), a processor (Jetson AGX Orin), a 
monitor, and a power supply (Figure 1).  A screen was 
also used for instant data visualization. A strong power 
bank feeds the imaging system. Figure 2 shows the UGV. 

 
2.2.2. VSLAM-based 3D modelling 

 

In order to test the accuracy of the produced model, a 
corridor with doors, fire cabinets, etc., which can be 
easily measured, was chosen. The corridor is 34 meters 
long, 2.96 meters wide, and 2.85 meters high (Figure 3a). 
The visual data was collected with the Zed2i stereo 
camera. The ZED 2i stereo camera has a 120° field-of-
view (FOV) and advanced IMU sensor that improve 
VSLAM performance by providing positional and spatial 
awareness. These sensors provide visual-inertial stereo 
SLAM with advanced sensor fusion and thermal 
compensation. ZED 2i can create applications in the fields 
of motion, artificial intelligence, and depth sensing 
thanks to this equipment. The images collected with the 
Zed2i stereo camera were evaluated using the ZEDfu 
application, which is part of ZED-SDK software (Figure 
3b). The sequential image data was processed using the 
VSLAM method at ZEDfu and obtained in accordance 
with the actual colours of the 3D model consisting of 
1,820,363 points of the study area (Figure 4). 
CloudCompare software was used to visualize the 
resulting model. 

 



International Journal of Engineering and Geosciences, 2024, 9(3), 368-376 
 

371 
 

Figure 1. Monitoring system of the UGV Figure 2. UGV and sensor placement 

 

 
Figure 3. a. The study area, b. real-time 3D visualization 
 

 
Figure 4. 3D model of the study area 
 
3. Results  
 

Using a measuring tape, the easily measured width 
and length of the items in the field of operation were 

determined in order to assess the accuracy of the 3D 
model that was created. In addition, extra objects were 
placed in the corridor, such as a cabinet, during the 
modelling to increase the number of objects to be 
measured. Figure 5 shows the reference dimensions of 
the selected objects, and the dimensions measured using 
the CloudCompare software using the 3D model. 

The accuracy values in Table 1 are attained when the 
measurement values derived from the model are 
compared with the reference values. Table 1 shows that 
the accuracy of five objects is in the range of ±2cm. 

The surface flatness test is another analysis carried 
out for the accuracy of the model. As seen in Figure 6, a 
total of 16 flat surfaces from the two walls (8 surfaces 
from the Right Wall (R), and 8 surfaces from the Left Wall 
(L)) and five flat surfaces from the ground (G) were 
chosen for this investigation. Using CloudCompare, an 
accuracy examination of the surfaces was performed. 
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Object dimensions from the 3D model Reference Dimensions 

Width (m) Length (m) Width and Length (m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reference and model dimensions of the selected objects in the 3D model 
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Table 1. Model accuracies 
Object Reference Dimensions VSLAM Model Dimensions Error (m) 

Width (cm) Length (cm) Width (cm) Length (cm) Width (cm) Length (cm) 
Corridor 296 285 296 283 0 2 
Recycling box 37 70 38 68 -1 2 
Fire cabinet 90 70 90 72 0 -2 
Cabinet 43 66 43 67 0 -1 
Door 109 224 107 226 2 -2 

 
Figure 6. The flat surfaces are chosen from the 3B model (green colour - left wall surfaces; red colour – right wall surfaces; 
blue colour – ground surfaces) 

 
The Root Mean Square Error (RMSE) values for the 

plane of the surfaces are shown in Table 2. The RMSE 
values are calculated by using Equation 1. 

                             𝑅𝑀𝑆𝐸 =  √
∑ 𝑒2

𝑛
   (1) 

Here, 𝑒 is the distance between the predicted and 
actual points, 𝑛 is the number of points. The mean RMSE 
values were determined as 0.9 cm, 0.5 cm and 0.1 cm for 
the right, left and ground surfaces, respectively. 

 
Table 2. RMSE values of the surfaces 

 RMSE Values (cm) 

Surface No Right Left Ground 

1 2.4 0.1 0.1 

2 0.8 0.4 0.1 

3 0.5 0.2 0.1 

4 0.4 0.4 0.2 

5 1.2 0.5 0.1 

6 0.4 0.3 - 

7 0.6 0.7 - 

8 0.8 1.5 - 

Min 0.4 0.1 0.1 

Max 2.4 1.5 0.2 

Mean 0.9 0.5 0.1 

 

4. Conclusion  
 

In this study, the images collected with the stereo 
camera on the UGV were processed using the VSLAM 
method and produced a 3D model of the selected indoor 
area. Two analyses were carried out to test the accuracy 
of the produced 3D model. The dimensions of the objects 
on the 3D model were compared to their reference 
dimensions, and the model accuracy was determined as 
±2 cm or better. Secondly, surfaces with a homogenous 
distribution were chosen to test the surface’s accuracy. 
The investigation yielded RMSE averages of 0.9, 0.5, and 
0.1 cm for a total of 21 surfaces chosen from the floor, left 
wall, and right wall, respectively. These values indicate 
that the accuracy of the produced model is 1-2 cm and 
can be safely used in many indoor modelling 
applications. The colour of the model also makes the 
VSLAM method superior to other sensor models. 
However, VSLAM has many drawbacks as well as its 
benefits. The VSLAM method may have problems due to 
the low FOV of camera sensors. Because the height of the 
camera sensor in the UGV is very close to the floor and 
far away from the ceiling, the model’s ceiling accuracy 
has been determined to be lower than that of the ground 
and side walls. It has also been determined that the light 
density in the environment may cause problems when 
the model is produced. In this study, the stereo camera 
was positioned in front of the UGV, so the details of the 
vehicle’s direction of movement could be reflected well 
in the model, while the details in the opposite direction 
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of the UGV could not be obtained at the desired accuracy. 
This problem is believed to be solved with at least two 
cameras, which are integrated into the front and rear of 
the vehicle. 
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