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ABSTRACT 

In this paper, a method for obtaining an exact and numerical solution of the 
Cauchy and first type initial boundary value problems for a first order partial 
differential equation with a non convex state function is suggested. For this 
purpose, we introduce an auxiliary problem since it has some advantages over 
the main problem, and it is equivalent to the main problem in a definite sense. 
Using this auxiliary problem, we propose a efficient method for finding the 
location of shock which appears in the solution of main problem and its 
evolution in time. The suggested auxiliary problem permit also us to prove 
of convergence in mean of a numerical solution to the exact solution of the 
main problem. Moreover, using the auxiliary problem we can write the higher 
order numerical scheme with respect to the time variable. Some results of the 
comparison of the exact and numerical solutions are illustrated. 

Keywords: Riemann's and Buckley-Leverett's problems, non-convex 
state function, convex and concave hull, numerical solution in a class of 
discontinuous functions 

ÖZET 

Makalede sabit katsayılı adi diferansiyel denklemler sistemi için yazılmış 
Cauchy probleminin rezidü metodu ile gerçek çözümü elde edilmiş ve 
söz konusu metot uygulanarak sabit gerilimli bir RC devre probleminin 
çözümünün bulunması için uygulanmıştır. 

Anahtar Kelimeler: Riemann ve Buckley-Leverett problemleri, konveks 
olmayan durum fonksiyonu, konveks ve konkav katman, süresiz fonksiyonlar 
sınıfında sayısal çözüm 
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1. INTRODUCTION 

The theoetical investigation of many important problems of 
physics and engineering are reduced to finding the solution of a 
first order hyperbolic type equation as 

du dF(u) n 
— + — — = 0 
dt dx 

with corresponding initial and boundary value conditions. 
(11) 

It is well known that the equation (1.1) is the model equation 
of gas dynamics and has been used to model various problems of 
hydrodynamics, [1], [2], [9], [11], [26], [28]. It has been proven 
that, (see, for example, [3], [8], [12], [15], [18], [26], [28]), the 
solution of the equation (1.1), becomes multi-valued if the initial 
profile has both a positive and a negative slope. Similar features 
appear in the solution of the Riemann problem too. Since a multi-
valued solution has no meaning from a physical point of view, (see, 
[9], [12], [14], [18], [26], [28] ) the necessity arises to extend the 
concept of a classical solution and propose a method for obtaining 
a single-valued solution (weak solution) which may have 
discontinuities with finite jumps. 

The solution obtained by using the method of characteristics 
has an implicit form as 

u(x, t) = f ( x - F'(u)t), (12) 

where f is any differentiable function. But, from this expression, 
it is often impossible to obtain an explicit formula for the unknown 
function. We will call the obtained functional relation (1.2) as the 
alternative form of the equation (1.1). 

The existence of the points of discontinuities in the solution 
of (1.1) makes it vulnerable to the numerical schemes, due to the 
fact that near a point of discontinuity, a finite difference 
approximation to the first-order derivatives yields rather poor 
results. 

Various finite difference methods have been applied to find 
the solution of the Cauchy problem for equation (1.1) (see, for 
example ([2], [3], [4], [11], [16], [15], [19], [24], [25], [27]). 

156 



Entropy Solution of a First Order Hyperbolic Type Equations with a Non-Convex State 
Function in a Class Of Discontinuous Functions 

In the literature, there are also such homogeneous finite 
differences schemes that ignore the jump points which appear in 
the solution. It is known that the classical finite difference schemes 
when applied to (1.1) the so-called numerical viscosity appears in 
the equation. Such numerical viscosity has a negative effect on the 
solution. More precisely, it causes the numerical propagation rate 
of the wave to be larger than the actual physical rate. Furthermore, 
there exist some other numerical methods that employ the method 
of characteristics, see [5], [6], [10], [11], [24], [25]. 

When we include the concept of a weak solution, a new 
problem arises, as the location and time of the discontinuous points 
become unknown. It is obvious that a weak solution defined for 
nonlinear differential equations automatically fulfills the known 
jump condition. However, this statement is not valid for the soft 
solution [17]. 

The concept of a weak solution has been employed 
extensively in obtaining differences approximation for the 
equations of hydrodynamics. P. Lax showed [14] how it can be 
used for numerical computation and Lax & Wendroff [15] showed 
that the entire classes of difference methods lead to solutions which 
converge to weak solutions of differential equations. However, 
having finite difference solutions converging to the weak solution 
of the hydrodynamics equations does not permit to approximate the 
hydrodynamics equations by finite difference methods. As it is 
shown in [3], when we approximate the equation (1.1), when 

u 2 

F (u) = — , by the finite difference method, we do not obtain the 

solution for the equation (1.1), in fact, we obtain the solution for 
the modified equation below 

ut + uux = hu^, (13) 

where h is the grid size. 

We emphasize that the solution of the equation (1.1) has 
unknown points of discontinuities, and the equation (1.1) can not 
be approximated by the finite differences method. Furthermore, the 
principle of causality is violated. That is, when we directly 
approximate the equation by the finite differences method we 
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artificially take the wave to a point which it has not physically 
reached. This approach leads us to the wrong solutions. 

Equation (1.3) is called Burgers's equation and it includes the 
diffusion and the convection effects. G.B.Whitham showed in [28] 
that, if the diffusion term is small enough it removes the effect of 
the convection term which leads to a continuous solution. This in 
fact corrupts the physical structure of the problem. 

In the case where the initial function is piecewise constant or, 
in general, if u(x,0) e Lx(R2) and F''(u)>0 ( or F"(u)<0) then 
it is noted that (see, [12], [14], [16], [26], [28]) the Cauchy problem 
has multi-valued solutions from which the physically efficient 
solution can be obtained by imposing the so-called entropy 
condition. In [8], [13], [14], [16], [18], [26], [27], [28], under the 
assumption that F (u) does not change sign, a method for 
obtaining the extended solution satisfying the entropy condition is 
proposed. 

In this study, we consider the Cauchy and first boundary 
value problems for a one-dimensional first-order nonlinear wave 
equation and propose a method for obtaining the exact and 
numerical solution in a class of discontinuous functions when 
F (u) has alternative sings. Unlike the classical schemes, the 
proposed scheme does not require regularity assumptions on the 
unknown function and remains valid for higher dimensions. 

2. THE EXACT SOLUTION OF THE CAUCHY PROBLEM 

As usually, let R2(x, t) be the Euclidean space of points 
(x, t). We denote Q ={x e R \ 0 < t < T} c R2(x, t), here 
R1 = ( - w , <x>). 

In this section we will construct the exact solution of the 
equation (1.1) with the following initial condition 

u( x,0) = uo(x), (2.1) 

and investigate some properties of this solution. Here, u (x) is a 
known measurable and bounded function in particular case with 
compact support having both a positive and a negative slope. 
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Suppose that the function F(u) is known and satisfies the 
conditions: 

• F(u) is a twice continuously differentiable and bounded 
function for bounded u ; 

F'(u) > 0 for u > 0; 

• F''(u) is a function with alternating sings i.e. F has convex 
and concave parts. 

2.1. Continuous Initial Profile 

A solution of the problem (1.1), (2.1) can easily be 
constructed by the method of characteristics [1], [8], [9], [11], [12], 
[13], [14], [16], [26], [27], [28] and it has the form 

here, 

u( x, t ) = u,(£), 

^ = x - F (u)t 

(2.2) 

(2.3) 

where, i is the spatial coordinate moving with speed F'(u). 

From (2.2), (2.3) we have 

du(x, t) _ u'(i) 
Sx (1 + u' (i)F''(u)t)' 

du(x, t) _ u' (i)F'(u) 
dt (1 + u0(£)F'' (u)t) 

(2.4) 

(2.5) 

Relation (2.4) expresses the slope of the profile u( x, t) at the 
point (x, t) in terms of the slope of the initial profile at 
(x = i , t = 0) . If u ' < 0 and F' '>0, or ( u ' > 0 and F'' <0 ) then 

for t = • -1 

<(£) F' '(u) 
we have ux (x, t) = » . At these points ut (x, t) 

also becomes infinite. Therefore, the problem (1.1), (2.1) does not 
have a classical solution. 
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Definition 1. The function u(x, t) satisfying the initial 
condition (2.1) is called the weak solution of the problem (1.1), 
(2.1) if the following integral relation 

\\Q fa (x, t)u(x, t) + çx (x, t)F(u)}dxdt + J u(x,0)ç(x,0)dx = 0 (2.6) 

holds for every function (p(x, t), which is defined and twice 
differentiable in the upper half plane and which vanishes for 
sufficiently large t + | x |. 

2.2. The Auxiliary Problem 

In order to determine the weak solution of the problem (1.1), 
(2.1), in accordance with [20], [21] the auxiliary problem 

M f b <2.7) 

v(x,0) = V0(x) (2.8) 

is introduced. Here, v (x) is any absolutely continuous function 
satisfying the following equation 

dvn (x) . s 
—T^ = u0( x). (2.9) 

dx 

Theorem 1. If v(x,t) is a solution of the auxiliary problem 
(2.7), (2.8), then the function u( x, t), defined by 

u(x, t )= (2.10) Sx 

is the soft solution of the main problem (1.1), (2.1). 

Suppose that v(x, t) is a solution of the problem (2.7), (2.8). 
We introduce the following notations 

Sv Sv 
— = p, — = q. 

St Sx 

Using these notations the equation (2.7) is written as 

n(p, q) = p + F (q) = 0. 

160 



Entropy Solution of a First Order Hyperbolic Type Equations with a Non-Convex State 
Function in a Class Of Discontinuous Functions 

Differentiating the last equation with respect to x and t, we 
have 

dp + Q dq =0^ dp + Q dq = ^ 
Sx Sx St St 

here, Q = — . Noting that — = — , for the unknown variability 
Sq Sx St 

characteristics in the space (x, t, v, p, q), we get 

dt dx N dp „ dq ^ dv ,—. . - - = 1, — = F (q), -f = 0, -dq = 0, — = p + F (q). (2.11) 
ds ds ds ds ds 

The system (2.11) uniquely determines x, t, v, p and q as 
functions of s provided their initial values are known. The initial 
conditions for the system (2.11) at s = 0 are given in the form 

K , I ; I * I , t \s=0 1, x \s=0 g, v
 \s=0 I „ I r I . , , 

{ 0 \ g \> 1 

v\ = a\ = = \ U o , \g\*1 
pls=0 F l a x J als=0 dx 1 0 , \ g \>1. 

(2.12) 

The solution of the problem (2.11), (2.12) can easily be 
obtained, and has the form 

v( x, t) = 
d v . F ' [ d v V F [ d v 

dx l dx dx t + V0(g), (2.13) 

/ d v 0 

t=x -F lax- / 
By calculation, it can be easily shown that u(x, t ) = X't ). 

dx 
It is also easy to see that an integrable soft solution is a weak 
solution [17], that is, the following theorem holds. 

Theorem 2. If v(x, t) is the solution of the auxiliary problem 
(2.7), (2.8), then 

161 



Mahir RESULOV, Ethem Ilhan SAHIN 

10. the function u(x, t) defined by (2.10) is the weak solution 
of the main problem; 

20. v(x, t) is an absolutely continuous function. 

The auxiliary solution has the following advantages: 

• The function v(x, t) is smoother than u(x, t) ; 

• u(x, t) can be determined without using the derivatives 
Su Su 
— and — , which are not defined at the neighborhoods of the 
Sx St 

points of discontinuities. 

According into consideration (2.10) the equation (2.7) can be 
rewrite in the form 

fxu(g, t )dg + I[F (u(x, T)) — F (u(r, T))\-T = 0, (2.14) 
Jr J0 

here r is any real number r e (—w, w). 

2.3. Shock Fitting 

In order to obtain the location of the points of discontinuity 
which arise in the solution of the main problem we will use the 

/ •w 

facts that I u(x, t)dx = const, and that this integral exists not only 
J—w 

for multi-valued and continuous functions, but also for single-
valued piecewise continuous functions. In addition, it is known that 
the equation (1.1) expresses the conservation law of mass. Let 
E (t) denote the following integral 

E (t) = \u(x, t)-X . 

Definition 2. The number E (0) , defined by 

E (0) = \u( x,0)dx 

is called the critical value of the function v(x, t). 

Now we investigate the problem of finding the locations of 
discontinuous points of u(x, t) and the time evolution of these 
points. As it was expressed before, the solution of an auxiliary 
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problem is not unique. Some additional conditions are required in 
order to find a physically meaningful and unique solution. 

Definition 3. For every t, the geometrical location of the 
points, where v( x, t ) takes a critical value is called the front curve. 

Let x / = Xy (t) be the equation of the discontinuity curve of 

v(x, t) . Considering Definition 3 and expression (2.10), we have 

v( x , (t ), t )= f Xfu( x, t )dx = E (0). 
f
 J—œ 

From the last relation we have 

dXf (t)_ [F(u)]. x = x f ( t ) ' (2.15) 
dt [u\ 

Here [ f \ shows the shock of the function f at a point x = x0, i.e. 

[f \ = f (x0 + 0) — f (x0 — 0). 

Definition 4. The function defined by 

'v(x,t), v < Ei(0), 
v e x t ( x t ) = ' 

Ei(0), v > Ei(0) 

is called the extended solution of the problem (2.7), (2.8). 

From Theorem 1, for the weak solution of the main problem 
(1.1), (2.1), we have 

u „ ( x, t ) = ^ . Sx 

This means that a point of discontinuity for u( x, t) is one to 
the right of which the solution of the problem (1.1), (2.1) is equal to 
zero. 

From (2.15), we easily obtain 

dxf (t) 
dt 

F (u)N 

u ] x f ( t ^ 
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hence, t = f f 
Jo 

xf (t) dx 
F (u) 

Thus the necessary and the sufficient condition for the 
existence of a jump for u(x, t) is that the integral 

rxf (t) dx f < ^ 
Jo F(u) 

, • v(x, t) - v(x - a, t) „ Now we consider the relation for any 
a 

a > 0 

v(x, t) - v(x - a, t) _ 1 ft 
a a 

| [F (u( x, r)) - F (u(r, r))]dr < 

1 rT E 
- [ [F(u(x,r)) -F(u(r,r))]dr < - l , (2.16) 
aJ 0 t 

2 
here -1=— s u p F(u). This is the entropy condition in sense 

a 
Oleinik, (see, [18], which show the rate of spreading of 
characteristics. Hence v(x, t) is the entropy solution to the problem 
(2.7), (2.8). 

Figure 1. Characteristics and initial data 

3. THE INITIAL BOUNDARY VALUE PROBLEM 

In the previous section we found the solution of the Cauchy 
problem for first-order nonlinear equation of the hyperbolic type. 
But, many important practical problems such as the displacement 
of fluid by water in a porous medium, the traffic flow problem etc. 
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are expressed by the initial boundary value problem for the 
mentioned equation [7], [16], [19], [21], [23]. 

Suppose that the solution of the equation (1.1) is given on a 
curve i = i(t) in a plane (t, x). It is known that, [11], [21], [28], if 
the characteristics of the Eq. (1.1) intersect this curve once, then the 
solution of the equation (1.1) is determined uniquely, and this is 
called a Cauchy problem. In other words, from the trace of the 
solution on the initial curve, the solution may be determined in the 
entire region which has been covered by the characteristics of the 
Eq. (1.1). 

If the characteristics of the equation (1.1) intersect the given 
initial curve twice, as shown in Fig. 1, than we give the initial 
condition either on the AB or the BC curve. Otherwise, the 
solution defined on the curve AB and the one defined on the curve 
BC do not match. Since the slope of the characteristics of the 
equation (1.1) depends on the solution, usually, it is not possible 
beforehand to know the region covered by the characteristics of the 
equation (1.1) where the boundary conditions are given. 

The typical initial boundary value problem describing the 
distribution of some signal in D = {x >0 , t > 0} is 

du dF(u) _ 
St dx 

u( x,0) = u( x), 

(3.1) 

(3.2) 

u(0, t) = u (t). (3.3) 

Here, u0 (x) and u (t) are given functions, and u (0)> u0 (0). 

It is obvious, that the solution of the problem (3.1)-(3.3) may 
be connected with solutions of two Cauchy problems, for any F (u) 
function, when F'(u) > 0. We introduce the following Cauchy 
problems: 

du dF(u) _ 
dt dx 

u( x,0) = u0( x); 
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du dF(u) n + — = 0, 
dt dx 

u(0, t) = u (t ). 

The exact solution of the main problem (3.1)-(3.3) was 
constructed in [21], [23], [28], and has the form 

u( x, t ) = 

u0(£l 
x 
~> F'(uo), 

G(X), F'(uo)< X < F'(u), (3.4) 

u i ( j ) ~ < F'(ux). 

here G(g) is the inverse function F' (u) over [u0, u ] . 

As noted in [21], [23], and [28] the solution (3.4) is a multi-
valued function for any x > 0 and t >0 . 

The weak solution of the problem (3.1)- (3.3) is defined as. 

Definition 5. The function u(x, t) and satisfying the 
conditions (3.2),(3.3) is called the weak solution of the problem 
(3.1)- (3.3) if the following integral relation 

j j {f (x, t)u + fx (x, t)F(u)}dxdt + Jo u(x,0)f (x,0)dx 

+ jTF (u(0, t)) f (0, t)dt = 0 (3.5) 
J0 

holds for any test functions f (x, t) for which f ( x , T ) = 0. 

In order to obtain the weak solution of the problem (3.1)-
(3.3) in sense of (3.5), according to [21], [22], the following 
auxiliary problem, known as the first kind auxiliary problem 

dv(x, t) | J dv(x, t) ̂  = Q 

dt 1 dx , 

v ( x , 0 ) = vo ( x ) 

(3.6) 

(3.7) 

< 
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dv(0, t) 
dx 

is introduced. 

= u l
( t ) (3.8) 

It is note that, the Theorem 1 is valid for the problem (3.6)-
(3.8). As is obvious from Eq.(3.6), in this case the function u(x, t) 
may be discontinuous, too. Besides, the auxiliary problem allows 
us to write economical and efficient higher-order finite differences 
schemes for obtaining the solution of the problem (3.1)-(3.3). The 
solution of the problem (3.6)-(3.8) is 

v0(£) + [u0(g)F'(u0(g)) - F (u0(m, ~> F' (u0(&), 

v( x, t ) = < 

UT - F(Ul(J}l x-\f (ul(rl))drl, F (u (t)) J0 

F'(uo)< f < F'(u),(3.9) 

y < F' (u). 

The exact solution of the problem (3.6)-(3.8) was 
investigated in detail in [21], [23]. 

In order to is constructed the weak solution of the problem 
(3.6)-(3.8) we may be to use the second kind auxiliary problem as 

3 rx 
-j0u(g, t)dg = F(u (t)) - F(u(x, t)), (3.10) 

u(0, t ) = u0 (x). (3.11) 

let us define E (t) as 

E(t) = jXu(g, t )dg = £ [ F U (0)) - F (u( x,0))]dz, (3.12) 

and 

'v(x, t), v(x, t) < E(t), 
vext(x, t) = j (3.13) 

E(t), v(x, t)> E(t). 

According to the Theorem 1 we have 
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u e x t ( x > t ) = < 

foext(x, t ) , 

dx 
v(X, t) < E(t), 

v( x, t )> E (t ). 
(3.14) 

Taking into consideration (2.10) and (2.14), for value of 
t > 0 and a > 0 we now consider 

v(x, t) - v(x - a, t) _ 1 f fV 
a 

— ( u ( x - a, r)) - F(u(x, r))]^r} < 

1 t E 1 {ï [F(u(x - a, r)) - F(u(x, r))]rfr} < E 1 , J0 / a 

here E1 = 2 sup F (u) 
a 

and t < T. Hence the solution of the problem 

(2.10), (2.11) is the entropy solution. 

4. FINITE DIFFERENCES SCHEMES IN A CLASS OF 

DISCONTINUOUS FUNCTIONS 

In this section, using the above introduced auxiliary problem 
we develop a numerical method to solve the problems (1.1), (2.1), 
and (3.1)-(3.3) and investigate some properties of the numerical 
solutions. 

4.1. The Finite Differences Scheme for the Cauchy Problem 

In order to construct the finite differences method, at first the 
domain of definition of the problem is covered by the following 
grid 

= {( x, h ) | x = ih, h = kr, i = 0+1+2,..., k = 0,1,2,...; h > 0,r > 0} h,r 

where, h and r are steps of the grid for x and t variables, 
respectively. 

The problem (2.7), (2.8) is approximated by the finite 
differences scheme at any point (i, k) of the grid coh r as follows 
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V, k+—= V, k -rF 

V i , 0 = V 0 ( x ) . 

( V, k - Vi-—k 1 
h (4.1) 

(4.2) 

A function v (x ) is any solution of the following finite 
differences equation 

(Vo)xx = ua(xt). (4.3) 

It is easy to prove that 

U k+— = 
V - V V i,k+— Vi-1,k +— 

h 
(4.4) 

Here, the grid functions U k and Vik represent approximate values 
of the functions u(x, t) and v( x, t) at point (i, k) respectively. 

In order to prove (4.4), firstly we write the equation (4.1) at a 
point (i -1 , k), then subtract it from (1.1) and divide by h. By 
taking (4.4) into consideration, it is seen that U ik satisfies the 
following nonlinear system of algebraic equations 

U h k + — = U h k - L ( F ( U i , k ) - F UU-—,k )). (4.5) 
h 

Initial condition for (4.5) is 

U,o = u0(xt ). (4.6) 

Theorem 3. The expression 

E,(tk ) = hJUhk 
i 

is independent of time, that is h y U i k + i = h y U i k. 

Proof. Multiplying (4.5) to h and summing with respect to i, 
we get 

WZU,k+i - h J U h k ] = 0. 
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This means that E t ) is independent of k. This completes 
the proof. 

Definition 6. The quantity E (0) defined by 

E1(0) = 
i 

is called the critical value for the grid function Vik. 

Definition 7. The mesh function defined by 

Vik, Vik < E(0), 

V T = < 
E(0), Vik >E(0) 

is called the extended solution of the problem (4.1), (4.2). 

From Theorem 1, we have 

ux=(vTh, 
and this expression is called the extended numerical solution of the 
main problem. 

As it can be seen from (4.1), (4.2), the suggested algorithms 
are very effective and economical from a computational point of 
view. 

The finite differences analogy of the (2.14) is 
i k 

hTP^ = tYJlF (U„) - F (UhV)], (4.7) 
j=1 V=1 

here q is such number for that the r = (i -q)h is valid. Let us p is 
any positive integer, and consider 

V, - V , 1 K K 
IK L-P,K =-{Tj}_F(Uqv) - F (Uiv)] - TY[[F(Uqv) - F (UI - P.V)]} = 

p p
 v=1 v=1 

1 k 1 .f — 
-{TYJlF (U- J - F (UJ] < - J [F (u(x - a, t) - F (u(x, t)]dt < - f , (4.8) p

 v=1
 p tk 
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2 
where a = (i - p)h and E2 =— max uF (u). Therefore, the 

P 
numerical solution of the problem (4.1), (4.2) satisfies the entropy 
condition too. 

Additionally, considering (2.10), we rewrite (2.7) as 

dv( x, t) 
dt 

+ F (u( x, t )) = 0. 

Then, by applying for example, the Runge-Kutta method to 
the equations above, we can write a higher-order finite differences 
scheme for the main problem with respect to r . 

4.2. The Finite Differences Scheme for the Boundary Initial 
Value Problem 

The finite differences analogy for (3.6)-(3.8) is 

V,k+1= V,k - F 

Vo = v0( X ) , 

v - V V
 1,k

 v
 0,k \ 

- " — j k = U1(tk ) . h 

f v - V ^ v i,k vi-1,k 

h 
(4.9) 

(4.10) 

(4.11) 

It is easily show that the equality (4.4) is fulfilled for the 
problem (4.9)-(4.11). As above the extended solution for the 
problem (4.9)-(4.11) is writed in the form 

^ e x t ( X t ) = 1 

V,k, Vuk < E3(tk ), 

E,(tk), V,k > E3(tk), 

(4.12) 

here E3 (tk ) = [F(u (0)) - F(u(x,0))]. Using the Theorem 1 

we can find the extended numerical solution of the main problem 
(3.1)-(3.3). 

We can write analogies estimate to (4.8) for the solution of 
the problem (4.9)-(4.11), i.e, for the in question solution entropy 
condition is satifies. 
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In order to find as a matter of fact the numerical solution of 
the problem (3.1)-(3.3), we will use the second kind auxiliary 
problem which is equivalent to (3.1)-(3.3). But then, the point in 
question auxiliary problem (3.6)-(3.8) is convenient tool as 
theoretical investigations of by proof of convergence of the 
numerical solution to the exact solution of the main problem, and 
by study of a some theoretical property of the solution. 

Firstly, we approximate the integral included in (3.10) by 

t d = hfUjk. 
j=1 

(4.13) 

By taking into account, (4.13) for the equation (3.10) we will write 
two kinds of difference schemes: 

1) explicit scheme 

T ' - 1 

Uk+1 = Uuk + -[F(Ui(tk)) - F(Uhk)] - YjUhk+1 - Ujk). (4.14) 
n j=i 

The system of equations (4.14) is solved under condition 
(4.6). This differences scheme is simple and to obtain the solution 

from (4.14) does not present any difficulty. But this scheme U j,k+1 

requires the severe constraints on the steps of grid. 

In order to flee from this limitation we will write 

2) implicit scheme 
i-1 

U,k k+1 = U,k +-[ F (Ui(tk+1)) - F (Uhk+1)]-Z(Ujk+1 - Ujk k). (4.15) 
j =1 

The differences scheme (4.15) is nonlinear with respect to 
U . For finding this solution we can be apply following scheme: 

a) simple iteration 

Ul:;H= Uik +^[F(u1(tk+1)) - FUS+1)]-lPCl+1 - Ujk). (4.16) 

b) Newton iteration 

j=1 

i-1 
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T i-1 

U S = Uhk + T[F(Ui(fk)) - F ( U ™ ) ] - Y j U j l + 1 - Ujk). (4.17) 
j=1 

To obtain the solution we represent it in form 

u ( s + 1 ) = U ( s )
 + S U ( s ) 

u k + 1 U . ^ i + U U J i Itmi. 

Substituting the last relation in (4.17) and linearizing it, we 
have 

i - 1 

Uk+1 = -ZUk+1 - T F '(U^tUCL+U, k+1 - U(5+1) -
j=1 

- h F ( U S + i ) - U M ) ik+1). (4.18) 

It is obvious from (4.18) that this algorithm is economical 
and efficient from a computational point of view and it permit us to 
find the solution SU(j+1 easily. 

4.3. Consistency and Convergence 

Now we will show that the difference scheme (4.5) is 
monotone. For this, (4.5) let us rewrite in form 

U k+1= H U-hk,Uh k ) 

where ^ U ^ U ^ ) = U^k +T (F(U^) - F(UIJc)). 
h 

It is 

obviously that if 

0 < - F ' ( U ,) < 1 then > 0 
h ( k) dUjkk 

for ( j = i — 1,i). Hence, if the CFL condition is fulfilled, then the 
difference scheme (4.5) is monotone. The definition of a monotone 
scheme is actually equivalent to the following property; 

if Wt k > Ui k for any i then W k+1 > U, k+1- (4.19) 

Theorem 4. Let ( U k ) be given set, if ( U i + J is solution set 
founded with a monotone scheme (4.5) then 

i-1 
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max{U, k+1 } < max{Ui ,k}; ^or min{U
hk+i} > mm{U

hk
(4.20) 

Proof. Let Wik = m a x , { U t k } for any i. From (4.5) we have 

W k + i = W. , . As W k̂ > Uuk, application of (4.19) gives 

W,k+i= Wi,k > Ui,k+i a n d t h e f o r e maxi{U
hk+i} < max,{U

hk
}. T h e 

second inequality in (4.20) follows similarly. 

From (4.20) also follows 

max { U , ,k } < max {U,,k-i} <... < max { U , ,0
} , 

min {U,,k} > min {Ut k_} >... > min {Ut o}. 

It is easily shown that the differences schema (4.9) is 

monotone, too. In deed, under the CFL condition 

j, ( j = i _1 , i) here, 

/ \ f V _ V ^ 
H1(VI_1JC,VIJC) = Vhk _TF . 

I h J 

SH1 

ÔV, 
> 0 for any 

j,k 

Let sik and 5ik be the errors of the approximations by the 

„ , , . dv(x,t) , dv(x,t) _ 
differences of the derivatives — : and — : . Then (2.7) can 

ôx ôt 
be written as 

V k + F {vxx +eu k
 ) = 0 

or 

vt + F ( v x ) =Vi, k , 

W h e r e 1,k = Si,k + F ' ( V x )Si,k. 

(4.21) 

Now we will show that the difference schema (4.21) is 
consistent. It is known that the suitable characteristic of continuity 
of the function f (x) on the any [a,b] is it a module continuity 

« ( J , f ) = n ( f ) = sup \ f ( t ) - f ( x ) \ . 
\t - x\<S 
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At first, we will show that e i k ^ 0 and S i k ^ 0 if the steps 

of grid approach to zero. In deed, due to u(x, t) is continuous 

£.,k = = dv(xl2tk)_ _ 
dx 

_ dv(x, tk) dv(X*, tk) 

dx dx 

= ( x , tk) - u (x* , tk) 

= n(u) ^ 0, 

x * e ( x , x , + 1 ) 

and 

= _ d v ( x , , t k ) _ d v ( x , , t k ) d v ( x , , t * ) 

dt dt dt 
= F ( u ( x , , tk ) ) - F ( u ( x, t* ) ) = 

F'(u)(u(xi, tk) -u( x i , i*)) = F ' ( u ) x ( u ) ^ 0, 

A e ( t k • tk+1X ~ e ( u ( x i • t k X u ( x i • t k 

hence, r]jk^ 0. 

Subtracting (2.7) from this equality and writing wik for 

Vk - Vk, we have the following problem for wik 

W + F ' ( u ) w x = Vt,k, (4.22) 

W i , 0 = Jo U 0 ( J ^ ) ^ - h Y u 0 ( x j ) = w f = O(h) ^ 0, (i = 1,2,..,) 
j=1 

w 1 , k - w 0 , k = hs0,k = O ( h ) ^ 0 . 

According to Theorem 4, 

= v i , k - ^ 0 , (4.23) 

that is, the numerical solution Vik of problem (3.7), (3.8) pointwise 
approaches to the solution of the problem (2.7), (2.8). 

175 



Mahir RESULOV, Ethem Ilhan SAHIN 

Now, let us multiple the (4.22) to w- and sum with respect to 
i, k over grid co ĥ , 

( w x , w t ) L 2 h ) + ( w x , F ' ( u ) w x ) L 2 h ) 

= ( w x , Vi,k )L2(mr h). 

or 

(R k , F (u) Rh k ) l2 ) 

= ( w . , k , R t ) L2 ( v t h ) + ( R k ,k ) L2 ( v t h ) < 

K k | L M (a ) + W „ L b ' A (n v (4.24) 
11 ' "L2(mT,h ^ L2(mT,h) 11 ' nL2(0\,h ) N ' HL2(mT,h) 

H e r e , t h e n o t a t i o n s Rik = uhk - U
hk a n d ( f , g)

 h (^ h) i s 

differences analogy of the inner production of the functions f and 

g, t h a t i s ( f , g )
h ) = ̂  f(x)g(x)dx. 

From last inequality it is seen that u converges to U with 

the weighted F ' (u) in the sense of L 2 (a T h ) . 

5. Numerical Experiments 

We simulate the experiment which was done in the 
Department of Phisyco-Chemistry of Porous Medium of the 
Institute for the Study of Problem of Deep Oil and Gas Deposits, of 
the Azerbaijan Academy of Sciences. 

In this experiment, a cylindrical pipe filled with unfiltered 
quartz sand is used as the porous medium. The length and cross 
section of the pipe are given as l = \.2m, S = 9.6-\0 Am2, 
respectively. The permeability coefficient, k , is 2.22^m2, and the 
porosity (m) is 0.298. The transformer oil is used as the fluid 
model of which the viscosity is 47.9sP, and the surface tension 
between the water and the fluid is 37 fjNIm. The pipe from one 
end is attached to a water source whose gradient pressure Ap is 
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0.03mPa. The amount of connate water in the model is specified 
as (s0) 0.23. The duration of the experiment is 54 hours. 

0.4 b ) 0.i 

Figure 2: a) The graphs of the functions k c (s) , kw (5), F(s); 

b) Time evaluation of the exact solution a(x, t) 1) T = 105 sec, 2) 

T = 1.5 -10s sec, 3) T = 2 -10s sec 
The relative phase permeabilities and the Buckley-Leverett 

function are given, as follows 

ko (s) = 0.29 
(0.9 - s)2 

0.16 
kw (s) = (0.5 - 0.00187) (s - 0.5) 

0.14 : 

F (s) = - kw (s) 
K

 ( s ) + Mko
 ( s ) 

The graphs of the functions ka (s), kw (s), F (s) are given in 

Fig. 2a at room temperature of 20o . 
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According [7], [23] this experiment is modeled bu the 
following problem 

m * + w(t) ^ = 
dt dx 

s(x,0) = s0 = 0.23, s(0, t) = s = 0.77 

The graphs of the numerical solutions obtained using the 
algorithm (4.14) are given in Fig.2b at values T = i05sec. , 
T = i.5-i05sec. and T = 2-i05sec., respectively. As it is shown in 
Fig.2b, the time of complete displacement of water is 
approximately 54 hours. Judging from Fig.2b, it is possible to 
claim that the results obtained from the theoretical problem and the 
experimental model match quite well. 

6. Conclusion 

In this study an original method for obtaining the exact and 
the numerical solutions of the initial and initial-boundary value 
problems for one dimensional nonlinear partial differential 
equations in a class of discontinuous functions is suggested. The 
obtained results are as follows: 

The exact solution of the initial value problem with a non-
convex state function is obtained when the initial profile is a 
continuous. 

An original method for finding the jump which appears in the 
solution is developed and its time evaluation is studied. 

It is shown that the solutions of the investigateg problems 
satisfy the entropy condition in Oleinik sense. 

Convergence of the numerical solution to the weak exact 
solution of the main problem is proved. 

The higher sensitive differences scheme whose solution 
accurately expresses all the properties of the physical problem is 
suggested 

The numerical solution of the Bucley-Leverett problem, 
which describes the macroscopic flow of the two phase fluid in a 
porous medium is obtained. 
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