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Abstract − A thorough mathematical foundation for handling uncertainty is provided by the concept of soft sets. Soft set operations 

are key concepts in soft set theory since they offer novel approaches to problems requiring parametric data. The “soft difference-

product” a new product operation for soft sets, is proposed in this study along with all of its algebraic properties concerning different 

types of soft equalities and subsets. Additionally, we explore the connections between this product and other soft set operations by 

investigating the distributions of soft difference-product over other soft set operations. Using the uni-int operator and the uni-int 

decision function for the soft-difference product, we apply the uni-int decision-making method, which selects a set of optimal 

elements from the alternatives by giving an example that shows how the approach may be conducted effectively in various areas. 

Since the theoretical underpinnings of soft computing techniques are drawn from purely mathematical concepts, this study is crucial 

to the literature on soft sets. 
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1. Introduction 

Numerous mathematicians have developed a variety of mathematical tools to solve and model complex 

problems involving ambiguity, vagueness, and uncertainty in a variety of domains, including the social 

sciences, engineering, economics, and the medical sciences. Molodtsov [1] showed that these theories have 

inherent challenges, which are related to the potential for identifying a membership function in the case of 

fuzzy set theory [2] and the need to investigate the existence of the mean by conducting a large number of 

trials in the case of probability theory.  

Therefore, Molodtsov [1] proposed the soft set, a novel mathematical technique, and looked into its uses in 

several fields, including probability theory, operations research, and game theory. Molodstov’s soft set theory 

differs greatly from traditional ideas since it does not impose any limitations on the approximate description. 

After Maji et al. [3] used soft set theory in a decision-making problem, several researchers [4–10] developed 

some innovative soft set-based decision-making solutions and methods such as parameterization reduction of 

soft sets, soft information based on the theory of soft sets, texture classification using a novel, soft-set theory 

based classification algorithm, soft decision making for patients suspected influenza, and soft set-based 

decision making for patients suspected influenza-like illness, respectively. The trumpeted soft set-based 

decision-making method known as “uni-int decision-making” was proposed by Çağman and Enginoğlu [11]. 
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Additionally, the soft matrix was introduced by Çağman and Enginoğlu [12], who also developed decision-

making techniques for the OR, AND, AND-NOT, and OR-NOT products of the soft matrices. They then 

applied these techniques to resolve uncertainties and other real-world problems. Soft set theory has been widely 

and successfully used to handle decision-making problems [13–24] via bijective soft set, exclusive disjunctive 

soft sets, generalized uni-int decision making schemes, soft discernibility matrix, soft approximations and uni-

int decision making, the role of operators on soft set in decision making problems, reduced soft matrices and 

generalized products, cardinality inverse soft matrix theory, semantics of soft sets, the mean operators and 

generalized products of fuzzy soft matrices, and soft set-valued mappings, respectively. 

In recent years, several researchers have investigated the underlying principles of soft set theory. A thorough 

theoretical study of soft sets, including soft subsets and supersets, equality of soft sets, and soft set operations 

like union, intersection, AND-product, and OR-product, was provided by Maji et al. [25]. Pei and Miao [26] 

investigated the relationship between soft sets and information systems and redefined intersection and soft set 

subsets. New soft set operations including the restricted union, restricted intersection, restricted difference, and 

extended intersection were proposed and studied by Ali et al. [27]. After that, the authors [28-41] examined 

the operations of the soft sets and the algebraic structures of the collection of the soft sets, proposed improved 

and novel methods, and identified several conceptual errors regarding the underlying assumptions of soft set 

theory that were presented in the published papers. Over the past several years, there has been a major 

advancement in the research of soft sets. Eren and Çalışıcı [42] defined a new kind of difference operation of 

soft sets. Stojanovic [43] described the extended symmetric difference of soft sets and investigated its 

fundamental properties. Many new types of soft set operations have been proposed and thoroughly examined 

in [44-49] such as soft binary piecewise difference operation, complementary soft binary piecewise theta, 

difference, union, intersection, and star operation of soft sets, respectively. 

Two core concepts in soft set theory are soft equal relations and soft subsets. The first to use a somewhat 

accurate notion of soft subsets was Maji et al. [25]. One may consider the concept of soft subsets, which was 

established by Pei and Miao [26] and Feng et al. [29], to be an extension of Maji’s earlier definitions [25]. Qin 

and Hong [50] introduced two new types of congruence relations and soft equal relations on soft sets. To 

modify Maji’s soft distributive laws, Jun and Yang [51] used a wider range of soft subsets and extended soft 

equal relations, which we call J-soft equal relations for consistency’s sake. Jun and Yang [51] conducted more 

research on the generalized soft distributive principles of soft product operations. Liu et al.[52] published a 

brief research note on soft L-subsets and soft L-equal relations, motivated by the novel ideas of Jun and Yang 

[51]. One significant result in [52] is that distributive rules do not hold for all of the soft equality described in 

the literature.  

Thus, Feng et al. [53] extended the study reported in [52] by focusing on soft subsets and the soft products 

proposed in [24]. Feng et al. [53] focused on the different types of soft subsets and the algebraic properties of 

soft product operations. Along with commutative laws, association rules, and other crucial features, they also 

covered distributional laws, which were extensively researched by several academics. Besides, they provided 

theoretical research on the soft products, including the AND-product and OR-product using soft L-subsets, in 

addition to other relevant subjects. They completed some unfinished discoveries on soft product operations 

that had previously been reported in the literature and thoroughly investigated the algebraic characteristics of 

soft product operations in terms of J-equality and L-equality. Soft L-equal relations were shown to be 

congruent on free soft algebras and their associated quotient structures, which are commutative semigroups. 

For further information on soft equal connections such as generalized soft equality and soft lattice structure, 

generalized operations in soft set theory via relaxed conditions on parameters, g-soft equality and gf-soft 

equality relations, and T-soft equality relation, we refer to [54–58], respectively. 

Çağman and Enginoğlu [11] revised the idea and workings of Molodtsov’s soft sets to make them more useful. 

Moreover, they proposed four types of products in soft set theory: AND-product, OR-product, AND-NOT-

product, OR-NOT-product, and uni-int decision function. Using these new definitions, they proposed a 
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uniform decision-making procedure that chooses the best components from the range of options. Finally, they 

provided an example that demonstrates how the approach may be effectively used for a range of issues, 

including uncertainty. The AND-product of soft sets, which has long served as the foundation and a tool used 

by decision-makers in decision-making problems, was examined theoretically by Sezgin et al. [59]. Even 

though many scholars have studied the AND-product and its features concerning different types of soft 

equalities, such as soft L-equality and soft J-equality, the authors of [59] thoroughly examined the entire 

algebraic properties of the AND-product, including idempotent laws, commutative laws, associative laws, and 

other fundamental properties and compared them to previously obtained properties in terms of soft F-subsets, 

soft M-equality, soft L-equality, and soft J-equality. By establishing the distributive characteristics of AND-

product over restricted, extended, and soft binary piecewise soft set operations, they also showed that the set 

of all soft sets over the universe is a commutative hemiring with identity in the sense of soft L-equality when 

combined with restricted/extended union and AND-product and that the set of all soft sets over the universe 

combined with restricted/extended symmetric difference and AND-product is also a commutative hemiring 

with identity in the sense of soft L-equality. Çağman and Enginoğlu [11] defined AND-product for soft sets, 

the domain of the approximation function of which is 𝐸𝑥𝐸, where 𝐸 is the set of parameters. Furthermore, 

they show that this product is not commutative and associative under M-equality, but holds De Morgan Laws. 

In this study, we first propose a new product for soft sets, which we call the “soft difference-product”, using 

Molodtsov’s concept of soft sets. Unlike the AND-NOT-product for soft sets defined in [11], the domain of 

the approximation function of the soft difference-product is the cartesian product of the parameter sets of the 

soft sets. We give an example of a soft difference-product and study its algebraic properties in detail regarding 

several soft subsets and soft equality types, such as M-subset/equality, F-subset/equality, L-subset/equality, 

and J-subset/equality. Moreover, we derive the distributions of the soft difference-product over several types 

of certain soft set operations. Finally, we apply the uni-int decision-making method proposed by Çağman and 

Enginoğlu [11] on soft difference-product to choose the best elements from the possibilities and provide an 

example that demonstrates how the approach may be effectively applied for many areas. This study aims to 

add to the literature on soft sets, as soft sets are a useful mathematical tool for identifying uncertainty and the 

theoretical foundations of soft computing approaches are derived from purely mathematical principles. This 

paper is organized as follows. In Section 2, we remind the basic concepts of soft set theory. Section 3 proposes 

the soft difference-product and discusses its whole algebraic properties in terms of several types of soft 

equalities and soft subsets. In Section 4, we examine the distributions of the soft difference-product over 

several types of soft set operations. In Section 5, the uni-int decision operators and function for soft difference-

product are applied to a decision-making problem. The conclusion section has a deduction. 

2. Preliminaries 

This section presents some basic concepts to be needed in the following sections. 

Definition 2.1. [1] Let 𝑈 be the universal set, 𝐸 be the parameter, 𝑃(𝑈) be the power set of 𝑈 and ℳ ⊆ 𝐸. A 

pair (Ծ, ℳ) is called a soft set over 𝑈 where Ծ is a set-valued function such that Ծ: ℳ → 𝑃(𝑈). 

Although Çağman and Enginoğlu [11] modified Molodstov’s concept of soft sets, we continue to use the 

original definition of the soft set in our study. Throughout this paper, the collection of all the soft sets defined 

over 𝑈 is designated as 𝑆𝐸(𝑈). Let ℳ be a fixed subset of 𝐸 and 𝑆ℳ(𝑈) be the collection of all those soft sets 

over 𝑈 with the fixed parameter set ℳ. That is, while in the set 𝑆ℳ(𝑈), there are only soft sets whose parameter 

sets are ℳ; in the set 𝑆𝐸(𝑈), there are soft sets whose parameter sets may be any set. From now on, while soft 

sets will be designated by SS and parameter set by PS; soft sets will be designated by SSs and parameter sets 

by PSs for the sake of ease. 

Definition 2.2. [27] Let (Ծ, ℳ) be an SS over 𝑈. (Ծ, ℳ) is called a relative null SS (with respect to the PS 

ℳ), denoted by ∅ℳ, if Ծ(𝓂) = ∅ for all 𝓂 ∈ ℳ and (Ծ, ℳ) is called a relative whole SS (with respect to 
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the PS ℳ), denoted by Uℳ if Ծ(𝓂) = 𝑈 for all 𝓂 ∈ ℳ. The relative whole SS 𝑈𝐸  with respect to the universe 

set of parameters E is called the absolute SS over 𝑈. 

The empty SS over 𝑈 is the unique SS over 𝑈 with an empty PS, represented by ∅∅. Note ∅∅ and ∅ℳ are 

different [31]. In the following, we always consider SSs with non-empty PSs in the universe 𝑈, unless 

otherwise stated.  

The concept of soft subset, which we refer to here as soft M-subset to prevent confusion, was initially defined 

by Maji et al. [25] in the following extremely strict way:  

Definition 2.3. [25] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. (Ծ, ℳ) is called a soft M-subset of (𝔉, 𝒟) 

denoted by (Ծ, ℳ) ⊆̃M (𝔉, 𝒟) if ℳ ⊆ 𝒟 and Ծ(𝓂) = 𝔉(𝓂) for all 𝓂 ∈ ℳ. Two SSs (Ծ, ℳ) and (𝔉, 𝒟) 

are said to be soft M-equal, denoted by (Ծ, ℳ) =M (𝔉, 𝒟), if (Ծ, ℳ) ⊆̃M (𝔉, 𝒟) and (𝔉, 𝒟) ⊆̃M (Ծ, ℳ). 

Definition 2.4. [26] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. (Ծ, ℳ) is called a soft F-subset of (𝔉, 𝒟) 

denoted by (Ծ, ℳ) ⊆̃F (𝔉, 𝒟) if ℳ ⊆ 𝒟 and Ծ(𝓂) ⊆ 𝔉(𝓂) for all 𝓂 ∈ ℳ. Two SSs (Ծ, ℳ) and (𝔉, 𝒟) 

are said to be soft F-equal, denoted by (Ծ, ℳ) =F (𝔉, 𝒟), if (Ծ, ℳ) ⊆̃F (𝔉, 𝒟) and (𝔉, 𝒟) ⊆̃F (Ծ, ℳ). 

It should be noted that the definitions of soft F-subset and soft F-equal were initially provided by Pei and Miao 

in [26]. However, some SS papers regarding soft subsets and soft equalities claimed that Feng et al. provided 

these definitions first in [29]. As a result, the letter “F” is used to denote this connection.  

It was demonstrated in [52] that the soft equal relations =M and =F coincide. In other words, 

(Ծ, ℳ) =M (𝔉, 𝒟) ⇔(Ծ, ℳ) =F (𝔉, 𝒟). Since they share the same set of parameters and approximation 

function, two SSs that meet this soft equivalence are truly identical [52], hence (Ծ, ℳ) =M (𝔉, 𝒟) means, in  

fact, (Ծ, ℳ) = (𝔉, 𝒟).  

Jun and Yang [51] extended the ideas of F-soft subsets and soft F-equal relations by loosening the restrictions 

on PSs. We refer to them as soft J-subsets and soft J-equal relations, the initial letter of Jun, even though in 

[51] they are named generalized soft subset and generalized soft equal relation.  

Definition 2.5 [51] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. (Ծ, ℳ) is called a soft J-subset of (𝔉, 𝒟) 

denoted by (Ծ, ℳ) ⊆̃J (𝔉, 𝒟) if for all 𝓂 ∈ ℳ, there exists 𝒹 ∈  𝒟 such that Ծ(𝓂) ⊆ 𝔉(𝒹). Two SSs (Ծ, ℳ) 

and (𝔉, 𝒟) are said to be soft J-equal, denoted by (Ծ, ℳ) =J (𝔉, 𝒟), if (Ծ, ℳ) ⊆̃J (𝔉, 𝒟) and 

(𝔉, 𝒟) ⊆̃J (Ծ, ℳ). 

In [52] and [53], it was shown that (Ծ, ℳ) ⊆̃M (𝔉, 𝒟) ⇒ (Ծ, ℳ) ⊆̃F (𝔉, 𝒟) ⇒ (Ծ, ℳ) ⊆̃J (𝔉, 𝒟), but the 

converse may not be true. 

Besides, Liu et al. [52] presented the following new kind of soft subsets (henceforth referred to as soft L-

subsets and soft L-equality) that generalize both soft M-subsets and ontology-based soft subsets, inspired by 

the ideas of soft J-subset [51] and ontology-based soft subsets [30]: 

Definition 2.6 [52] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. (Ծ, ℳ) is called a soft L-subset of (𝔉, 𝒟) 

denoted by (Ծ, ℳ) ⊆̃L (𝔉, 𝒟) if for all 𝓂 ∈ ℳ, there exists 𝒹 ∈  𝒟 such that Ծ(𝓂) = 𝔉(𝒹). Two SSs 

(Ծ, ℳ) and (𝔉, 𝒟) are said to be soft L-equal, denoted by (Ծ, ℳ) =L (𝔉, 𝒟), if (Ծ, ℳ) ⊆̃L (𝔉, 𝒟) and 

(𝔉, 𝒟) ⊆̃J (Ծ, ℳ). 

As regards the relations between certain types of soft subsets and soft equalities, (Ծ, ℳ) ⊆̃M (𝔉, 𝒟) ⇒

(Ծ, ℳ) ⊆̃L (𝔉, 𝒟) ⇒ (Ծ, ℳ) ⊆̃J (𝔉, 𝒟) and (Ծ, ℳ) =M (𝔉, 𝒟) ⇒ (Ծ, ℳ) =L (𝔉, 𝒟) ⇒ (Ծ, ℳ) =J (𝔉, 𝒟) 

[52]. However, the converses may not be true. Moreover, it is well-known that (Ծ, ℳ) =M (𝔉, 𝒟) if and only 

if (Ծ, ℳ) =F (𝔉, 𝒟). 

We may thus deduce that soft M-equality (and so soft F-equality) is the strictest sense, whereas soft J-equality 

is the weakest soft equal connection. In the middle of these is the idea of the soft L-equal connection [52]. 



118 

 

Sezgin and Çam / JAUIST / 5(2) (2024) 114-137  

Example 2.7. Let 𝐸 = {𝒸1, 𝒸2, 𝒸3, 𝒸4, 𝒸5} be the PS, ℳ ={𝒸1, 𝒸4} and 𝒟 = {𝑐1, 𝑐4, 𝑐5} be the subsets of 𝐸, and 

𝑈 = {𝓏1, 𝓏2, 𝓏3, 𝓏4, 𝓏5} be the initial universe set. Let  

(Ծ, ℳ) = {( 𝒸1, {𝓏1, 𝓏3}), ( 𝒸4, {𝓏2, 𝓏3, 𝓏5})},  

(𝔉, 𝒟) = {( 𝒸1, {𝓏1, 𝓏3}), (𝒸4, {𝓏2, 𝓏3}), (𝒸5, {𝓏1, 𝓏2, 𝓏3, 𝓏5})}, 

and  

(Ꮙ, 𝒟) = {( 𝒸1, {𝓏2, 𝓏3, 𝓏5}), (𝒸4, {𝓏1, 𝓏3} ), (𝒸5, {𝓏1, 𝓏2, 𝓏3, 𝓏5})} 

Since Ծ(𝑐1) ⊆ 𝔉(𝒸1) (and also Ծ(𝑐1) ⊆ 𝔉(𝒸5)) and Ծ(𝑐4) ⊆ 𝔉(𝒸5), it is obvious that (Ծ, ℳ) ⊆̃J (𝔉, 𝒟). 

However, since Ծ(𝑐4) ≠ 𝔉(𝒸1), Ծ(𝑐4) ≠ 𝔉(𝒸4), and Ծ(𝑐4) ≠ 𝔉(𝒸5), we can deduce that (Ծ, ℳ) is not a soft 

L-subset of (𝔉, 𝒟). Moreover, as Ծ(𝑐4) ≠ 𝔉(𝒸4), (Ծ, ℳ) is not a soft M-subset of (𝔉, 𝒟). Moreover as 

 Ծ(𝑐1) = Ꮙ(𝒸4) and Ծ(𝑐4) =Ꮙ(𝑐1), it is obvious that (Ծ, ℳ) ⊆̃L (Ꮙ, 𝒟). However, as Ծ(𝑐1) ≠ Ꮙ(𝒸1), 

Ծ(𝑐4) ≠ Ꮙ(𝒸4), (Ծ, ℳ) is not again a soft M-subset of (Ꮙ, 𝒟).  

Example 2.8. Let 𝐸 = {𝒸1, 𝒸2, 𝒸3, 𝒸4, 𝒸5} be the PS, ℳ = {𝒸1, 𝒸4} and 𝒟 = {𝒸1, 𝒸4, 𝒸5} be the subsets of 𝐸, 

and 𝑈 = {𝓏1, 𝓏2, 𝓏3, 𝓏4, 𝓏5} be the initial universe set. Let (Ծ, ℳ) = {( 𝒸1, {𝓏1, 𝓏3}), (𝒸4, {𝓏1, 𝓏2, 𝓏3, 𝓏5})} and 

(𝔉, 𝒟) = {( 𝒸1, {𝓏1, 𝓏2, 𝓏3}), (𝒸4, {𝓏1, 𝓏2, 𝓏3, 𝓏5}), (𝒸5, {𝓏1})}. Since Ծ(𝒸1)≠ 𝔉(𝒸1), Ծ(𝒸1)≠ 𝔉(𝒸4), and 

Ծ(𝒸1)≠ 𝔉(𝒸5), it is obvious that (Ծ, ℳ) ≠L (𝔉, 𝒟). However, since Ծ(𝒸1)⊆ 𝔉(𝒸1) (moreover Ծ(𝒸1)⊆ 𝔉(𝒸4) 

and Ծ(𝒸4)⊆ 𝔉(𝒸4), we can deduce that (Ծ, ℳ) ⊆̃J (𝔉, 𝒟). Moreover, since 𝔉(𝒸1)⊆ Ծ(𝒸4) and 𝔉(𝒸4)⊆ Ծ(𝒸4), 

and 𝔉(𝒸5)⊆ Ծ(𝒸1), we can deduce that (𝔉, 𝒟) ⊆̃J (Ծ, ℳ). Therefore, (Ծ, ℳ) =J (𝔉, 𝒟). As Ծ(𝒸1)≠ 𝔉(𝒸1) and 

Ծ(𝒸4)≠ 𝔉(𝒸4), it is obvious that (Ծ, ℳ) is not a soft M-subset of (𝔉, 𝒟). 

For more on soft F-equality, soft M-equality, soft J-equality, soft L-equality, and some other existing 

definitions of soft subsets and soft equal relations in the literature, we refer to [50-58]. 

Definition 2.9. [27] Let (Ծ, ℳ) be an SS over 𝑈. The relative complement of an SS Let (Ծ, ℳ), denoted by 

(Ծ, ℳ)r, is defined by (Ծ, ℳ)r = (Ծr, ℳ), where Ծr: ℳ → 𝑃(𝑈) is a mapping given by Ծr(𝓂) =

U\Ծ(𝓂), for all 𝓂 ∈ ℳ. From now on, U\Ծ(𝓂) = [Ծ(𝓂)]′ is designated by Ծ’(𝓂) for the sake of 

designation. 

Definition 2.10. [25] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. The AND-product (∧-product) of (Ծ, ℳ) 

and (𝔉, 𝒟) is denoted by (Ծ, ℳ)Λ(𝔉, 𝒟), and is defined by (Ծ, ℳ)Λ(𝔉, 𝒟) = (౮, ℳx𝒟), where for all 

(𝓂, 𝒹) ∈ ℳx𝒟, ౮(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉(𝒹). 

Definition 2.11. [25] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. The OR-product (∨-product) of (Ծ, ℳ) and 

(𝔉, 𝒟) is denoted by (Ծ, ℳ) ∨ (𝔉, 𝒟), and is defined by (Ծ, ℳ) ∨ (𝔉, 𝒟) = (౮, ℳx𝒟), where for all 

(𝓂, 𝒹) ∈ ℳx𝒟, ౮(𝓂, 𝒹) = Ծ(𝓂) ∪ 𝔉(𝒹). 

Let “⊛” to stand for set operations like ∩,∪,\,△. The following definitions are for restricted, extended, and 

soft binary piecewise operations of soft sets. 

Definition 2.12. [27] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. The restricted ⊛ operation of (Ծ, ℳ) and 

(𝔉, 𝒟), denoted by (Ծ, ℳ) ⊛R (𝔉, 𝒟) is defined by (Ծ, ℳ) ⊛R (𝔉, 𝒟) = (౮, 𝒥), where 𝒥 =  ℳ ∩ 𝒟 and if 

𝒥 ≠ ∅, then for all 𝔧 ∈ 𝒥, ౮( 𝔧) = Ծ( 𝔧) ⊛ 𝔉( 𝔧); if 𝒥 = ∅, then (Ծ, ℳ) ⊛R (𝔉, 𝒟) = ∅∅. 

Definition 2.13. [27,43] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. The extended ⊛ operation of (Ծ, ℳ) and 

(𝔉, 𝒟), denoted by (Ծ, ℳ) ⊛ε (𝔉, 𝒟) is defined by (Ծ, ℳ) ⊛ε (𝔉, 𝒟) = (౮, 𝒥), where 𝒥 =  ℳ ∪ 𝒟 and 

then for all 𝔧 ∈ 𝒥,  

౮( 𝔧) = {

Ծ( 𝔧),  𝔧 ∈ ℳ\𝒟

𝔉( 𝔧),  𝔧 ∈ 𝒟\ℳ

Ծ( 𝔧) ⊛ 𝔉( 𝔧),  𝔧 ∈ ℳ ∩ 𝒟
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Definition 2.14. [44] Let (Ծ, ℳ) and (𝔉, 𝒟) be two SSs over 𝑈. The soft binary piecewise ⊛ operation of 

(Ծ, ℳ) and (𝔉, 𝒟), denoted by (Ծ, ℳ) ⊛̃ (𝔉, 𝒟), is defined by (Ծ, ℳ) ⊛̃ (𝔉, 𝒟) = (౮, ℳ), where for all 

𝔧 ∈ ℳ, 

౮( 𝔧) = {
Ծ( 𝔧),  𝔧 ∈ ℳ\𝒟,

Ծ( 𝔧)  ⊛ 𝔉( 𝔧),  𝔧 ∈ ℳ ∩ 𝒟
 

For more about soft sets and picture fuzzy soft sets, we refer to [60-81].  

3. Soft Difference-Product and Its Algebraic Properties 

Çağman and Enginoğlu [11] defined AND-NOT-product for soft sets as Definition 3.1. In this subsection, we 

introduce a new product for soft sets, called soft difference-product in a similar way to the AND-NOT-product 

for soft sets. We give its example and examine its algebraic properties in detail depth in terms of specific kinds 

of soft equalities and soft subsets. 

Definition 3.1. [11] Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. The ∧̅-product (AND-NOT-product) of (Ծ, ℳ) 

and (𝔉, 𝒟), denoted by (Ծ, ℳ) ∧̅ (𝔉, 𝒟), is defined by (Ծ, ℳ) ∧̅ (𝔉, 𝒟) = (౮, 𝐸𝑥𝐸), where for all (𝓂, 𝒹) ∈ 

ExE, ౮(𝓂, 𝒹) = Ծ(𝓂)\𝔉(𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). 

Definition 3.2. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. The soft difference-product of (Ծ, ℳ) and (𝔉, 𝒟), 

denoted by (Ծ, ℳ)Λ\(𝔉, 𝒟), is defined by (Ծ, ℳ)Λ\(𝔉, 𝒟) = (౮, ℳx𝒟), where for all (𝓂, 𝒹) ∈ ℳx𝒟, 

౮(𝓂, 𝒹) = Ծ(𝓂)\𝔉(𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). 

 It is observed that while the domain of the approximation function of AND-NOT-product of (Ծ, ℳ) and 

(𝔉, 𝒟) defined by Çağman and Enginoğlu [11] is 𝐸𝑥𝐸, the domain of the approximation function of soft 

difference-product of (Ծ, ℳ) and (𝔉, 𝒟) is ℳx𝒟, leading to (Ծ, ℳ)Λ\(𝔉, 𝒟) ≠ (Ծ, ℳ) ∧̅ (𝔉, 𝒟). Since 

every input value (from the domain) must be associated with exactly one output value (in the range) in order 

for a function to be defined, this case giving rise to the resulting soft sets of AND-NOT-product and soft 

difference-product differ from each other as seen in the following example. 

Example 3.3. Assume that 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} be the PS, ℳ = {𝑒1, 𝑒2, 𝑒3} and 𝒟 = {𝑒1, 𝑒4, e5} be the 

subsets of 𝐸, 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} be the universal set, the SSs (Ծ, ℳ) and (𝔉, 𝒟) be over 𝑈 such that  

(Ծ, ℳ) = {(𝑒1, {ℎ1, ℎ2, ℎ3, ℎ5}), (𝑒2, {ℎ1, ℎ2, ℎ3}), (𝑒3, {ℎ4, ℎ5, ℎ6})} 

and  

(𝔉, 𝒟) = {(𝑒1, {ℎ6}), (𝑒4, {ℎ2, ℎ3, ℎ5}), (𝑒5, {ℎ2})} 

 Let (Ծ, ℳ)Λ\(𝔉, 𝒟) = (౮, ℳx𝒟). Then,  

(౮, ℳx𝒟) = {((𝑒1, 𝑒1), {ℎ1, ℎ2, ℎ3, ℎ5}), ((𝑒1, 𝑒4), {ℎ1}), ((𝑒1, 𝑒5), {ℎ1, ℎ3, ℎ5}), ((𝑒2, 𝑒1), {ℎ1, ℎ2, ℎ3}), ((𝑒2, 𝑒4), {ℎ1}), 

((𝑒2, 𝑒5), {ℎ1, ℎ3}), ((𝑒3, 𝑒1), {ℎ4, ℎ5}), ((𝑒3, 𝑒4), {ℎ4, ℎ6}), ((𝑒3, 𝑒5), {ℎ4, ℎ5, ℎ6})}  

Assume that (Ծ, ℳ) ∧̅ (𝔉, 𝒟) = (ℸ, 𝐸𝑥𝐸). Then, 

(ℸ, 𝐸𝑥𝐸) = {((𝑒1, 𝑒1), {ℎ1, ℎ2, ℎ3, ℎ5}), ((𝑒1, 𝑒2), {ℎ1, ℎ2, ℎ3, ℎ5}), ((𝑒1, 𝑒3), {ℎ1, ℎ2, ℎ3, ℎ5}), ((𝑒1, 𝑒4), {ℎ1}), 

((𝑒1, 𝑒5), {ℎ1, ℎ3, ℎ5}), ((𝑒2, 𝑒1), {ℎ1, ℎ2, ℎ3}), ((𝑒2, 𝑒2), {ℎ1, ℎ2, ℎ3}), ((𝑒2, 𝑒3), {ℎ1, ℎ2, ℎ3}), ((𝑒2, 𝑒4), {ℎ1}), ((𝑒2, 𝑒5), {ℎ1, ℎ3}), 

((𝑒3, 𝑒1), {ℎ4, ℎ5}), ((𝑒3, 𝑒2), {ℎ4, ℎ5, ℎ6}), ((𝑒3, 𝑒3), {ℎ4, ℎ5, ℎ6}), ((𝑒3, 𝑒4), {ℎ4, ℎ6}), ((𝑒3, 𝑒5), {ℎ4, ℎ5, ℎ6})} 

Here, note that since ℸ(𝑒4, 𝑒1) = ℸ(𝑒4, 𝑒2) = ℸ(𝑒4, 𝑒3) = ℸ(𝑒4, 𝑒4) = ℸ(𝑒4, 𝑒5) = ℸ(𝑒5, 𝑒1) = ℸ(𝑒5, 𝑒2) =

ℸ(𝑒5, 𝑒3) = ℸ(𝑒5, 𝑒4) = ℸ(𝑒5, 𝑒5) = ∅, they are not designated in the soft set (ℸ, 𝐸𝑥𝐸). It can be easily observed that 

(౮, ℳx𝒟) ≠ (ℸ, 𝐸𝑥𝐸).  
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It is more convenient to use the table method to write the result of the soft difference-product than writing it 

in the list method. 

Table 1. The table designation of the soft difference-product’s result of the soft sets in Example 3.3 

(Ծ, ℳ)Λ\(𝔉, 𝒟) 𝑒1 𝑒4 𝑒5 

𝑒1 {ℎ1, ℎ2, ℎ3, ℎ5} {ℎ1} {ℎ1, ℎ3, ℎ5} 

𝑒2 {ℎ1, ℎ2, ℎ3} {ℎ1} {ℎ1, ℎ3} 

𝑒3 {ℎ4, ℎ5} {ℎ4, ℎ6} {ℎ4, ℎ5, ℎ6} 

Proposition 3.4. Λ\-product is closed in 𝑆𝐸(𝑈). 

PROOF. It is obvious that Λ\-product is a binary operation in 𝑆𝐸(𝑈). In fact, let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 

𝑈. Then, 

                                      Λ\: 𝑆𝐸(𝑈) 𝑥 𝑆𝐸(𝑈) ⟶ 𝑆𝐸(𝑈)          

                                             ((Ծ, ℳ), (𝔉, 𝒟)) ⟶ (Ծ, ℳ)Λ\(𝔉, 𝒟) = (Ꮙ, ℳx𝒟) = (Ꮙ, 𝒥) 

Since the set 𝑆𝐸(𝑈) contains all the SS over 𝑈, (Ꮙ, 𝒥) ∈ 𝑆𝐸(𝑈). Here, note that the set 𝑆ℳ(𝑈) is not closed 

under Λ\-product. That is, when (Ծ, ℳ) and (𝔉, ℳ) are the elements of Sℳ(U), (Ծ, ℳ)Λ\(𝔉, ℳ) is an 

element of 𝑆ℳ𝑥ℳ(𝑈) not 𝑆ℳ(𝑈). ◻ 

Proposition 3.5. Let (Ծ, ℳ), (𝔉, 𝒟), and (Ꮙ, 𝒥) be SSs over 𝑈. Then, 

(Ծ, ℳ)Λ\[(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] ≠M [(Ծ, ℳ)Λ\(𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) 

Thus,  Λ\ -product is not associative in 𝑆𝐸(𝑈). 

PROOF. In order to show that  Λ\ -product is not associative in 𝑆𝐸(𝑈), we provided an example: Let 𝐸 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4} be the PS, ℳ = {𝑒2, 𝑒3}, 𝒟 = {𝑒1}, and 𝒥 = {𝑒4} be the subsets of 𝐸 , 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} 

be the universal set, and (Ծ, ℳ), (𝔉, 𝒟) ve (Ꮙ, 𝒥) be SSs over 𝑈 such that (Ծ, ℳ) =

{(𝑒2, {ℎ3, ℎ4}), (𝑒3, {ℎ1})}, (𝔉, 𝒟) = {(𝑒1, ∅)}, and (Ꮙ, 𝒥) = {(𝑒4, {ℎ1, ℎ3, ℎ5})}. We show that  

(Ծ, ℳ)Λ\[(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] ≠M [(Ծ, ℳ)Λ\(𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) 

Let (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (౮, 𝒟x𝒥), Then, 

(𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (౮, 𝒟x𝒥) = {((𝑒1, 𝑒4), ∅)} 

and let (Ծ, ℳ) Λ\ (౮, 𝒟x𝒥) = (𝔛, ℳx(𝒟x𝒥)). Thus, 

(Ծ, ℳ) Λ\ (౮, 𝒟x𝒥) = (𝔛, ℳx(𝒟x𝒥)) = {((𝑒2, (𝑒1, 𝑒4)), {ℎ3, ℎ4}), ((𝑒3, (𝑒1, 𝑒4)), {ℎ1})} 

Assume that (Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟). Thereby, 

(Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟) = {((𝑒2, 𝑒1), {ℎ3, ℎ4}), ((𝑒3, 𝑒1), {ℎ1})} 

Suppose that (₴, ℳx𝒟) Λ\ (Ꮙ, 𝒥) = (ლ, (ℳx𝒟)x𝒥). Therefore, 

 (₴, ℳx𝒟) Λ\ (Ꮙ, 𝒥) = (ლ, (ℳx𝒟)x𝒥) = {(((𝑒2, 𝑒1), 𝑒4), {ℎ4}), (((𝑒3, 𝑒1), 𝑒4), ∅)} 

It is seen that (𝔛, ℳx(𝒟x𝒥))  ≠M (ლ, (ℳx𝒟)x𝒥). It is also seen that (𝔛, ℳx(𝒟x𝒥))  ≠L (ლ, (ℳx𝒟)x𝒥) 

and (𝔛, ℳx(𝒟x𝒥))  ≠J (ლ, (ℳx𝒟)x𝒥). ◻ 
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Proposition 3.6. Let (𝔉, 𝒟) and (Ꮙ, 𝒥) be SSs over 𝑈. Then, (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) ≠M (Ꮙ, 𝒥)Λ\(𝔉, 𝒟). That is, 

Λ\-product is not commutative in 𝑆𝐸(𝑈). 

PROOF. Let (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (౮, 𝒟x𝒥) and (Ꮙ, 𝒥)Λ\(𝔉, 𝒟)=(𝔛, 𝒥x𝒟). Since 𝒟x𝒥 ≠ 𝒥x𝒟, the rest of the 

proof is obvious. ◻ 

Proposition 3.7. Let (𝔉, 𝒟) and (Ꮙ, 𝒥) be SSs over 𝑈. Then, (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) ≠J (Ꮙ, 𝒥)Λ\(𝔉, 𝒟). That is, 

Λ\-product is not commutative in 𝑆𝐸(𝑈) under J-equlity. 

PROOF. In order to show that Λ\-product is not commutative in 𝑆𝐸(𝑈) under J-equality, we provide an example. 

Let 𝐸 = {e1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} be the PS, 𝒟 = {𝑒3, 𝑒5} and 𝒥 = {𝑒1} be the subsets of 𝐸, 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} 

be the universal set, (𝔉, 𝒟) and (Ꮙ, 𝒥) be SSs over 𝑈 such that (𝔉, 𝒟) = {(𝑒3, {ℎ1, ℎ2}), (𝑒5, 𝑈)} and (Ꮙ, 𝒥) =

{(𝑒1, {ℎ5})}. We show that (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) ≠J (Ꮙ, 𝒥)Λ\(𝔉, 𝒟). Let (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (౮, 𝒟x𝒥). Then, 

(𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (౮, 𝒟x𝒥) = {((𝑒3, 𝑒1), {ℎ1, ℎ2}), ((𝑒5, 𝑒1), {ℎ1, ℎ2, ℎ3, ℎ4})} 

Suppose that (Ꮙ, 𝒥)Λ\(𝔉, 𝒟) = (₴, 𝒥x𝒟). Then, 

(Ꮙ, 𝒥)Λ\(𝔉, 𝒟) = (₴, 𝒥x𝒟) = {((𝑒1, 𝑒3), {ℎ5}), ((𝑒1, 𝑒5), ∅)} 

Thus, (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) ≠J (Ꮙ, 𝒥)Λ\(𝔉, 𝒟).  

Moreover, it is obvious that (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) ≠L (Ꮙ, 𝒥)Λ\(𝔉, 𝒟). ◻ 

Proposition 3.8. Let (𝔉, 𝒟) be an SS over 𝑈. Then, (𝔉, 𝒟)Λ\∅∅ =M ∅∅Λ\(𝔉, 𝒟) =M ∅∅. That is, ∅∅ (the 

empty SS) is the absorbing element of  Λ\-product in 𝑆𝐸(𝑈) under M-equality. 

PROOF. Let ∅∅ = (౮, ∅) and (𝔉, 𝒟)Λ\∅∅ = (𝔉, 𝒟)Λ\(౮, ∅) = (ლ, 𝒟x∅) = (ლ, ∅). Since the only SS whose 

PS is ∅∅, (ლ, ∅) = ∅∅. One can similarly show that ∅∅Λθ(𝔉, 𝒟) =M ∅∅. ◻ 

Proposition 3.9. Let (Ծ, ℳ) be an SS over 𝑈. Then, ∅ℳΛ\(Ծ, ℳ) =L ∅ℳ . That is, ∅ℳ is the left absorbing 

element of  Λ\-product in 𝑆ℳ(𝑈) under L-equality. 

PROOF. Let ∅ℳ = (Ꮙ, ℳ) and (Ꮙ, ℳ)Λ\(Ծ, ℳ) = (₴, ℳxℳ). Then, for all 𝓂 ∈ ℳ, Ꮙ(𝓂) = ∅ and for 

all (𝓂, 𝒹) ∈ ℳxℳ, ₴(𝓂, 𝒹) = Ꮙ(𝓂) ∩ Ծ′(𝒹)=∅ ∩ Ծ′(𝒹) = ∅. Since, for all (𝓂, 𝒹) ∈ ℳxℳ, there 

exists 𝓂 ∈ ℳ such that ₴(𝓂, 𝒹) = ∅ = Ꮙ(𝓂), ∅ℳΛ\(Ծ, ℳ) ⊆̃L ∅ℳ . Moreover, for all 𝓂 ∈ ℳ, there 

exists (𝓂, 𝒹) ∈ ℳxℳ such that Ꮙ(𝓂) = ∅ = ₴(𝓂, 𝒹), implying that ∅ℳ ⊆̃L ∅ℳΛ\(Ծ, ℳ) Thereby, 

∅ℳΛ\(Ծ, ℳ) =L ∅ℳ . ◻ 

Proposition 3.10. Let (Ծ, ℳ) be an SS over 𝑈. Then, (Ծ, ℳ)Λ\∅ℳ =L (Ծ, ℳ). That is, ∅ℳ is the right 

identity element of  Λ\-product in 𝑆ℳ(𝑈) under L-equality. 

PROOF. Let ∅ℳ = (Ꮙ, ℳ) and (Ծ, ℳ)Λ\(Ꮙ, ℳ) = (₴, ℳxℳ). Then, for all 𝓂 ∈ ℳ, Ꮙ(𝓂) = ∅ and for 

all (𝓂, 𝒹) ∈ ℳxℳ, ₴(𝓂, 𝒹) = Ծ(𝓂) ∩ ∅′ = Ծ(𝒹) ∩ 𝑈 = Ծ(𝒹). Since, for all (𝓂, 𝒹) ∈ ℳxℳ, there 

exists 𝒹 ∈ ℳ such that ₴(𝓂, 𝒹) = Ծ(𝒹) , (Ծ, ℳ)Λ\∅ℳ ⊆̃L (Ծ, ℳ). Moreover, for all 𝒹 ∈ ℳ, there exists 

(𝓂, 𝒹) ∈ ℳxℳ such that Ծ(𝒹) = ₴(𝓂, 𝒹), implying that (Ծ, ℳ)L ⊆̃L (Ծ, ℳ)Λ\∅ℳ. Thereby, 

(Ծ, ℳ)Λ\∅ℳ =L (Ծ, ℳ). ◻ 

Proposition 3.11. Let (𝔉, 𝒟) be an SS over 𝑈. Then, (𝔉, 𝒟)Λ\∅𝒟 =M (𝔉, 𝒟x𝒟) and ∅𝒟 Λ\(𝔉, 𝒟) =M ∅𝒟x𝒟. 

PROOF. Let ∅𝒟 = (౮, 𝒟). Then, for all 𝒹 ∈ 𝒟,౮(𝒹) = ∅. Let (𝔉, 𝒟)Λ\∅𝒟 = (𝔉, 𝒟)Λ\(౮, 𝒟) = (ლ, 𝒟x𝒟). 

Thus, for all (𝒹, 𝓂) ∈ 𝒟x𝒟,ლ(𝒹, 𝓂) = 𝔉(𝒹) ∩౮′(𝓂) = 𝔉(𝒹) ∩ ∅′ = 𝔉(𝒹) ∩ U = 𝔉(𝒹), implying that 

(ლ, 𝒟x𝒟) = (𝔉, 𝒟x𝒟). Let ∅𝒟 Λ\(𝔉, 𝒟) = (౮, 𝒟)Λ\(𝔉, 𝒟) = (Ꮙ, 𝒟x𝒟). Then, for all (𝒹, 𝓂) ∈

𝒟x𝒟,Ꮙ(𝒹, 𝓂) = ౮(𝒹) ∩ 𝔉′(𝓂) = ∅ ∩ 𝔉′(𝓂) = ∅, hence (Ꮙ, 𝒟x𝒟) = ∅𝒟x𝒟 . ◻ 
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Proposition 3.12. Let (𝔉, 𝒟) be an SS over 𝑈. Then, (𝔉, 𝒟)Λ\U𝒟 =M ∅𝒟x𝒟 and U𝒟Λ\(𝔉, 𝒟) =M (𝔉, 𝒟x𝒟)r. 

PROOF. Let U𝒟 = (Ꮙ, 𝒟). Then, for all 𝒹 ∈ 𝒟, Ꮙ(𝒹) = U. Let (𝔉, 𝒟)Λ\U𝒟 = (𝔉, 𝒟)Λ\(Ꮙ, 𝒟) = (𝔛, 𝒟x𝒟). 

Thus, for all (𝒹, 𝓂) ∈ 𝒟x𝒟, 𝔛(𝒹, 𝓂) = 𝔉(𝒹) ∩Ꮙ′(𝓂) = 𝔉(𝒹) ∩ U′ = 𝔉(𝒹) ∩ ∅ = ∅, implying that 

(𝔛, 𝒟x𝒟) = ∅𝒟x𝒟. Let U𝒟Λ\(𝔉, 𝒟) = (Ꮙ, 𝒟)Λ\(𝔉, 𝒟) = (ლ, 𝒟x𝒟). Then, for all (𝒹, 𝓂) ∈ 𝒟x𝒟, 

ლ(𝒹, 𝓂) = Ꮙ(𝒹) ∩ 𝔉′(𝓂) = U ∩ 𝔉′(𝓂) = 𝔉′(𝓂), implying that (ლ, 𝒟x𝒟) = (𝔉, 𝒟x𝒟)r. ◻ 

Proposition 3.13. Let (Ծ, ℳ) be an SS over 𝑈. Then, (Ծ, ℳ)Λ\(Ծ, ℳ) ⊆̃J (Ծ, ℳ). That is, Λ\-product is not 

idempotent in 𝑆𝐸(𝑈) under J-equality.  

PROOF. Let (Ծ, ℳ)Λ\(Ծ, ℳ) = (𝔉, ℳxℳ). Then, for all (𝓂, 𝒹) ∈ ℳxℳ, 𝔉(𝓂, 𝒹) = Ծ(𝓂) ∩ Ծ′(𝒹). 

Since for all (𝓂, 𝒹) ∈ ℳxℳ, there exists 𝓂 ∈ ℳ such that 𝔉(𝓂, 𝒹) = Ծ(𝓂) ∩ Ծ′(𝒹) ⊆

Ծ(𝓂), (𝔉, ℳxℳ) ⊆̃J (Ծ, ℳ) is obtained. ◻ 

Proposition 3.14. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈, Then, (Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃J (𝔉, 𝒟)r and 

(Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃J (Ծ, ℳ). ◻ 

PROOF. Let (Ծ, ℳ)Λ\(𝔉, 𝒟) = (Ꮙ, ℳx𝒟). Then, for all (𝓂, 𝒹) ∈ ℳx𝒟,Ꮙ(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). Since 

for all (𝓂, 𝒹) ∈ ℳx𝒟 , there exists 𝒹 ∈ 𝒟 such that Ծ(𝓂) ∩ 𝔉′(𝒹) ⊆ 𝔉′(𝒹), (Ծ, ℳ)Λθ(𝔉, 𝒟) ⊆̃J (𝔉, 𝒟)r. 

Similarly, since for all (𝓂, 𝒹) ∈ ℳx𝒟, there exists 𝓂 ∈ ℳ such that Ծ(𝓂) ∩ 𝔉′(𝒹) ⊆ Ծ(𝓂), 

(Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃J (Ծ, ℳ) is obtained. 

Proposition 3.15. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, [(Ծ, ℳ)Λ\(𝔉, 𝒟)]r = (Ծ, ℳ)r ∨ (𝔉, 𝒟)r.  

PROOF. Let (Ծ, ℳ)Λ\(𝔉, 𝒟) = (Ꮙ, ℳx𝒟). Then, for all (𝓂, 𝒹) ∈ ℳx𝒟, Ꮙ(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). Thus, 

Ꮙ
′(𝓂, 𝒹) = Ծ′(𝓂) ∪ 𝔉(𝒹) = Ծ′(𝓂) ∪ (𝔉′)′(𝒹). Hence, (Ꮙ′, ℳX𝒟) = (Ծ, ℳ)r ∨ (𝔉, 𝒟)r. (For ∨-

product, please see [11]). ◻ 

Proposition 3.16. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, (Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃F (Ծ, ℳ) ∨ (𝔉, 𝒟). 

PROOF. Let (Ծ, ℳ)Λ\(𝔉, 𝒟) = (Ꮙ, ℳx𝒟) and (Ծ, ℳ) ∨ (𝔉, 𝒟) = (౮, ℳx𝒟). Then, for all (𝓂, 𝒹) ∈

ℳx𝒟,Ꮙ(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) and for all (𝓂, 𝒹) ∈ ℳx𝒟, ౮(𝓂, 𝒹) = Ծ(𝓂) ∪ 𝔉′(𝒹). Thus, for all 

(𝓂, 𝒹) ∈ ℳx𝒟, Ꮙ(𝓂, 𝒹) =  Ծ(𝓂) ∩ 𝔉′(𝒹) ⊆ Ծ(𝓂) ∪ 𝔉′(𝒹) = ౮(𝓂, 𝒹). ◻ 

Proposition 3.17. Let (Ծ, ℳ), (𝔉, 𝒟), and (Ꮙ, 𝒥) be SSs over 𝑈. If (Ծ, ℳ) ⊆̃F (𝔉, 𝒟), then 

(Ծ, ℳ)Λ\(Ꮙ, 𝒥) ⊆̃F (𝔉, 𝒟)Λ\(Ꮙ, 𝒥). 

PROOF. Let (Ծ, ℳ) ⊆̃F (𝔉, 𝒟). Then, ℳ ⊆ 𝒟 and for all 𝓂 ∈ ℳ, Ծ(𝓂) ⊆ 𝔉(𝓂). Thus, ℳ x 𝒥 ⊆ 𝒟 x 𝒥 and 

for all (𝓂, 𝔧) ∈ ℳ x 𝒥, Ծ(𝓂) ∩Ꮙ ′(𝔧) ⊆ 𝔉(𝓂) ∩Ꮙ ′(𝔧). ◻ 

Proposition 3.18. Let (Ծ, ℳ), (𝔉, 𝒟), (Ꮙ, 𝒥), and (౮, 𝔛) be SSs over 𝑈. If (Ծ, ℳ) ⊆̃F (𝔉, 𝒟) and 

(Ꮙ, 𝒥)r ⊆̃F (౮, 𝔛)r, then (Ծ, ℳ)Λ\(Ꮙ, 𝒥) ⊆̃F (𝔉, 𝒟)Λ\(౮, 𝔛). 

PROOF. Let (Ծ, ℳ) ⊆̃F  (𝔉, 𝒟) and (Ꮙ, 𝒥)r ⊆̃F (౮, 𝔛)r. Then, ℳ ⊆ 𝒟 , 𝒥 ⊆ 𝔛, for all 𝓂 ∈ ℳ, Ծ(𝓂) ⊆

𝔉(𝓂) and for all 𝔧 ∈  𝒥, Ꮙ ′(𝔧) ⊆ ౮ ′(𝔧). Thus, ℳx𝒥 ⊆ 𝒟x𝔛, for all (𝓂, 𝔧) ∈ ℳx𝒥, Ծ(𝓂) ∩Ꮙ′(𝔧) ⊆

𝔉(𝓂) ∩౮′(𝔧). ◻ 

Proposition 3.19. Let (Ծ, ℳ), (𝔉, ℳ), (౮, ℳ), and (Ꮙ, ℳ) be SSs over 𝑈. If (Ծ, ℳ) ⊆̃F (𝔉, ℳ) and 

(Ꮙ, ℳ) ⊆̃F (౮, ℳ), then (Ծ, ℳ)Λ\(౮, ℳ)  ⊆̃F (𝔉, ℳ)Λ\(Ꮙ, ℳ). 

PROOF. Let (Ծ, ℳ) ⊆̃F (𝔉, ℳ) and (Ꮙ, ℳ) ⊆̃F (౮, ℳ). Thus, for all 𝓂 ∈ ℳ, Ծ(𝓂) ⊆ 𝔉(𝓂) and for all 𝔧 ∈

ℳ,Ꮙ (𝔧) ⊆ ౮ (𝔧). Hence, for all (𝓂, 𝔧) ∈ ℳxℳ, Ծ(𝓂) ∩౮ ′(𝔧) ⊆ 𝔉(𝓂) ∩Ꮙ ′(𝔧). ◻ 

Proposition 3.20. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, ∅ℳx𝒟 ⊆̃F (Ծ, ℳ)Λ\(𝔉, 𝒟) and 

 ∅𝒟xℳ ⊆̃F (𝔉, 𝒟)Λ\(Ծ, ℳ). 
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PROOF. Let ∅ℳx𝒟 = (Ꮙ, ℳx𝒟) and (Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟). Then, for (𝓂, 𝒹) ∈ ℳx𝒟, Ꮙ(𝓂, 𝒹) =

∅ and for all (𝓂, 𝒹) ∈ ℳx𝒟, ₴(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). Since ℳx𝒟 ⊆ ℳx𝒟 and for all (𝓂, 𝒹) ∈ ℳx𝒟, 

Ꮙ(𝓂, 𝒹) = ∅ ⊆ Ծ(𝓂) ∩ 𝔉′(𝒹) = ₴(𝓂, 𝒹), ∅ℳx𝒟 ⊆̃F (Ծ, ℳ)Λ\(𝔉, 𝒟) is obtained. Similarly, 

 ∅𝒟xℳ ⊆̃F (𝔉, 𝒟)Λ\(Ծ, ℳ) can be illustrated. ◻ 

Proposition 3.21. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, ∅ℳ ⊆̃J (Ծ, ℳ)Λ\(𝔉, 𝒟), 

∅𝒟 ⊆̃J (Ծ, ℳ)Λ\(𝔉, 𝒟) and ∅E ⊆̃J (Ծ, ℳ)Λ\(𝔉, 𝒟). 

PROOF. Let ∅ℳ = (Ꮙ, ℳ) and (Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟). Then, for all 𝓂 ∈ ℳ, Ꮙ(𝓂) = ∅ and for all 

(𝓂, 𝒹) ∈ ℳx𝒟, ₴(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). Since for all 𝓂 ∈ ℳ, there exist (𝓂, 𝒹) ∈ ℳx𝒟 such that 

Ꮙ(𝓂) = ∅ ⊆ Ծ(𝓂) ∩ 𝔉′(𝒹) = ₴(𝓂, 𝒹), ∅ℳ ⊆̃J (Ծ, ℳ)Λ\(𝔉, 𝒟) is obtained. One can similarly show that 

∅𝒟 ⊆̃J (Ծ, ℳ)Λ\(𝔉, 𝒟) and ∅E ⊆̃J (Ծ, ℳ)Λ\(𝔉, 𝒟). ◻ 

Proposition 3.22. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, (Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃F Uℳx𝒟 and 

(𝔉, 𝒟)Λ\(Ծ, ℳ) ⊆̃F U𝒟xℳ. 

PROOF. Let Uℳx𝒟 = (Ꮙ, ℳx𝒟) and (Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟). Then, for all (𝓂, 𝒹) ∈ ℳx𝒟, 

Ꮙ(𝓂, 𝒹) = 𝑈 and for all (𝓂, 𝒹) ∈ ℳx𝒟, ₴(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). Since ℳx𝒟 ⊆ ℳx𝒟 and for all 

(𝓂, 𝒹) ∈ ℳx𝒟, ₴(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) ⊆ 𝑈, (Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃F Uℳx𝒟 is obtained. One can similarly 

show that (𝔉, 𝒟)Λ\(Ծ, ℳ) ⊆̃F U𝒟xℳ. ◻ 

Proposition 3.23. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, (Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃J Uℳ,        

(Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃J U𝒟. 

PROOF. Let Uℳ = (Ꮙ, ℳ) and (Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟). Then, for all 𝓂 ∈ ℳ, Ꮙ(𝓂) = 𝑈 and for all 

(𝓂, 𝒹) ∈ ℳx𝒟, ₴(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). Since for all (𝓂, 𝒹) ∈ ℳx𝒟,  there exist 𝓂 ∈ ℳ such that   

₴(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) ⊆ 𝑈 = Ꮙ(𝓂), (Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃J Uℳ is obtained. Similarly, 

(Ծ, ℳ)Λ\(𝔉, 𝒟) ⊆̃J U𝒟 can be observed. ◻ 

Proposition 3.24. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, (Ծ, ℳ)Λθ(𝔉, 𝒟) =M Uℳx𝒟  if and only if 

(Ծ, ℳ) =M Uℳ and (𝔉, 𝒟) =M ∅𝒟. 

PROOF. Let Uℳx𝒟 = (౮, ℳx𝒟) and (Ծ, ℳ)Λ\(𝔉, 𝒟) = (Ꮙ, ℳx𝒟). Then, for all (𝓂, 𝒹) ∈ ℳx𝒟, 

౮(𝓂, 𝒹) = 𝑈 and for all (𝓂, 𝒹) ∈ ℳx𝒟, Ꮙ(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹). Let (౮, ℳx𝒟) = (Ꮙ, ℳx𝒟). Then, 

for all (𝓂, 𝒹) ∈ ℳx𝒟, Ծ(𝓂) ∩ 𝔉′(𝒹) = 𝑈. Thus, for all 𝓂 ∈ ℳ, Ծ(𝓂) = 𝑈 and for all 𝒹 ∈ 𝒟, 𝔉′(𝒹) =

U. Thereby, (Ծ, ℳ) =  Uℳ and (𝔉, 𝒟) = ∅𝒟. 

Conversely, let (Ծ, ℳ) =M  Uℳ and (𝔉, 𝒟) =M ∅𝒟. Then, for all 𝓂 ∈ ℳ, Ծ(𝓂) = 𝑈 and for all 𝒹 ∈ 𝒟, 

𝔉(𝒹) = ∅. Thus, for all (𝓂, 𝒹) ∈ ℳx𝒟, Ꮙ(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) = U ∩ U = U, implying that 

(Ծ, ℳ)Λ\(𝔉, 𝒟) =M Uℳx𝒟. ◻ 

Proposition 3.25. Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈. Then, (Ծ, ℳ)Λ\(𝔉, 𝒟)  =M ∅∅  if and only if  

(Ծ, ℳ)  =M  ∅∅  or (𝔉, 𝒟)  =M ∅∅ . 

PROOF. Let (Ծ, ℳ)Λ\(𝔉, 𝒟)  =M ∅∅ . Then, ℳx𝒟 = ∅, and so ℳ = ∅ or 𝒟 = ∅ Since ∅∅ is the only SS with 

the empty PS, (Ծ, ℳ) =M  ∅∅  or (𝔉, 𝒟) =M ∅∅  . 

Conversely, let (Ծ, ℳ) =M  ∅∅  or (𝔉, 𝒟) =M ∅∅ . Thus, ℳ = ∅ or 𝒟 = ∅, implying that ℳx𝒟 = ∅ and 

(Ծ, ℳ)Λ\(𝔉, 𝒟)  =M ∅∅ . ◻ 
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4. Distributions of Soft Difference-Product over Certain Types of Soft Set Operations 

In this section, we explore the distributions of soft difference-product over restricted, extended, soft binary 

piecewise intersection and union operations, AND-product and OR-product.  

Theorem 4.1. Let (Ծ, ℳ), (𝔉, 𝒟), and (Ꮙ, 𝒥) be SSs over 𝑈. Then, we have the following distributions of 

soft difference-product over restricted intersection and union operations: 

i. (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∪R (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∩R [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

ii. (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∩R (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∪R [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

iii. [(Ծ, ℳ) ∩R (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∩R [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] 

iv. [(Ծ, ℳ) ∪R (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∪R [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] 

PROOF. 

i. The PS of the (left-hand side) LHS is ℳx(𝒟 ∩ 𝒥), and the PS of the right-hand side (RHS) is (ℳx𝒟) ∩

(ℳx𝒥). Since ℳx(𝒟 ∩ 𝒥) = (ℳx𝒟) ∩ (ℳx𝒥), the first condition of the M-equality is satisfied. Let 

(𝔉, 𝒟) ∪R (Ꮙ, 𝒥) = (𝔛, 𝒟 ∩ 𝒥), where for all φ ∈ 𝒟 ∩ 𝒥, 𝔛(φ) = 𝔉(φ) ∪Ꮙ(φ). Let (𝔉, 𝒟) ∪R (Ꮙ, 𝒥) =

(𝔛, 𝒟 ∩ 𝒥), where for all φ ∈ 𝒟 ∩ 𝒥, 𝔛(φ) = 𝔉(φ) ∪Ꮙ(φ) and (Ծ, ℳ)Λ\(𝔛, 𝒟 ∩ 𝒥) = (₴, ℳx(𝒟 ∩ 𝒥)), 

where for all (𝓂, φ) ∈ ℳx(𝒟 ∩ 𝒥), ₴(𝓂, φ) = Ծ(𝓂) ∩ 𝔛′(φ). Thus 

₴(𝓂, φ) = Ծ(𝓂) ∩ [𝔉(φ) ∪Ꮙ(φ)]′ = Ծ(𝓂) ∩ [𝔉′(φ) ∩Ꮙ′(φ)] 

Let (Ծ, ℳ)Λ\(𝔉, 𝒟)  = (₮, ℳx𝒟) and (Ծ, ℳ)Λ\(Ꮙ, 𝒥) = (ლ, ℳx𝒥), where for all (𝓂, 𝒹) ∈ ℳx𝒟, 

₮(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) and for all (𝓂, 𝔧) ∈ ℳx𝒥, ლ(𝓂, 𝔧) = Ծ(𝓂) ∩Ꮙ′(𝔧). Suppose that 

(₮, ℳx𝒟) ∩R (ლ, ℳx𝒥) = (☼, (ℳx𝒟) ∩ (ℳx𝒥)), where for all (𝓂, φ) ∈ (ℳx𝒟) ∩ (ℳx𝒥) = ℳx(𝒟 ∩

𝒥), 

☼(𝓂, φ) = ₮(𝓂, φ) ∩ლ(𝓂, φ) = [Ծ(𝓂) ∩ 𝔉′(φ)] ∩ [Ծ(𝓂) ∩Ꮙ′(φ)] 

Thereby, (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∪R (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∩R [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)]. 

Here, if 𝒟 ∩ 𝒥 = ∅, then ℳx(𝒟 ∩ 𝒥) = (ℳx𝒟) ∩ (ℳx𝒥) = ∅. Since the only soft set with an empty PS is 

∅∅, then both sides are ∅∅. Since (ℳx𝒟) ∩ (ℳx𝒥) = ℳx(𝒟 ∩ 𝒥), if (ℳx𝒟) ∩ (ℳx𝒥)=∅, then ℳ=∅ or 

𝒟 ∩ 𝒥 = ∅. By assumption, ℳ ≠ ∅. Thus, (ℳx𝒟) ∩ (ℳx𝒥)=∅ implies that 𝒟 ∩ 𝒥 = ∅. Therefore, under 

this condition, both sides are again ∅∅. ◻ 

iii. The PS of the LHS is (ℳ ∩ 𝒟)x𝒥, the PS of the RHS is (ℳx𝒥) ∩ (𝒟x𝒥), and since (ℳ ∩ 𝒟)x𝒥 =

(ℳx𝒥) ∩ (𝒟x𝒥), the first condition of M-equality is satisfied. Let (Ծ, ℳ) ∩R (𝔉, 𝒟) = (𝔛, ℳ ∩ 𝒟), where 

for all φ ∈ ℳ ∩ 𝒟, 𝔛(φ) = Ծ(φ) ∩ 𝔉(φ) and (𝔛, ℳ ∩ 𝒟)Λ\(Ꮙ, 𝒥) = (₴, (ℳ ∩ 𝒟)x𝒥), where for all 

(φ, 𝔧) ∈ (ℳ ∩ 𝒟)x𝒥, ₴(φ, 𝔧) = 𝔛(φ) ∩Ꮙ′(𝔧). Thus, 

₴(φ, 𝔧) = [Ծ(φ) ∩ 𝔉(φ)] ∩Ꮙ′(𝔧) 

Let (Ծ, ℳ)Λ\(Ꮙ, 𝒥)  = (₮, ℳx𝒥) and (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (ლ, 𝒟x𝒥), where for all (𝓂, 𝔧) ∈ ℳx𝒥, 

₮(𝓂, 𝔧) = Ծ(𝓂) ∩Ꮙ′(𝔧) and for all (𝒹, 𝔧) ∈ 𝒟x𝒥, ლ(𝒹, 𝔧) = 𝔉(𝒹) ∩Ꮙ′(𝔧). Assume that 

(₮, ℳx𝒥) ∩R (ლ, 𝒟x𝒥) = (☼, (ℳx𝒥) ∩ (𝒟x𝒥)), where for all (φ, 𝔧) ∈ (ℳx𝒥) ∩ (𝒟x𝒥) = (ℳ ∩ 𝒟)x𝒥, 

☼(φ, 𝔧) = ₮(φ, 𝔧) ∩ლ(φ, 𝔧) = [Ծ(φ) ∩Ꮙ′(𝔧)] ∩ [𝔉(φ) ∩Ꮙ′(𝔧)] 

Thus, [(Ծ, ℳ) ∩R (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∩R [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)]. 

Here, if ℳ ∩ 𝒟 = ∅, then (ℳ ∩ 𝒟)x𝒥 = (ℳx𝒥) ∩ (𝒟x𝒥) = ∅. Since the only soft set with the empty 

parameter set is ∅∅, both sides of the equality are ∅∅. Moreover, since (ℳx𝒥) ∩ (𝒟x𝒥) = (ℳ ∩ 𝒟)x𝒥, if 
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(ℳx𝒥) ∩ (𝒟x𝒥)=∅, then ℳ ∩ 𝒟 = ∅ or 𝒥=∅. By assumption, 𝒥 ≠ ∅. Thus, (ℳx𝒥) ∩ (𝒟x𝒥) = ∅ implies 

that ℳ ∩ 𝒟 = ∅. Hence, under this condition, both sides of the equality are again ∅∅. ◻ 

Note 4.2. The restricted soft set operation can not distribute over soft difference-product as the intersection 

does not distribute over cartesian product and it is compulsory for two SSs to be M-equal that their PS should 

be the same. 

Theorem 4.3. Let (Ծ, ℳ), (𝔉, 𝒟), and (Ꮙ, 𝒥) be SSs over 𝑈. Then, we have the following distributions of 

soft difference-product over extended intersection and union operations: 

i. (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∩ε (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∪ε [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

ii. (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∪ε (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∩ε [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

iii. [(Ծ, ℳ) ∪ε (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∪ε [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] 

iv. [(Ծ, ℳ) ∩ε (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∩ε [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] 

PROOF. 

i. The PS of the LHS is ℳx(𝒟 ∪ 𝒥), and the PS of the RHS is (ℳx𝒟) ∪ (ℳx𝒥). Since ℳx(𝒟 ∪ 𝒥) =

(ℳx𝒟) ∪ (ℳx𝒥), the first condition of the M-equality is satisfied. As ℳ ≠ ∅, 𝒟 ≠ ∅ and 𝒥 ≠ ∅, 

ℳx(𝒟 ∪ 𝒥)  ≠ ∅ and (ℳx𝒟) ∪ (ℳx𝒥) ≠ ∅. Thus, no side may be equal to an empty soft set. Let 

(𝔉, 𝒟) ∩ε (Ꮙ, 𝒥) = (𝔛, 𝒟 ∪ 𝒥), where for all φ ∈ 𝒟 ∪ 𝒥, 

𝔛(φ)= {

𝔉(φ),               φ∈𝒟-𝒥

Ꮙ(φ),              φ∈𝒥-𝒟

𝔉(φ) ∩Ꮙ(φ),     φ∈𝒟 ∩ 𝒥 

 

Let (Ծ, ℳ)Λ\(𝔛, 𝒟 ∪ 𝒥) = (₴, ℳx(𝒟 ∪ 𝒥)), where for all (𝓂, φ) ∈ ℳx(𝒟 ∪ 𝒥),  ₴(𝓂, φ) = Ծ(𝓂) ∩

𝔛′(φ). Thus, for all (𝓂, φ) ∈ ℳx(𝒟 ∪ 𝒥),  

₴(𝓂, φ)= {

Ծ(𝓂) ∩ 𝔉′(φ),                      (𝓂, φ)∈ℳx(𝒟-𝒥)

Ծ(𝓂) ∩Ꮙ′(φ),                     (𝓂, φ)∈ℳx(𝒥-𝒟)

 Ծ(𝓂) ∩ [𝔉′(φ) ∪Ꮙ′(φ)],       (𝓂, φ)∈ℳx(𝒟 ∩ 𝒥) 

 

Assume that (Ծ, ℳ)Λ\(𝔉, 𝒟)  = (₮, ℳx𝒟) and (Ծ, ℳ)Λ\(Ꮙ, 𝒥) = (ლ, ℳx𝒥), where for all (𝓂, 𝒹) ∈

ℳx𝒟, ₮(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) and for all (𝓂, 𝔧) ∈ ℳx𝒥, ლ(𝓂, 𝔧) = Ծ(𝓂) ∩Ꮙ′(𝔧). Suppose that 

(₮, ℳx𝒟) ∪ε (ლ, ℳx𝒥) = (☼, (ℳx𝒟) ∪ (ℳx𝒥)), where for al (𝓂, φ) ∈ (ℳx𝒟) ∪ (ℳx𝒥) = ℳx(𝒟 ∪

𝒥), 

☼(𝓂, φ)= {

₮(𝓂, φ),                      (𝓂, φ)∈(ℳx𝒟)-(ℳx𝒥) = ℳx(𝒟-𝒥)

ლ(𝓂, φ),                     (𝓂, φ)∈(ℳx𝒥)-(ℳx𝒟) = ℳx(𝒥-𝒟)

₮(𝓂, φ) ∪ლ(𝓂, φ),       (𝓂, φ)∈(ℳx𝒟) ∩ (ℳx𝒥) = ℳx(𝒟 ∩ 𝒥)

 

Thereby, 

☼(𝓂, φ)= {

Ծ(𝓂) ∩ 𝔉′(φ),                                            (𝓂, φ)∈(ℳx𝒟)-(ℳx𝒥) = ℳx(𝒟-𝒥)

Ծ(𝓂) ∩Ꮙ′(φ),                                          (𝓂, φ)∈(ℳx𝒥)-(ℳx𝒟) = ℳx(𝒥-𝒟)

[Ծ(𝓂) ∩ 𝔉′(φ)] ∪ [Ծ(𝓂) ∩Ꮙ′(φ)],            (𝓂, φ)∈(ℳx𝒟) ∩ (ℳx𝒥) = ℳx(𝒟 ∩ 𝒥) 

 

 

Hence, (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∩ε (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∪ε [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)]. ◻ 

iii. The PS of the LHS is (ℳ ∪ 𝒟)x𝒥, and the PS of the RHS is (ℳx𝒥) ∪ (𝒟x𝒥). Since (ℳ ∪ 𝒟)x𝒥 =

(ℳx𝒥) ∪ (𝒟x𝒥), the first condition of the M-equality is satisfied. By assumption, ℳ ≠ ∅, 𝒟 ≠ ∅, and 𝒥 ≠
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∅. Thus, (ℳ ∪ 𝒟)x𝒥 ≠ ∅ and (ℳx𝒥) ∪ (𝒟x𝒥)  ≠ ∅. Thereby, no side may be equal to an empty soft set. 

Let (Ծ, ℳ) ∪ε (𝔉, 𝒟) = (𝔛, ℳ ∪ 𝒟), where for all φ ∈ ℳ ∪ 𝒟, 

𝔛(φ)= {

Ծ(φ),               φ∈ℳ-𝒟

𝔉(φ),               φ∈𝒟-ℳ

Ծ(φ) ∪ 𝔉(φ),     φ∈ℳ ∩ 𝒟 

 

Let (𝔛, ℳ ∪ 𝒟)Λ\(Ꮙ, 𝒥) = (₴, (ℳ ∪ 𝒟)x𝒥), where for all (φ, 𝔧) ∈ (ℳ ∪ 𝒟)x𝒥, ₴(φ, 𝔧) = 𝔛(φ) ∩Ꮙ′(𝔧). 

Thus, for all (φ, 𝔧) ∈ (ℳ ∪ 𝒟)x𝒥, 

 

₴(φ, 𝔧)= {

Ծ(φ) ∩Ꮙ′(𝔧),                      (φ, 𝔧)∈(ℳ-𝒟)x𝒥

𝔉(φ) ∩Ꮙ′(𝔧),                      (φ, 𝔧)∈(𝒟-ℳ)x𝒥

 [Ծ(φ) ∪ 𝔉(φ)] ∩Ꮙ′(𝔧),        (φ, 𝔧)∈(ℳ ∩ 𝒟)x𝒥 

 

Suppose that (Ծ, ℳ)Λ\(Ꮙ, 𝒥)  = (₮, ℳx𝒥) and (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (ლ, 𝒟x𝒥), where for all (𝓂, 𝔧) ∈ ℳx𝒥, 

₮ (𝓂, 𝔧) = Ծ(𝓂) ∩Ꮙ′(𝔧) and for all (𝒹, 𝔧) ∈ 𝒟x𝒥, ლ(𝒹, 𝔧) = 𝔉(𝒹) ∩Ꮙ′(𝔧). Let (₮, ℳx𝒥) ∪ε (ლ, 𝒟x𝒥) =

(☼, (ℳx𝒥) ∪ (𝒟x𝒥)), where for all (φ, 𝔧) ∈ (ℳx𝒥) ∪ (𝒟x𝒥) = (ℳ ∪ 𝒟)x𝒥, 

☼(φ, 𝔧)= { 

₮(φ, 𝔧),                                            (φ, 𝔧)∈(ℳx𝒥)-(𝒟x𝒥) = (ℳ-𝒟)x𝒥

ლ(φ, 𝔧),                                           (φ, 𝔧)∈(𝒟x𝒥)-(ℳx𝒥) = (𝒟-ℳ)x𝒥

₮(φ, 𝔧) ∪ლ(φ, 𝔧),                               (φ, 𝔧)∈(ℳx𝒥) ∩ (𝒟x𝒥) = (ℳ ∩ 𝒟)x𝒥

 

Thereby,  

☼(φ, 𝔧)= { 

Ծ(φ) ∩Ꮙ′(𝔧),                                                           (φ, 𝔧)∈(ℳx𝒥)-(𝒟x𝒥) = (ℳ-𝒟)x𝒥

𝔉(φ) ∩Ꮙ′(𝔧),                                                           (φ, 𝔧)∈(𝒟x𝒥)-(ℳx𝒥) = (𝒟-ℳ)x𝒥

[Ծ(φ) ∩Ꮙ′(𝔧)] ∪ [𝔉(φ) ∩Ꮙ′(𝔧)],                             (φ, 𝔧)∈(ℳx𝒥) ∩ (𝒟x𝒥) = (ℳ ∩ 𝒟)x𝒥

 

Hence, [(Ծ, ℳ) ∪ε (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∪ε [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)]. ◻ 

Note 4.4. The extended soft set operation can not distribute over soft difference-product as the union operation 

does not distribute over cartesian product and it is compulsory for two SSs to be M-equal that their PS should 

be the same.  

Theorem 4.5. Let (Ծ, ℳ), (𝔉, 𝒟), and (Ꮙ, 𝒥) be SSs over 𝑈. Then, we have the following distributions of 

soft difference-product over soft binary piecewise intersection and union operations: 

i. (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∩̃ (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∪̃ [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

ii. (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∪̃  (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∩̃ [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

iii. [(Ծ, ℳ) ∪̃ (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∪̃ [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] 

iv. [(Ծ, ℳ) ∩̃ (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∩̃ [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)] 

PROOF. 

i. Since the PS of the SSs of both sides is ℳx𝒟, and the first condition of the M-equality is satisfied. Moreover 

since ℳ ≠ ∅ and 𝒟 ≠ ∅ by assumption, ℳx𝒟 ≠ ∅. Thus, no side may be equal to an empty soft set. Let 

(𝔉, 𝒟) ∩̃ (Ꮙ, 𝒥) = (𝔛, 𝒟), where for all 𝒹 ∈ 𝒟, 

𝔛(𝒹)= {
𝔉(𝒹),                                  𝒹∈𝒟-𝒥 

𝔉(𝒹) ∩Ꮙ(𝒹),                     𝒹∈𝒟 ∩ 𝒥
 

Let (Ծ, ℳ)Λ\(𝔛, 𝒟) = (ლ, ℳx𝒟), where for all (𝓂, 𝒹) ∈ ℳx𝒟, ლ(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔛′(𝒹). Thus, 
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ლ(𝓂, 𝒹)= {
Ծ(𝓂) ∩ 𝔉′(𝒹),                                     (𝓂, 𝒹)∈ℳx(𝒟-𝒥) 

Ծ(𝓂) ∩ [𝔉′(𝒹) ∪Ꮙ′(𝒹)],                    (𝓂, 𝒹)∈ℳx(𝒟 ∩ 𝒥)
 

Suppose that (Ծ, ℳ)Λ\(𝔉, 𝒟)  = (₮, ℳx𝒟) and (Ծ, ℳ)Λ\(Ꮙ, 𝒥) = (₴, ℳx𝒥), where for all (𝓂, 𝒹) ∈

ℳx𝒟, ₮(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) and for all (𝓂, 𝔧) ∈ ℳx𝒥, ₴(𝓂, 𝔧) = Ծ(𝓂) ∩Ꮙ′(𝔧). Let 

(₮, ℳx𝒟) ∪̃ (₴, ℳx𝒥) = (☼, ℳx𝒟), where for all (𝓂, 𝒹) ∈ ℳx𝒟, 

☼(𝓂, 𝒹)= {
₮(𝓂, 𝒹),                                  (𝓂, 𝒹)∈(ℳx𝒟)-(ℳx𝒥) = ℳx(𝒟-𝒥) 

₮(𝓂, 𝒹) ∪ ₴(𝓂, 𝒹),                 (𝓂, 𝒹)∈(ℳx𝒟) ∩ (ℳx𝒥) = ℳx(𝒟 ∩ 𝒥)
 

Hence, 

☼(𝓂, 𝒹)= { 
Ծ(𝓂) ∩ 𝔉′(𝒹),                                                         (𝓂, 𝒹)∈(ℳx𝒟)-(ℳx𝒥) = ℳx(𝒟-𝒥)

[Ծ(𝓂) ∩ 𝔉′(𝒹)] ∪ [Ծ(𝓂) ∩Ꮙ′(𝒹)],                      (𝓂, 𝒹)∈(ℳx𝒟) ∩ (ℳx𝒥) = ℳx(𝒟 ∩ 𝒥)
 

Thus, (Ծ, ℳ)Λ\[(𝔉, 𝒟) ∩̃ (Ꮙ, 𝒥)] =M [(Ծ, ℳ)Λ\(𝔉, 𝒟)] ∪̃ [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)]. Since ℳ ≠ ℳxℳ, the soft 

binary piecewise operations do not distribute over soft plus-product operations. ◻ 

iii. Since the PS of the SSs of both sides is ℳx𝒥, the first condition of the M-equality is satisfied. Moreover 

since ℳ ≠ ∅ and 𝒥 ≠ ∅ by assumption, ℳx𝒥 ≠ ∅. Thus, it is impossible that any side is equal to empty soft 

set. Let (Ծ, ℳ) ∪̃ (𝔉, 𝒟) = (𝔛, ℳ), where for all 𝓂 ∈ ℳ, 

𝔛(𝓂)= {
Ծ(𝓂),                                  𝓂∈ℳ-𝒟 

Ծ(𝓂) ∪ 𝔉(𝓂),                     𝓂∈ℳ ∩ 𝒟
 

Let (𝔛, ℳ)Λ\(Ꮙ, 𝒥) = (ლ, ℳx𝒥), where for all (𝓂, 𝔧) ∈ ℳx𝒥, ლ(𝓂, 𝔧) = 𝔛(𝓂) ∩Ꮙ′(𝔧). Thus, 

𝔛(𝓂, 𝔧)= {
Ծ(𝓂) ∩Ꮙ′(𝔧),                                 (𝓂, 𝔧)∈(ℳ-𝒟)x𝒥

[Ծ(𝓂) ∪ 𝔉(𝓂)] ∩Ꮙ′(𝔧),                   (𝓂, 𝔧)∈(ℳ ∩ 𝒟)x𝒥
 

Assume that (Ծ, ℳ)Λ\(Ꮙ, 𝒥)  = (₮, ℳx𝒥) and (𝔉, 𝒟)Λ\(Ꮙ, 𝒥) = (₴, 𝒟x𝒥), where for all (𝓂, 𝔧) ∈ ℳx𝒥   

₮(𝓂, 𝔧) = Ծ(𝓂) ∩Ꮙ′(𝔧) and for all (𝒹, 𝔧) ∈ 𝒟x𝒥, ₴(𝒹, 𝔧) = 𝔉(𝒹) ∩Ꮙ′(𝔧). Let (₮, ℳx𝒥) ∪̃ (₴, 𝒟x𝒥) =

(☼, ℳx𝒥), where for all (𝓂, 𝔧) ∈ ℳx𝒥, 

☼(𝓂, 𝔧)= {
₮(𝓂, 𝔧),                                  (𝓂, 𝔧)∈(ℳx𝒥)-(𝒟x𝒥)=(ℳ-𝒟)x𝒥 

₮(𝓂, 𝔧) ∪ ₴(𝓂, 𝔧),                   (𝓂, 𝔧)∈(ℳx𝒥) ∩ (𝒟x𝒥) = (ℳ ∩ 𝒟)x𝒥
 

Thus, 

☼(𝓂, 𝔧)= {
Ծ(𝓂) ∩Ꮙ′(𝔧),                                                        (𝓂, 𝔧)∈(ℳx𝒥)-(𝒟x𝒥)=(ℳ-𝒟)x𝒥 

[Ծ(𝓂) ∩Ꮙ′(𝔧)] ∪ [𝔉(𝓂) ∩Ꮙ′(𝔧)],                       (𝓂, 𝔧)∈(ℳx𝒥) ∩ (𝒟x𝒥) = (ℳ ∩ 𝒟)x𝒥
 

Thereby, [(Ծ, ℳ) ∪̃ (𝔉, 𝒟)]Λ\(Ꮙ, 𝒥) =M [(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] ∪̃ [(𝔉, 𝒟)Λ\(Ꮙ, 𝒥)]. ◻ 

Proposition 4.6. Let (Ծ, ℳ), (𝔉, 𝒟) and (Ꮙ, 𝒥) be SSs over 𝑈. Then, 

i. (Ծ, ℳ)Λ\[(𝔉, 𝒟)Λ(Ꮙ, 𝒥)] ⊆L [(Ծ, ℳ)Λ\(𝔉, 𝒟)]V[(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

ii. (Ծ, ℳ)Λ\[(𝔉, 𝒟)V(Ꮙ, 𝒥)] ⊆L [(Ծ, ℳ)Λ\(𝔉, 𝒟)]Λ[(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

PROOF. 

i. Let (𝔉, 𝒟)Λ(Ꮙ, 𝒥) = (౮, 𝒟x𝒥), where for all (𝒹, 𝔧) ∈ 𝒟x𝒥, ౮(𝒹, 𝔧) = 𝔉(𝒹) ∩Ꮙ(𝔧) and 

(Ծ, ℳ)Λ\(౮, 𝒟x𝒥) = (𝔛, ℳx(𝒟x𝒥)), where for all (𝓂, (𝒹, 𝔧)) ∈ ℳx(𝒟x𝒥), 

𝔛(𝓂, (𝒹, 𝔧)) = Ծ(𝓂) ∩ [𝔉(𝒹) ∩Ꮙ(𝔧)]′ = Ծ(𝓂) ∩ [𝔉′(𝒹) ∪Ꮙ′(𝔧)] 

Suppose that (Ծ, ℳ)Λ\(𝔉, 𝒟) = (☼, ℳx𝒟) and (Ծ, ℳ)Λ\(Ꮙ, 𝒥) = (₴, ℳx𝒥), where for all (𝓂, 𝒹) ∈

ℳx𝒟, ☼(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉′(𝒹) and for all (𝓂, 𝔧) ∈ ℳx𝒥, ₴(𝓂, 𝔧) = Ծ(𝓂) ∩Ꮙ′(𝔧). Suppose that 

(☼, ℳx𝒟)V(₴, ℳx𝒥) = (ლ, (ℳx𝒟)x(ℳx𝒥)), where for all ((𝓂, 𝒹), (𝓂, 𝔧)) ∈ (ℳx𝒟)x(ℳx𝒥), 
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ლ((𝓂, 𝒹), (𝓂, 𝔧)) = [Ծ(𝓂) ∩ 𝔉′(𝒹)] ∪ [Ծ(𝓂) ∩Ꮙ′(𝔧)] 

Thus, for all (𝓂, (𝒹, 𝔧)) ∈ ℳx(𝒟x𝒥), there exists ((𝓂, 𝒹), (𝓂, 𝔧)) ∈ (ℳx𝒟)x(ℳx𝒥) such that 

𝔛(𝓂, (𝒹, 𝔧)) = Ծ(𝓂) ∩ [𝔉′(𝒹) ∪Ꮙ′(𝔧)] = [Ծ(𝓂) ∩ 𝔉′(𝒹)] ∪ [Ծ(𝓂) ∩Ꮙ′(𝔧)] = ლ((𝓂, 𝒹), (𝓂, 𝔧))   ◻ 

It is obvious that the L-subset in Proposition 4.6. cannot be L-equality with the following example: 

Example 4.7. Let E = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} be the parameter set, ℳ = {𝑒1, 𝑒5}, 𝒟 = {𝑒3} and 𝒥 = {𝑒2} be the 

subsets of 𝐸, 𝑈 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} be the universal set and (Ծ, ℳ), (𝔉, 𝒟), and (Ꮙ, 𝒥) be SSs over 𝑈 as 

follows:  

(Ծ, ℳ) = {(𝑒1, {ℎ1, ℎ6}), (𝑒5, {ℎ2, ℎ4, ℎ5})}, 

(𝔉, 𝒟) = {(𝑒3, {ℎ1, ℎ3, ℎ4})}, 

and  

(Ꮙ, 𝒥) = {(𝑒2, {ℎ1, ℎ4, ℎ5})} 

We show that 

(Ծ, ℳ)Λ\[(𝔉, 𝒟)Λ(Ꮙ, 𝒥)] ≠L [(Ծ, ℳ)Λ\(𝔉, 𝒟)]V[(Ծ, ℳ)Λ\(Ꮙ, 𝒥)] 

Let (𝔉, 𝒟)Λ(Ꮙ, 𝒥) = (౮, 𝒟x𝒥), where 

(𝔉, 𝒟)Λ(Ꮙ, 𝒥) = (౮, 𝒟x𝒥) = {((𝑒3, 𝑒2), {ℎ1, ℎ4})} 

Assume that (Ծ, ℳ)Λ\(౮, 𝒟x𝒥) = (𝔛, ℳx(𝒟x𝒥)), where 

(Ծ, ℳ)Λ\(౮, 𝒟x𝒥) = (𝔛, ℳx(𝒟x𝒥)) = {((𝑒1, (𝑒3, 𝑒2)), {ℎ6}), ((𝑒5, (𝑒3, 𝑒2)), {ℎ2, ℎ5})} 

Let (Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟), where  

(Ծ, ℳ)Λ\(𝔉, 𝒟) = (₴, ℳx𝒟) = {((𝑒1, 𝑒3), {ℎ6}), ((𝑒5, 𝑒3), {ℎ2, ℎ5})} 

Suppose that (Ծ, ℳ)Λ\(Ꮙ, 𝒥) = (☼, ℳx𝒥), where  

(Ծ, ℳ)Λ\(Ꮙ, 𝒥) = (☼, ℳx𝒥)  = {((𝑒1, 𝑒2), {ℎ6}), ((𝑒5, 𝑒2), {ℎ2})} 

Let (₴, ℳx𝒟)V(☼, ℳx𝒥) = (ლ, (ℳx𝒟)x(ℳx𝒥)). Then, 

(₴, ℳx𝒟)V(☼, ℳx𝒥) = (ლ, (ℳx𝒟)x(ℳx𝒥)) 

 = {(((𝑒1, 𝑒3), (𝑒1, 𝑒2)), {ℎ6}) , (((𝑒1, 𝑒3), (𝑒5, 𝑒2)), {ℎ2, ℎ6}) , (((𝑒5, 𝑒3), (𝑒1, 𝑒2)), {ℎ2, ℎ5, ℎ6}) 

      (((𝑒5, 𝑒3), (𝑒5, 𝑒2)), {ℎ2, ℎ5})} 

Thus, ლ((𝑒1, 𝑒3), (𝑒5, 𝑒2)) ≠ 𝔛(𝑒1, (𝑒3, 𝑒2)), ლ((𝑒1, 𝑒3), (𝑒5, 𝑒2)) ≠ 𝔛((𝑒5, (𝑒3, 𝑒2)), 

ლ((𝑒5, 𝑒3), (𝑒1, 𝑒2)) ≠ 𝔛(𝑒1, (𝑒3, 𝑒2)), and ლ((𝑒5, 𝑒3), (𝑒1, 𝑒2)) ≠ 𝔛((𝑒5, (𝑒3, 𝑒2)), implying that 

(ლ, (ℳx𝒟)x(ℳx𝒥)) ⊈L (𝔛, ℳx(𝒟x𝒥)). 

5. uni-int Decision-Making Method Applied to Soft Difference-Product  

In this section, the uni-int operator and uni-int decision function defined by Çağman and Enginoğlu [11] are 

applied for the soft difference-product for the uni-int decision-making method. 

This method reduces a set to its subset according to the criteria given by the decision-makers. Therefore, 

instead of considering a large number of possibilities, decision-makers concentrate on a small number.  
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Throughout this section, all the soft difference-products (Λ\) of the SSs over 𝑈 are assumed to be contained 

in the set Λ\(𝑈), and the approximation function of the soft difference-product of (Ծ, ℳ) and (𝔉, 𝒟), that is, 

(Ծ, ℳ)Λ\(𝔉, 𝒟) is 

ԾℳΛ\𝔉𝒟: ℳx𝒟 → 𝑃(𝑈) 

where ԾℳΛ\𝔉𝒟(𝓂, 𝒹) = Ծ(𝓂) ∩ 𝔉 ′(𝒹) for all (𝓂, 𝒹) ∈ ℳx𝒟. 

Definition 5.1. Let (Ծ, ℳ) and (𝔉, 𝒟) be SS over 𝑈. Then, uni-int operators for soft difference-product, 

denoted by unixinty and uniyintx are defined respectively as 

unixinty: Λ\ → 𝑃(𝑈),        unixinty(ԾℳΛ\𝔉𝒟) = ⋃𝑚∈ℳ(⋂𝒹∈𝒟(ԾℳΛ\𝔉𝒟(𝓂, 𝒹))) 

uniyintx: Λ\ → 𝑃(𝑈),        uniyintx(ԾℳΛ\𝔉𝒟) = ⋃𝒹∈𝒟(⋂𝑚∈ℳ(ԾℳΛ\𝔉𝒟(𝓂, 𝒹))) 

Definition 5.2. [11] Let (Ծ, ℳ)Λ\(𝔉, 𝒟) ∈ Λ\(𝑈). Then, uni-int decision function for soft difference-product, 

denoted by uni-int are defined by 

uni-int: Λ\ → 𝑃(𝑈),      uni-int(ԾℳΛ\𝔉𝒟) = unixinty(ԾℳΛ\𝔉𝒟) ∪ uniyintx(ԾℳΛ\𝔉𝒟) 

that reduces the size of the universe 𝑈. Thus, the values uni-int(ԾℳΛ\𝔉𝒟) is a subset of 𝑈 called uni-int 

decision set of ԾℳΛ\𝔉𝒟.  

Presume that a set of choices and a set of parameters are given. Then, taking into account the problem, a set of 

ideal alternatives is selected utilizing the uni-int decision-making technique, which is organized as follows: 

Step 1: Select the feasible subsets from the parameter collection. 

Step 2: Construct the SSs for every parameter set. 

Step 3: Determine the SSs’ soft difference-product. 

Step 4: Determine the product’s uni-int decision set.  

The application of soft set theory to the uni-int decision-making for the soft difference-products is  

demonstrated as follows: 

Example 5.3. A private club has announced a recruitment notice for contracted coaches, and candidates will 

be selected based on the success in oral and practical exams from among those invited, which will be up to 

three (3) times the number of available positions. The selected candidates will then undergo a comprehensive 

training program, and those who successfully complete it will qualify to join the private club professional 

caoch team. Applications will first undergo a preliminary elimination to check compliance with the required 

qualifications for the applied position, and applications found to not meet any of the requirements will be 

canceled. Among the candidates whose applications are considered valid, Mrs Çam, the club’s Human 

Resources manager, will carry out a selection process based on the results of the oral and practical exams 

administered to the candidates. Taking into account the characteristics that should be present in a coach 

candidate, Mrs Çam will first determine the parameters he wants in the selected coach candidates, and then the 

parameters he definitely does not want. Based on this, he will make his decision using the uni-int decision-

making method of the soft difference-product. Assume that the coach candidate whose application is 

considered valid is as follows: 𝑈 =  {𝓏1, 𝓏2, ⋯ , 𝓏25}. Let the set of parameters to be used for determining the 

selected coaches be {𝒸1, 𝒸2, … , 𝒸8}. Here, 𝒸𝑖 are parameters, where 𝑖 ∈ {1,2, ⋯ ,8} correspond to the following 

descriptions, respectively: 

𝒸1 = “having the professional knowledge required by the position,”  

𝒸2 = “having a low level of general culture and general ability”,  

𝒸3 = “having practical experience in the professional field required by the position”,  
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𝒸4 = “having strong communication and reasoning abilities”,  

𝒸5 = “having low physical endurance and conditioning”,  

𝒸6 = “being closed to innovations, scientific and technological developments”,  

𝒸7 = “being motivated and determined”  

𝒸8 = “having low self-confidence, persuasion skills, and credibility”.  

To solve this coach recruitment process problem, we can apply the uni-int method to soft difference-product 

as follows: 

Step 1: Determining the sets of parameters 

The decision maker, Mrs Çam from the existing set of parameters, first selects the parameters he would like to 

have in the selected coach candidates (i), and then selects the parameters he DOES NOT want (ii): That is, 

(i) Parameters that must absolutely be present in selected candidates: These represent traits or skills that are 

essential and desired in a coach, and their absence disqualifies a candidate. 

(ii) Parameters that are preferred NOT to be present in candidates to be selected: These represent undesirable 

traits or deficiencies that make a candidate unsuitable for selection. 

By categorizing these parameters into two sets, the selection process ensures clarity and alignment with the 

decision-maker’s priorities. Let these parameter sets be ℳ = {𝒸1, 𝒸3, 𝒸4, 𝒸7} and 𝒟 = {𝒸2, 𝒸5, 𝒸6, 𝒸8}, 

respectively. 

Step 2: Construct the soft sets by using the parameter sets determined in Step 1.  

Using these parameter sets, the decision-maker constructs the soft sets (Ծ, ℳ) and (Ծ, 𝒟), respectively: 

(Ծ, ℳ) = {(𝒸1, {𝓏1, 𝓏3, 𝓏4, 𝓏7, 𝓏9, 𝓏13, 𝓏15, 𝓏17, 𝓏22, 𝓏24}), (𝒸3, {𝓏2, 𝓏3, 𝓏5, 𝓏8, 𝓏11, 𝓏17, 𝓏21, 𝓏23, 𝓏25}),        

                 (𝒸4, {𝓏6, 𝓏9, 𝓏13, 𝓏16, 𝓏18, 𝓏19, 𝓏21, 𝓏22, 𝓏24}), (𝒸7, {𝓏1, 𝓏3, 𝓏6, 𝓏10, 𝓏11, 𝓏13, 𝓏17, 𝓏22, 𝓏23, 𝓏25})} 

and 

(Ծ, 𝒟) = {(𝒸2, {𝓏8, 𝓏9, 𝓏12, 𝓏14, 𝓏16, 𝓏17, 𝓏22, 𝓏25}), (𝒸5, {𝓏1, 𝓏3, 𝓏5, 𝓏7, 𝓏11, 𝓏15, 𝓏19, 𝓏20, 𝓏21}), 

                            (𝒸6, {𝓏3, 𝓏4, 𝓏6, 𝓏9, 𝓏13, 𝓏18, 𝓏19, 𝓏25}), (𝒸8, {𝓏7, 𝓏10, 𝓏11, 𝓏14, 𝓏19, 𝓏20, 𝓏21, 𝓏22, 𝓏23, 𝓏25})} 

While (Ծ, ℳ) is a soft set representing candidates close to the ideal by possessing the desired parameters 

in ℳ, (Ծ, 𝒟) is a soft set representing candidates to be eliminated due to undesirable parameters in 𝒟.  

Step 3: Determine the Λ\-product of soft sets. 

ԾℳΛ\Ծ𝒟 = {((𝒸1, 𝒸2), {𝓏1, 𝓏3, 𝓏4, 𝓏7, 𝓏13, 𝓏15, 𝓏24}), ((𝒸1, 𝒸5), {𝓏4, 𝓏9, 𝓏13, 𝓏17, 𝓏22, 𝓏24}), 

  ((𝒸1, 𝒸6), {𝓏1, 𝓏7, 𝓏15, 𝓏17, 𝓏22, 𝓏24}), ((𝒸1, 𝒸8), {𝓏1, 𝓏3, 𝓏4, 𝓏9, 𝓏13, 𝓏15, 𝓏17, 𝓏24}), 

  ((𝒸3, 𝒸2), {𝓏2, 𝓏3, 𝓏5, 𝓏11, 𝓏21, 𝓏23}), ((𝒸3, 𝒸5), {𝓏2, 𝓏8, 𝓏17, 𝓏23, 𝓏25}), 

  ((𝒸3, 𝒸6), {𝓏2, 𝓏5, 𝓏8, 𝓏11, 𝓏17, 𝓏21, 𝓏23}), ((𝒸3, 𝒸8), {𝓏2, 𝓏3, 𝓏5, 𝓏8, 𝓏17}), 

  ((𝒸4, 𝒸2), {𝓏6, 𝓏13, 𝓏18, 𝓏19, 𝓏21, 𝓏24}), ((𝒸4, 𝒸5), {𝓏6, 𝓏9, 𝓏13, 𝓏16, 𝓏18, 𝓏22, 𝓏24}), 

  ((𝒸4, 𝒸6), {𝓏16, 𝓏21, 𝓏22, 𝓏24}), ((𝒸4, 𝒸8), {𝓏6, 𝓏9, 𝓏13, 𝓏16, 𝓏18, 𝓏24}), 
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  ((𝒸7, 𝒸2), {𝓏1, 𝓏3, 𝓏6, 𝓏10, 𝓏11, 𝓏13, 𝓏23}), ((𝒸7, 𝒸5), {𝓏6, 𝓏10, 𝓏13, 𝓏17, 𝓏22, 𝓏23, 𝓏25}), 

  ((𝒸7, 𝒸6), {𝓏1, 𝓏10, 𝓏11, 𝓏17, 𝓏22, 𝓏23}), ((𝒸7, 𝒸8), {𝓏1, 𝓏3, 𝓏6, 𝓏13, 𝓏17})} 

Step 4: Determine the set of uni-int(ԾℳΛ\Ծ𝒟): 

𝑢𝑛𝑖𝓂 − 𝑖𝑛𝑡𝒹(ԾℳΛ\Ծ𝒟) = ⋃𝑚∈ℳ(⋂𝒹∈𝒟(ԾℳΛ\Ծ𝒟)(𝓂, 𝒹))) 

We determine first ⋂𝒹∈𝒟 ((ԾℳΛ\Ծ𝒟)(𝓂, 𝒹)): 

(ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸2) ∩ (ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸5) ∩ (ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸6) ∩ (ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸8) 

= {𝓏1, 𝓏3, 𝓏4, 𝓏7, 𝓏13, 𝓏15, 𝓏24} ∩ {𝓏4, 𝓏9, 𝓏13, 𝓏17, 𝓏22, 𝓏24} ∩ {𝓏1, 𝓏7, 𝓏15, 𝓏17, 𝓏22, 𝓏24} 

∩ {𝓏1, 𝓏3, 𝓏4, 𝓏9, 𝓏13, 𝓏15, 𝓏17, 𝓏24} = {𝓏24} 

 

(ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸2) ∩ (ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸5) ∩ (ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸6) ∩ (ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸8) 

= {𝓏2, 𝓏3, 𝓏5, 𝓏11, 𝓏21, 𝓏23} ∩ {𝓏2, 𝓏8, 𝓏17, 𝓏23, 𝓏25} ∩ {𝓏2, 𝓏5, 𝓏8, 𝓏11, 𝓏17, 𝓏21, 𝓏23} 

∩ {𝓏2, 𝓏3, 𝓏5, 𝓏8, 𝓏17} = {𝓏2} 

(ԾℳΛ\Ծ𝒟)(𝒸4, 𝒸2) ∩ (ԾℳΛ\Ծ𝒟)(𝒸4, 𝒸5) ∩ (ԾℳΛ\Ծ)(𝒸4, 𝒸6) ∩ (ԾℳΛ\Ծ𝒟)(𝒸4, 𝒸8) 

= {𝓏6, 𝓏13, 𝓏18, 𝓏19, 𝓏21, 𝓏24} ∩ {𝓏6, 𝓏9, 𝓏13, 𝓏16, 𝓏18, 𝓏22, 𝓏24} ∩ {𝓏16, 𝓏21, 𝓏22, 𝓏24} 

∩ {𝓏6, 𝓏9, 𝓏13, 𝓏16, 𝓏18, 𝓏24} = {𝓏24} 

 

(ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸2) ∩ (ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸5) ∩ (ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸6) ∩ (ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸8) 

= {𝓏1, 𝓏3, 𝓏6, 𝓏10, 𝓏11, 𝓏13, 𝓏23} ∩ {𝓏6, 𝓏10, 𝓏13, 𝓏17, 𝓏22, 𝓏23, 𝓏25} ∩ {𝓏1, 𝓏10, 𝓏11, 𝓏17, 𝓏22, 𝓏23} 

∩ {𝓏1, 𝓏3, 𝓏6, 𝓏13, 𝓏17} = ∅ 

Thus,          

𝑢𝑛𝑖𝓂 − 𝑖𝑛𝑡𝒹(ԾℳΛ\Ծ𝒟) = ⋃𝑚∈ℳ (⋂𝒹∈𝒟 (ԾℳΛ\Ծ𝒟(𝓂, 𝒹))) = {𝓏24} ∪ {𝓏2} ∪ {𝓏24} ∪ ∅ = {𝓏2, 𝓏24} 

𝑢𝑛𝑖𝒹 − 𝑖𝑛𝑡𝓂(ԾℳΛ\Ծ𝒟) = ⋃𝒹∈𝒟(⋂𝑚∈ℳ(ԾℳΛ\Ծ𝒟)(𝓂, 𝒹))) 

We determine first ⋂𝓂∈ℳ ((ԾℳΛ\Ծ𝒟)(𝓂, 𝒹)) :  

(ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸2) ∩ (ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸2) ∩ (ԾℳΛ\Ծ𝒟)(𝒸4, 𝒸2) ∩ (ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸2) 

= {𝓏1, 𝓏3, 𝓏4, 𝓏7, 𝓏13, 𝓏15, 𝓏24} ∩ {𝓏2, 𝓏3, 𝓏5, 𝓏11, 𝓏21, 𝓏23} ∩ {𝓏6, 𝓏13, 𝓏18, 𝓏19, 𝓏21, 𝓏24} 

∩ {𝓏1, 𝓏3, 𝓏6, 𝓏10, 𝓏11, 𝓏13, 𝓏23} = ∅ 

 

(ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸5) ∩ (ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸5) ∩ (ԾℳΛ\Ծ𝒟)(𝒸4, 𝒸5) ∩ (ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸5) 

= {𝓏4, 𝓏9, 𝓏13, 𝓏17, 𝓏22, 𝓏24} ∩ {𝓏2, 𝓏8, 𝓏17, 𝓏23, 𝓏25} ∩ {𝓏6, 𝓏9, 𝓏13, 𝓏16, 𝓏18, 𝓏22, 𝓏24} 

∩ {𝓏6, 𝓏10, 𝓏13, 𝓏17, 𝓏22, 𝓏23, 𝓏25} = ∅ 
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(ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸6) ∩ (ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸6) ∩ (ԾℳΛ\Ծ𝒟)(𝒸4, 𝒸6) ∩ (ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸6) 

= {𝓏1, 𝓏7, 𝓏15, 𝓏17, 𝓏22, 𝓏24} ∩ {𝓏2, 𝓏5, 𝓏8, 𝓏11, 𝓏17, 𝓏21, 𝓏23} ∩ {𝓏16, 𝓏21, 𝓏22, 𝓏24} 

∩ {𝓏1, 𝓏10, 𝓏11, 𝓏17, 𝓏22, 𝓏23} = ∅ 

 

(ԾℳΛ\Ծ𝒟)(𝒸1, 𝒸8) ∩ (ԾℳΛ\Ծ𝒟)(𝒸3, 𝒸8) ∩ (ԾℳΛ\Ծ𝒟)(𝒸4, 𝒸8) ∩ (ԾℳΛ\Ծ𝒟)(𝒸7, 𝒸8) 

= {𝓏1, 𝓏3, 𝓏4, 𝓏9, 𝓏13, 𝓏15, 𝓏17, 𝓏24} ∩ {𝓏2, 𝓏3, 𝓏5, 𝓏8, 𝓏17} ∩ {𝓏6, 𝓏9, 𝓏13, 𝓏16, 𝓏18, 𝓏24} 

∩ {𝓏1, 𝓏3, 𝓏6, 𝓏13, 𝓏17} = ∅ 

Thus, 

𝑢𝑛𝑖𝒹 − 𝑖𝑛𝑡𝓂(ԾℳΛ\Ծ𝒟) =∪𝒹∈𝒟 (∩𝓂∈ℳ ((ԾℳΛ\Ծ𝒟)(𝓂, 𝒹))) = ∅ ∪ ∅ ∪ ∅ ∪ ∅ = ∅ 

Hence, 

uni-int(ԾℳΛ\𝔉𝒟) = [𝑢𝑛𝑖𝓂 − 𝑖𝑛𝑡𝒹(ԾℳΛ\Ծ𝒟)] ∪ [𝑢𝑛𝑖𝒹 − 𝑖𝑛𝑡𝓂(ԾℳΛ\Ծ𝒟)] = {𝓏2, 𝓏24} ∪ ∅ = {𝓏2, 𝓏24} 

From this, it can be concluded that out of the 25 applicants whose applications are accepted for the private 

club’s coach recruitment process, the candidates 𝓏2 and 𝓏24 earn the right to undergo a comprehensive training 

program of this club to join the private club professional coach team. 

6. Conclusion 

In this study, we first presented a new type of soft set product that we term the “soft difference-product” using 

Molodtsov’s soft set. We provided its example and closely analyzed its algebraic characteristics in terms of 

different types of soft subset and soft equality, including M-subset/equality, F-subset/equality, L-

subset/equality, and J-subset/equality. Furthermore, the distributions of soft difference-product over various 

kinds of soft set operations were obtained. Finally, we applied the uni-int soft decision-making method that 

selects the optimal elements among potential options without the need of rough or fuzzy soft sets. Additionally, 

we included an example that shows how the method may be used successfully for a real-world scenario 

problem. This work may enable several applications, such as new approaches to decision-making and novel 

soft set-based cryptography techniques. Future research may propose some more new types of soft product 

operations and further examine fundamental characteristics associated with different kinds of soft equal 

relations to contribute to the soft set literature from a theoretical and practical standpoint. 
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