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 ABSTRACT  

 

In this paper, we introduced a novel mathematical model to simulate the spread of the 

zoonotic viral disease monkeypox, incorporating both human and rodent populations to capture 

the disease dynamics. Unlike previous models, we included a quarantine compartment for 

infected humans, a social distancing compartment for susceptible individuals, and vaccination 

with direct transmission to the recovered compartment, offering a more comprehensive 

framework for controlling the spread of monkeypox. We then compared the effectiveness of 

these three control measures in reducing disease transmission. To investigate the dynamics of 

the model, we first demonstrated that it has a unique, positive, and bounded solution. Next, we 

calculated the basic reproduction number, 𝑅0 for the proposed model. A sensitivity analysis is 

then conducted to identify key parameters, followed by an assessment of their effects on 𝑅0. 

Additionally, we analyzed the local stability of both the disease-free and endemic equilibrium 

points to identify the conditions under which the disease dies out or remains endemic. We first 

showed in stability analysis section that these three control parameters play important roles in 

stability of equlibrium points. After that our findings in sensitivity analysis indicated the critical 

role of recovery rates and incubation periods in shaping the outbreak trajectory. Besides them, 

our analysis of 𝑅0 in 3-D plots showed that the human-to-human transmission (𝛽ℎℎ) has about 

3 times greater impact than rodent-to-human transmission (𝛽𝑟ℎ) on 𝑅0. Finally, we presented 

simulations to show single and combined effects of the control parameters: quarantine, social 

distancing and vaccination on the transmission of monkeypox virus. 
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1 INTRODUCTION 

Monkeypox is a zoonotic viral disease caused by the monkeypox virus, a member of the 

Orthopoxvirus genus, which also includes the smallpox virus. First identified in 1958 in 

laboratory monkeys, the disease is primarily transmitted to humans through direct contact with 

infected animals, particularly rodents, or through respiratory droplets and contaminated objects 

from human-to-human contact [1]. Symptoms typically include fever, headache, muscle aches, 

and swollen lymph nodes, followed by a characteristic rash that often begins on the face and 

spreads to other body parts. The incubation period ranges from 5 to 21 days, and while the 

disease is generally less severe than smallpox, it can still lead to complications and, in rare 

cases, death, with mortality rates varying by geographic region and viral strain [2], [3]. 

Various mathematical models have been employed to investigate the transmission 

dynamics of monkeypox, focusing on interactions among different population groups. [4] 

introduced a SIQR-SEI model to analyze rodent-to-human transmission, highlighting the role 

of quarantine in controlling infection spread. Another study developed a deterministic model 

incorporating vaccination to explore monkeypox dynamics, revealing that epidemic outcomes 

depend heavily on vaccination efficacy (categorized as weak, medium, or strong) [5]. 

Additionally, a study by authors [6] emphasized quarantine and public awareness campaigns as 

essential strategies for reducing human-to-human transmission. However, these studies often 

excluded the exposed (E) compartment in their frameworks, which limits their application to 

diseases with significant latent periods. 

Conversely, other studies have included the exposed compartment to capture more 

realistic transmission dynamics. [7] applied an SEIR model with low-infectious and high-

infectious compartments alongside quarantine measures. [8] extended this by incorporating a 

quarantine compartment for infected individuals, improving insights into isolation's 

effectiveness. Similarly, [9] expanded the SEIR framework with a compartment for vaccinated 

individuals and [13] expanded with isolated individuals to model monkeypox transmission 

comprehensively. A recent study by [10] analyzed SEIR-based frameworks, highlighting their 

utility in understanding human-animal transmission interactions and guiding public health 

interventions. These contributions demonstrate the growing reliance on SEIR models to better 

reflect the disease's natural history and control strategies. 

Unlike other studies on monkeypox modeling, we did not include a separate 

compartment for vaccinated individuals. Instead, vaccinated individuals were directly moved 
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to the recovered compartment, assuming immunity acquisition based on vaccine efficacy and 

vaccination rates among susceptible individuals. By grouping vaccinated and recovered 

individuals, we simplified the model, reflecting their shared immune status. Given monkeypox's 

primary transmission via direct contact with infected fluids or objects, we assumed negligible 

infection risk within the isolated (social distancing) compartment and focused on high-risk 

interactions. Our model incorporated vaccination, social distancing, and quarantine to analyze 

their combined effects on monkeypox virus transmission. Such control measures are well 

studied on COVID-19 virus [24-27]. For instance, the effects of social distancing, quarantine, 

and lockdown on COVID-19 dynamics were carefully analyzed in the study presented by [24]. 

The recent spread of monkeypox beyond its usual regions has shown the need for 

effective strategies to control its spread. Measures like vaccination, social distancing, and 

quarantine are known to work well individually, but their combined effects are less understood. 

It is important to study how these measures interact, especially since public compliance with 

social distancing and quarantine can impact the success of vaccination efforts. Understanding 

how to combine these strategies effectively can help manage monkeypox outbreaks and 

improve readiness for future pandemics, ensuring public health responses are both efficient and 

flexible.   

In the following section, we first introduced the compartmental model, identified its 

equilibrium points, and calculated the basic reproduction number, 𝑅0. We then analyzed the 

stability of these equilibrium points. A sensitivity analysis was conducted using parameter 

values derived from previous studies to understand how variations in key factors affect the 

spread of monkeypox outbreak. In the result section, we presented plots illustrating how 𝑅0 

changes in response to variations in critical parameters identified through sensitivity analysis. 

Finally, we discussed the individual and combined impacts of quarantine, social distancing, and 

vaccination on controlling disease spread. 

2 MATERIAL AND METHOD 

In this study, to model the spread of the monkeypox virus, the human population was 

divided into six compartments, and the rodent population was divided into four compartments. 

The SEIQPR model was used to represent the human population and the SEIR model was used 

to represent the rodent population. For the transmission diagram of the disease between 

compartments, see Figure 1, and for the definitions of the compartments, see Table 1. The total 

human population was expressed as 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑄ℎ + 𝑃ℎ + 𝑅ℎ and the rodent 
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population was expressed as 𝑁𝑟 = 𝑆𝑟 + 𝐸𝑟 + 𝐼𝑟 + 𝑅𝑟. We assumed that a vaccinated human 

gains immunity to the monkeypox virus, allowing them to transition directly to the recovered 

class. Since monkeypox mainly transmits through direct contact with infected fluids or 

contaminated objects, we assume that the infection risk is negligible in the social distancing 

compartment (𝑃ℎ) and exclude transmission in this group, focusing instead on higher-risk 

interactions. 

2.1 Model Formulation 

We proposed a compartmental model that incorporates both human and rodent 

populations to describe monkeypox transmission dynamics, represented by the following 

system of differential equations: 

  
𝑑𝑆ℎ

𝑑𝑡
= Ʌℎ − (𝛽ℎℎ𝐼ℎ + 𝛽𝑟ℎ𝐼𝑟)𝑆ℎ − (𝑑ℎ + 𝑏 + 𝑣)𝑆ℎ                        

 
𝑑𝐸ℎ

𝑑𝑡
= (𝛽ℎ𝐼ℎℎ + 𝛽𝑟ℎ𝐼𝑟)𝑆ℎ − (𝑘ℎ + 𝑑ℎ)𝐸ℎ                                     

        
𝑑𝐼ℎ
𝑑𝑡

= 𝑘ℎ𝐸ℎ − (𝑞 + 𝜇ℎ1
+ 𝑑ℎ + 𝛾ℎ1

)𝐼ℎ                                                  

 
𝑑𝑄ℎ

𝑑𝑡
= 𝑞𝐼ℎ − (𝜇ℎ2

+ 𝑑ℎ + 𝛾ℎ2
)𝑄ℎ                                                     

  
𝑑𝑃ℎ

𝑑𝑡
= 𝑏𝑆ℎ − (𝑣 + 𝑑ℎ)𝑃ℎ                                                                     

   
𝑑𝑅ℎ

𝑑𝑡
= 𝛾ℎ1

𝐼ℎ + 𝛾ℎ2
𝑄ℎ + 𝑣(𝑆ℎ + 𝑃ℎ) − 𝑑ℎ𝑅ℎ                                   

    
𝑑𝑆𝑟

𝑑𝑡
= Ʌ𝑟 − (𝛽𝑟𝑟𝐼𝑟 + 𝛽ℎ𝑟𝐼ℎ)𝑆𝑟 − 𝑑𝑟𝑆𝑟                                               

     
𝑑𝐸𝑟

𝑑𝑡
= (𝛽𝑟𝑟𝐼𝑟 + 𝛽ℎ𝑟𝐼ℎ)𝑆𝑟 − (𝑘𝑟 + 𝑑𝑟)𝐸𝑟                                            

      
𝑑𝐼𝑟
𝑑𝑡

= 𝑘𝑟𝐸𝑟 − (𝜇𝑟 + 𝑑𝑟 + 𝛾𝑟)𝐼𝑟                                                             

                             
𝑑𝑅𝑟

𝑑𝑡
= 𝛾𝑟𝐼𝑟 − 𝑑𝑟𝑅𝑟                                                                                                   (1) 

where, 𝑆ℎ(0) = 𝑆ℎ,0, 𝐸ℎ(0) = 𝐸ℎ,0, 𝐼ℎ(0) = 𝐼ℎ,0, 𝑄ℎ(0) = 𝑄ℎ,0,  𝑃ℎ(0) = 𝑃ℎ,0, 𝑅ℎ(0) = 𝑅ℎ,0, 

𝑆𝑟(0) = 𝑆𝑟,0, 𝐸𝑟(0) = 𝐸𝑟,0, 𝐼𝑟(0) = 𝐼𝑟,0 and 𝑅𝑟(0) = 𝑅𝑟,0 values represent the initial 
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conditions of the differential equation. That is, they express the number of individuals in each 

compartment at time 𝑡 = 0. All these values are defined as non-negative real numbers with 

upper bounds. Similarly, all parameters defined in Table 2 are specified as positive real numbers 

with upper bounds. In the study, we mainly focused on the control 

parameters v (vaccination), b (social distancing), and q (quarantine) in the mitigation of 

monkeypox virus. 

 

Figure 1. Flow diagram illustrating the disease transitions among the compartments. 

 

Table 1. Population compartments and their descriptions. 

Compartments Descriptions Initial densities of populations  

𝑆𝑟 Susceptible rodents 0.9990 

𝐸𝑟 Exposed rodents 0.0004 

𝐼𝑟 Infected rodents 0.0006 

𝑅𝑟 Recovered rodents 0.0000 

𝑆ℎ Susceptible humans 0.9990 

𝑃ℎ Social Distanced-Susceptible humans 0.0004 

𝐸ℎ Exposed humans 0.0006 

𝐼ℎ Infected humans 0.0000 

𝑄ℎ Quarantined-Infected humans 0.0000 

𝑅ℎ Recovered humans 0.0000 
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Table 2. The model parameters, along with their descriptions and values in the time unit 

days. For the control parameters v, b, and q, we used a base value of 0.0001 and then varied 

them in result section to show their effects on the infected cases. 

Parameters Descriptions Value (
𝟏

𝒅𝒂𝒚
) Source 

Ʌℎ Recruitment rate of human population - - 

𝑑ℎ Natural death rate of human population - -  

 𝛽ℎℎ Disease transmission rate from humans to humans 0.3000 Assumed 

𝛽𝑟ℎ Disease transmission rate from rodents to humans 0.1500 Assumed 

  𝛽𝑟𝑟 Disease transmission rate from rodents to rodents 0.3000 Assumed 

 𝛽ℎ𝑟 Disease transmission rate from humans to rodents 0.1500 Assumed 

𝑣 
(Vaccine efficacy rate) x (the percentage of vaccinated 

susceptible individuals) 
0.0001  Assumed 

𝑏 
Rate of transition to social distancing class from susceptible 

class 
0.0001  Assumed 

𝑞 Rate of moving infected to quarantined-infected individuals 0.0001  Assumed 

𝜇ℎ1
 Disease-induced death rate of human population in 𝐼ℎ 0.0033 [11] 

 𝜇ℎ2
 Disease-induced death rate of human population in 𝑄ℎ 0.0555 [11] 

𝑘ℎ Rate of exposed individuals becoming infected 0.0500 [12] 

𝛾ℎ1
 Recovery rate due to natural immune response 0.0884 [11] 

𝛾ℎ2
 Recovery rate due to hospitalization 0.0363 [11] 

Ʌ𝑟 Recruitment rate of rodent population - - 

𝑑𝑟 Natural death rate of rodent population - - 

𝑘𝑟 Rate of exposed rodents becoming infected 0.3200 [12] 

𝜇𝑟 Disease-induced death rate of rodent population 0.2814 [12] 

𝛾𝑟 Recovery rate of rodents due to natural immune response 0.6000 [14] 

 

Theorem 1. Assuming that the initial conditions are defined in a region 𝛺, the system of 

differential equations given in (1) has a unique positive and bounded solution in the region 

𝛺 for each 𝑡 ∈ [0, 𝑇]. Specifically, 

   Ω = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑄ℎ, 𝑃ℎ, 𝑅ℎ, 𝑆𝑟 , 𝐸𝑟 , 𝐼𝑟 , 𝑅𝑟) ⊂ ℝ+
10 ∶  0 < 𝑁ℎ ≤

Ʌℎ

𝑑ℎ
, 0 < 𝑁𝑟 ≤

Ʌ𝑟

𝑑𝑟
}. 

Proof.  Let’s first show boundedness of solutions for model (1) 

𝑑𝑁ℎ

𝑑𝑡
=

𝑑𝑆ℎ

𝑑𝑡
+

𝑑𝐸ℎ

𝑑𝑡
+

𝑑𝐼ℎ
𝑑𝑡

+
𝑑𝑄ℎ

𝑑𝑡
+

𝑑𝑃ℎ

𝑑𝑡
+

𝑑𝑅ℎ

𝑑𝑡
 

                                                 = Ʌℎ − 𝑑ℎ(𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑄ℎ + 𝑃ℎ + 𝑅ℎ)−𝜇ℎ1
𝐼ℎ − 𝜇ℎ2

𝑄ℎ (2) 

           ≤ Ʌℎ − 𝑑ℎ(𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑄ℎ + 𝑃ℎ + 𝑅ℎ) 

          ⟹     
𝑑𝑁ℎ

𝑑𝑡
≤ Ʌℎ − 𝑑ℎ𝑁ℎ 

          ⟹     limsup
𝑡⟶∞

𝑁ℎ ≤
Ʌℎ

𝑑ℎ
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If 
𝑑𝑁ℎ

𝑑𝑡
 were positive, the solution would increase and go to infinity. Therefore, to prevent this 

increase, this derivative must take a maximum value of zero. In other words, if we want the 

solution to the differential equation system to remain within a boundary, the total number of 

individuals in the human population, 𝑁ℎ(𝑡), must either remain constant or decrease. Therefore, 

the derivative 
𝑑𝑁ℎ

𝑑𝑡
 can be at most zero. Similarly, let us now demonstrate that the solution for 

the rodent population is also bounded:  

 
𝑑𝑁𝑟

𝑑𝑡
=

𝑑𝑆𝑟

𝑑𝑡
+

𝑑𝐸𝑟

𝑑𝑡
+

𝑑𝐼𝑟
𝑑𝑡

+
𝑑𝑅𝑟

𝑑𝑡
 

= Ʌ𝑟 − 𝜇𝑟𝐼𝑟 − 𝑑𝑟(𝑆𝑟 + 𝐸𝑟 + 𝐼𝑟 + 𝑅𝑟) (3) 

                                ≤ Ʌ𝑟 − 𝑑𝑟(𝑆𝑟 + 𝐸𝑟 + 𝐼𝑟 + 𝑅𝑟) 

                                 ⟹      
𝑑𝑁𝑟

𝑑𝑡
≤ Ʌ𝑟 − 𝑑𝑟𝑁𝑟   

                                 ⟹      limsup
𝑡⟶∞

𝑁𝑟 ≤
Ʌ𝑟

𝜇𝑟
.    

Thus, 𝑁ℎ ≤
Ʌℎ

𝑑ℎ
 and  𝑁𝑟 ≤

Ʌ𝑟

𝜇𝑟
. Now, we show the positivity of the solutions. by using Eq. 2, we 

get following since −𝜇ℎ𝑄ℎ ≥ −𝜇ℎ𝑁ℎ. 

𝑑𝑁ℎ

𝑑𝑡
= Ʌℎ − 𝑑ℎ(𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑄ℎ + 𝑃ℎ + 𝑅ℎ)−𝜇ℎ1

𝐼ℎ − 𝜇ℎ2
𝑄ℎ                          

             ≥  Ʌℎ − 𝑑ℎ𝑁ℎ − 𝜇ℎ𝑁ℎ =   Ʌℎ − (𝑑ℎ + 𝜇ℎ1
+ 𝜇ℎ2

)𝑁ℎ                                         

By linearity of the differential equation, we can multiply the above inequality by the integral 

factor, 𝑒∫ (𝑑ℎ+𝜇ℎ1+𝜇ℎ2)𝑑𝑠
𝑡
0 = 𝑒(𝑑ℎ+𝜇ℎ1+𝜇ℎ2)𝑡 and obtain the following for 𝑠 ∈ (0, 𝑡) 

𝑁ℎ𝑒(𝑑ℎ+𝜇ℎ1+𝜇ℎ2)𝑡 = 𝑁ℎ,0 + Ʌℎ ∫𝑒(𝑑ℎ+𝜇ℎ1+𝜇ℎ2)𝑠

𝑡

0

𝑑𝑠 > 0. 

Thus, we obtained  0 < 𝑁ℎ ≤
Ʌℎ

𝑑ℎ
.  Similarly, by using Eq. 3, we got the following as 

𝑑𝑁𝑟

𝑑𝑡
= Ʌ𝑟 − 𝜇𝑟𝐼𝑟 − 𝑑𝑟(𝑆𝑟 + 𝐸𝑟 + 𝐼𝑟 + 𝑅𝑟)                                  

≥ Ʌ𝑟 − (𝜇𝑟 + 𝑑𝑟)𝑁𝑟                                                         

By linearity of the differential equation, we obtained 
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𝑁𝑟𝑒
(𝜇𝑟+𝑑𝑟)𝑡 ≥ 𝑁𝑟,0 + Ʌ𝑟 ∫𝑒(𝜇𝑟+𝑑𝑟)𝑠

𝑡

0

𝑑𝑠 > 0 

Hence,  0 < 𝑁ℎ ≤
Ʌℎ

𝑑ℎ
  and 0 < 𝑁𝑟 ≤

Ʌ𝑟

𝑑𝑟
 . 

2.2 Equilibrium Points of the Model 

2.2.1 The disease-free equilibrium point and basic reproduction number 

(𝑹𝟎) 

The disease-free equilibrium is the state where no disease is present in the system 

(𝐼𝑟 = 𝐼ℎ = 0). Thus, the disease-free equilibrium of system (1) is given by 

𝐸1 = (𝑆ℎ
∗, 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑄ℎ

∗ , 𝑃ℎ
∗, 𝑅ℎ

∗ , 𝑆𝑟
∗, 𝐸𝑟

∗, 𝐼𝑟
∗, 𝑅𝑟

∗) = (
Ʌℎ

𝑑ℎ
, 0,0,0,0,0,

Ʌ𝑟

𝑑𝑟
, 0,0,0). 

Thus, this indicates that susceptible humans and rodents will stay at the maximum level 

when there is no disease since  0 < 𝑁ℎ ≤
Ʌℎ

𝑑ℎ
 and 0 < 𝑁𝑟 ≤

Ʌ𝑟

𝑑𝑟
. 

While determining the basic reproduction number (𝑅0), the Next Generation Matrix 

Method will be used [15]. This matrix is based on two main components: The new infections 

matrix (F): This matrix shows the rates at which new cases emerge in the epidemic. The 

transition matrix (V): This matrix represents the transitions of individuals among the classes: 

𝐸ℎ, 𝐼ℎ, 𝑄ℎ, 𝐸𝑟 and 𝐼𝑟. We get these matrices in the order (𝐸ℎ, 𝐼ℎ, 𝑄ℎ, 𝐸𝑟 , 𝐼𝑟) as follow:  

𝐹 =

[
 
 
 
 
(𝛽ℎℎ𝐼ℎ + 𝛽𝑟ℎ𝐼𝑟)𝑆ℎ

0
0

(𝛽𝑟𝑟𝐼𝑟 + 𝛽ℎ𝑟𝐼ℎ)𝑆𝑟

0 ]
 
 
 
 

      and     𝑉 =

[
 
 
 
 
 

(𝑑ℎ + 𝑘ℎ)𝐸ℎ  

−𝑘ℎ𝐸ℎ + (𝑞 + 𝜇ℎ1
+ 𝑑ℎ + 𝛾ℎ1

)𝐼ℎ

−𝑞𝐼ℎ + (𝜇ℎ2
+ 𝑑ℎ + 𝛾ℎ2

)𝑄ℎ 

(𝑘𝑟 + 𝑑𝑟)𝐸𝑟

−𝑘𝑟𝐸𝑟 + (𝜇𝑟 + 𝑑𝑟 + 𝛾𝑟)𝐼𝑟   ]
 
 
 
 
 

 

ℱ =

[
 
 
 
 
0 𝛽ℎℎ𝑆ℎ 0 0 𝛽𝑟ℎ𝑆ℎ

0 0 0 0 0
0 0 0 0 0
0 𝛽ℎ𝑟𝑆𝑟 0 0 𝛽𝑟𝑟𝑆𝑟

0 0 0 0 0 ]
 
 
 
 

  =   

[
 
 
 
 
 
 0 𝛽ℎℎ

Ʌℎ

𝑑ℎ
0 0 𝛽𝑟ℎ

Ʌℎ

𝑑ℎ

0 0 0 0 0
0 0 0 0 0

0 𝛽ℎ𝑟

Ʌ𝑟

𝑑𝑟
0 0 𝛽𝑟𝑟

Ʌ𝑟

𝑑𝑟

0 0 0 0 0 ]
 
 
 
 
 
 

𝐸1
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     𝒱 =

[
 
 
 
 
𝑘ℎ + 𝑑ℎ 0 0 0 0

−𝑘ℎ 𝑞 + 𝜇ℎ1
+ 𝑑ℎ + 𝛾ℎ1

0 0 0

0 −𝑞 𝜇ℎ2
+ 𝑑ℎ + 𝛾ℎ2

0 0

0 0 0 𝑘𝑟 + 𝑑𝑟 0
0 0 0 −𝑘𝑟 (𝜇𝑟 + 𝑑𝑟 + 𝛾𝑟]

 
 
 
 

𝐸1

 

        𝒱−1 =

[
 
 
 
 
 
 
 
 

1

𝑘ℎ+𝑑ℎ
0 0 0 0

𝑀1
1

𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1

0 0 0

𝑀2
𝑞

(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)(𝜇ℎ2+𝑑ℎ+𝛾ℎ2)

1

𝜇ℎ2+𝑑ℎ+𝛾ℎ2

0 0

0 0 0
1

𝑘𝑟+𝑑𝑟
0

0 0 0
𝑘𝑟

(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)

1

𝜇𝑟+𝑑𝑟+𝛾𝑟]
 
 
 
 
 
 
 
 

  

where  𝑀1 =
𝑘ℎ

(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)
  and  𝑀2 =

𝑞𝑘ℎ

(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)(𝜇ℎ2+𝑑ℎ+𝛾ℎ2)
. By 

multiplying the matrices ℱ 𝑎𝑛𝑑 𝒱−1, we got the following  

ℱ𝒱−1 =

              

[
 
 
 
 
 
 

𝛽ℎℎ Ʌℎ 𝑘ℎ

𝑑ℎ(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)

𝛽ℎℎ Ʌℎ

𝑑ℎ(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)
0

𝛽𝑟ℎ Ʌℎ 𝑘𝑟

𝑑ℎ(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)

𝛽𝑟ℎ Ʌℎ

𝑑ℎ(𝜇𝑟+𝑑𝑟+𝛾𝑟)

0 0 0 0 0
0 0 0 0 0

𝛽ℎ𝑟 Ʌ𝑟 𝑘ℎ

𝑑𝑟(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)

𝛽ℎ𝑟 Ʌℎ

𝑑𝑟(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)
0

𝛽𝑟𝑟 Ʌ𝑟 𝑘𝑟

𝑑𝑟(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)

𝛽𝑟𝑟 Ʌ𝑟

𝑑𝑟(𝜇𝑟+𝑑𝑟+𝛾𝑟)

0 0 0  0  0 ]
 
 
 
 
 
 

  

 𝑅0
ℎℎ =

𝛽ℎℎɅℎ𝑘ℎ

𝑑ℎ(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1) 
 ,    𝑅0

𝑟ℎ =
𝛽𝑟ℎ Ʌℎ 𝑘𝑟

𝑑ℎ(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)
 

𝑅0
ℎ𝑟 =

𝛽ℎ𝑟 Ʌ𝑟 𝑘ℎ

𝑑𝑟(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)
  ,      𝑅0

𝑟𝑟 =
𝛽𝑟𝑟 Ʌ𝑟 𝑘𝑟

𝑑𝑟(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)
 

Here, 𝑅0
ℎℎ and 𝑅0

𝑟𝑟 are the basic reproduction numbers for human-to-human, rodents-

to-rodents transmission, while 𝑅0
ℎ𝑟

 and 𝑅0
𝑟ℎ

 are the basic reproduction numbers for the vectorial 

transmissions from human-to-rodent and rodent-to-human, respectively. Thus, the basic 

reproduction number for model (1) is a composition of the reproduction numbers as follows 

(see the studies for details: [16] and [17]). Shortly, when we arrange the characteristic 

polynomial of ℱ𝒱−1 matrix and arrange it, we will get the following, which is the maximum 

eigenvalue of the matrix.  

𝑅0 =
1

2
{(𝑅0

ℎℎ + 𝑅0
𝑟𝑟) + √(𝑅0

ℎℎ + 𝑅0
𝑟𝑟)2 − 4(𝑅0

ℎℎ𝑅0
𝑟𝑟 − 𝑅0

ℎ𝑟𝑅0
𝑟ℎ)} 
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when we simplify the equation, we obtain 

                      𝑅0 =
1

2
{(𝑅0

ℎℎ + 𝑅0
𝑟𝑟) + √(𝑅0

ℎℎ − 𝑅0
𝑟𝑟)2 + 4𝑅0

ℎ𝑟𝑅0
𝑟ℎ}                                     (4)  

Thus, any changes in these reproduction numbers affect the basic reproduction number, 𝑅0. 

2.2.2 Endemic equilibrium  

This is the equilibrium where the disease stays in the system when R0 > 1. See Theorem 

4 for the existence of the endemic equilibrium point. 

Theorem 2.  When  𝐼𝑟 > 0, there is at least one endemic equilibrium point for the system given 

in equation (1). 

Proof. Suppose that  𝐼𝑟 > 0. Setting  
𝑑𝐼𝑟

𝑑𝑡
= 0 and   

𝑑𝑅𝑟

𝑑𝑡
= 0, we obtained 

                       𝐸𝑟 =
𝜇𝑟 + 𝑑𝑟 + 𝛾𝑟

𝑘𝑟
𝐼𝑟                                                                                                  (5) 

                        𝑅𝑟 =
𝛾𝑟

𝑑𝑟
𝐼𝑟                                                                                                                      (6) 

when we set  
𝑑𝑆𝑟

𝑑𝑡
+

𝑑𝐸𝑟

𝑑𝑡
= 0,  we obtained  

                        𝑆𝑟 =
Ʌ𝑟 − (𝑘𝑟 + 𝑑𝑟)𝐸𝑟

𝑑𝑟
                                                                                            (7) 

Since 𝑁𝑟 = 𝑆𝑟 + 𝐸𝑟 + 𝐼𝑟 + 𝑅𝑟,  𝐼𝑟 = 𝑁𝑟 − 𝑆𝑟 − 𝐸𝑟 − 𝑅𝑟 and we got the following by using the 

equations (5-7) 

                                  𝐼𝑟
∗ =

Ʌ𝑟 − 𝑑𝑟𝑁𝑟

𝜇𝑟
                                                                                                (8) 

Hence,  

            𝑆𝑟
∗ =

Ʌ𝑟−(𝑘𝑟+𝑑𝑟)𝐸𝑟

𝑑𝑟
=

Ʌ𝑟

𝑑𝑟
 −  

(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)

𝑑𝑟𝑘𝑟
 
Ʌ𝑟−𝑑𝑟𝑁𝑟

𝜇𝑟
                                                       (9)    

            𝐸𝑟
∗ =

𝜇𝑟+𝑑𝑟+𝛾𝑟

𝑘𝑟
 
Ʌ𝑟−𝑑𝑟𝑁𝑟

𝜇𝑟
   and  𝑅𝑟

∗ =
𝛾𝑟

𝑑𝑟
 
Ʌ𝑟−𝑑𝑟𝑁𝑟

𝜇𝑟
                                                           (10)  

Similarly, by setting  
𝑑𝐼ℎ

𝑑𝑡
= 0, 

𝑑𝑄ℎ

𝑑𝑡
= 0, 

𝑑𝑃ℎ

𝑑𝑡
= 0 and  

𝑑𝑅ℎ

𝑑𝑡
= 0, 

       𝐸ℎ =
𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1

𝑘ℎ
𝐼ℎ ,         𝑄ℎ =

𝑞

𝜇ℎ2+𝑑ℎ+𝛾ℎ2

𝐼ℎ ,       𝑆ℎ =
𝑣+𝑑ℎ

𝑏
𝑃ℎ                                    (11)  

       𝑅ℎ =
𝛾ℎ1𝐼ℎ + 𝛾ℎ2𝑄ℎ + 𝑣(𝑆ℎ+𝑃ℎ)

𝑑ℎ
=

𝛾ℎ1𝐼ℎ

𝑑ℎ
+

𝛾ℎ2𝑄ℎ

𝑑ℎ
+

𝑣(𝑑ℎ+𝑏+𝑣)

𝑣+𝑑ℎ
𝑆ℎ                                            (12)  

As we set 
𝑑𝑆ℎ

𝑑𝑡
+

𝑑𝐸ℎ

𝑑𝑡
= 0, then 
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         𝑆ℎ =
Ʌℎ−(𝑘ℎ+𝑑ℎ)𝐸ℎ

𝑑ℎ+𝑏+𝑣
=

Ʌℎ−
(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1

+𝑑ℎ+𝛾ℎ1
)

𝑘ℎ
𝐼ℎ

𝑑ℎ+𝑏+𝑣
                                                                (13)  

Since 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑄ℎ + 𝑃ℎ + 𝑅ℎ,   𝐼ℎ = 𝑁ℎ − 𝑆ℎ − 𝐸ℎ − 𝑄ℎ − 𝑃ℎ − 𝑅ℎ and we got 

the following by using the equations (11-13)  

𝐼ℎ
∗ =

𝑁ℎ−
(𝑣+1)Ʌℎ
𝑣+𝑑ℎ

1− 
(𝑣+1)(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1

+𝑑ℎ+𝛾ℎ1
)

(𝑣+𝑑ℎ)𝑘ℎ
  + 

𝑞+𝜇ℎ1
+𝑑ℎ+𝛾ℎ1
𝑘ℎ

 + 
𝛾ℎ1
𝑑ℎ

 + 
𝑞(𝑑ℎ+𝛾ℎ2

)

𝑑ℎ(𝜇ℎ2
+𝑑ℎ+𝛾ℎ2

)

                                     (14)  

Hence, the endemic equilibrium point, 𝐸2 = (𝑆ℎ
∗ , 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑄ℎ

∗ , 𝑃ℎ
∗, 𝑅ℎ

∗ , 𝑆𝑟
∗, 𝐸𝑟

∗, 𝐼𝑟
∗, 𝑅𝑟

∗) was obtained 

as  

𝑆ℎ
∗ =

Ʌℎ−
(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1

+𝑑ℎ+𝛾ℎ1
)

𝑘ℎ
𝐼ℎ
∗

𝑑ℎ+𝑏+𝑣
,    

𝐸ℎ
∗ =

𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1

𝑘ℎ
𝐼ℎ
∗, 

𝐼ℎ
∗ =

𝑁ℎ− 
(𝑣+1)Ʌℎ
𝑣+𝑑ℎ

1− 
(𝑣+1)(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1

+𝑑ℎ+𝛾ℎ1
)

(𝑣+𝑑ℎ)𝑘ℎ
 + 

𝑞+𝜇ℎ1
+𝑑ℎ+𝛾ℎ1
𝑘ℎ

 + 
𝛾ℎ1
𝑑ℎ

 + 
𝑞(𝑑ℎ+𝛾ℎ2

)

𝑑ℎ(𝜇ℎ2
+𝑑ℎ+𝛾ℎ2

)

 ,            

𝑄ℎ
∗ =

𝑞

𝜇ℎ2+𝑑ℎ+𝛾ℎ2

𝐼ℎ
∗ , 

𝑃ℎ
∗ =

𝑣+𝑑ℎ

𝑏
𝑆ℎ

∗ =
𝑣+𝑑ℎ

𝑏
  
Ʌℎ−

(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1
+𝑑ℎ+𝛾ℎ1

)

𝑘ℎ
 𝐼ℎ

∗

𝑑ℎ+𝑏+𝑣
  ,  

𝑅ℎ
∗ =

𝛾ℎ1

𝑑ℎ
𝐼ℎ
∗ +

𝛾ℎ2

𝑑ℎ
𝑄ℎ

∗ +
𝑣(𝑑ℎ+𝑏+𝑣)

𝑣+𝑑ℎ
𝑆ℎ

∗ =
𝑣Ʌℎ

𝑣+𝑑ℎ
+ (

𝛾ℎ1

𝑑ℎ
 + 

𝛾ℎ2𝑞

𝑑ℎ(𝜇ℎ2+𝑑ℎ+𝛾ℎ2)
− 

𝑣(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)

𝑘ℎ(𝑣+𝑑ℎ)
) 

𝐼ℎ
∗ , 

𝑆𝑟
∗ =

Ʌ𝑟

𝑑𝑟
 −  

(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)

𝑑𝑟𝑘𝑟
 
Ʌ𝑟−𝑑𝑟𝑁𝑟

𝜇𝑟
,  

𝐸𝑟
∗ =

𝜇𝑟+𝑑𝑟+𝛾𝑟

𝑘𝑟
 
Ʌ𝑟−𝑑𝑟𝑁𝑟

𝜇𝑟
,    

𝐼𝑟
∗ =

Ʌ𝑟−𝑑𝑟𝑁𝑟

𝜇𝑟
 ,   

𝑅𝑟
∗ =

𝛾𝑟

𝑑𝑟
 
Ʌ𝑟−𝑑𝑟𝑁𝑟

𝜇𝑟
. 

2.3 Stability Analysis of Equilibrium Points 

In this section, we examined the stability analyses at the equilibrium points. In our 

model, once individuals reach the 𝑅ℎ or 𝑅𝑟  class, they are no longer involved in the disease 

transmission process. They are assumed immune and do not contribute to future infections, 

meaning their behavior does not affect the ongoing dynamics of infection spread or disease 

stability. To reduce the complexity and calculation in stability analysis, we excluded these 
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classes. Thus, we calculated the Jacobian matrix of the differential equation system (1) in the 

order (𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑄ℎ, 𝑃ℎ, 𝑆𝑟 , 𝐸𝑟 , 𝐼𝑟) as follows: 

𝐽 =

[
 
 
 
 
 
 
 
𝑎11 0 𝑎13 0 0 0 0 𝑎18

𝑎21 𝑎22 𝑎23 0 0 0 0 𝑎28

0 𝑎32 𝑎33 0 0 0 0 0
0 0 𝑎43 𝑎44 0 0 0 0

𝑎51 0 0 0 𝑎55 0 0 0
0 0 0 0 0 𝑎66 0 𝑎68

0 0 0 0 0 𝑎76 𝑎77 𝑎78

0 0 0 0 0 0 𝑎87 𝑎88]
 
 
 
 
 
 
 

 

where, 

𝑎11 = −(𝛽ℎℎ𝐼ℎ + 𝛽𝑟ℎ𝐼𝑟) − (𝑑ℎ + 𝑏 + 𝑣), 𝑎13 = −𝛽ℎℎ𝑆ℎ, 𝑎18 = −𝛽𝑟ℎ𝑆ℎ, 𝑎21 = 𝛽ℎℎ𝐼ℎ +

𝛽𝑟ℎ𝐼𝑟, 𝑎22 = − (𝑘ℎ + 𝑑ℎ),  𝑎23 = 𝛽ℎℎ𝑆ℎ, 𝑎28 = 𝛽𝑟ℎ𝑆ℎ, 𝑎32 = 𝑘ℎ,  𝑎33 = −(𝑞 + 𝜇ℎ1
+ 𝑑ℎ +

𝛾ℎ1
),        𝑎43 = 𝑞, 𝑎44 = −(𝜇ℎ2

+ 𝑑ℎ + 𝛾ℎ2
), 𝑎51 = 𝑏, 𝑎55 = −(𝑣 + 𝑑ℎ), 𝑎66 = −𝛽𝑟𝑟𝐼𝑟 − 𝑑𝑟, 

𝑎68 = −𝛽𝑟𝑟𝑆𝑟, 𝑎76 = 𝛽𝑟𝑟𝐼𝑟 , 𝑎77 = −(𝑘𝑟 + 𝑑𝑟), 𝑎78 = 𝛽𝑟𝑟𝑆𝑟, 𝑎87 = 𝑘𝑟 , 𝑎88 = −(𝜇𝑟 + 𝑑𝑟 +

𝛾𝑟). 

Theorem 3. The disease-free equilibrium point is asymptotically local stable if the conditions 

1 > 𝑅0
𝑟𝑟 and 1 > 𝑅0

ℎℎ are hold. Otherwise, it is unstable. 

Proof. The Jacobian matrix of the disease-free equilibrium point,  

𝐸1 = (𝑆ℎ
∗ , 𝐸ℎ

∗, 𝐼ℎ
∗ , 𝑄ℎ

∗ , 𝑃ℎ
∗, , 𝑆𝑟

∗, 𝐸𝑟
∗, 𝐼𝑟

∗) = (
Ʌℎ

𝑑ℎ
, 0,0,0,0,

Ʌ𝑟

𝑑𝑟
, 0,0). 

was calculated as 

𝐽𝐸1
=

[
 
 
 
 
 
 
 
 
𝑎11 − 𝜆 0 𝑎13 0 0 0 0 𝑎18

0 𝑎22 − 𝜆 𝑎23 0 0 0 0 𝑎28

0 𝑎32 𝑎33 − 𝜆 0 0 0 0 0
0 0 𝑎43 𝑎44 − 𝜆 0 0 0 0

𝑎51 0 0 0 𝑎55 − 𝜆 0 0 0
0 0 0 0 0 𝑎66 − 𝜆 0 𝑎68

0 0 0 0 0 0 𝑎77 − 𝜆 𝑎78

0 0 0 0 0 0 𝑎87 𝑎88 − 𝜆]
 
 
 
 
 
 
 
 

 

and its characteristic polynomial was obtained from |𝐽𝐸1
− 𝜆𝐼8𝑥8| = 0 as  

                (𝑎66 − 𝜆)[(𝑎88 − 𝜆)(𝑎77 − 𝜆) − 𝑎87𝑎78] 

          (𝑎55 − 𝜆)(𝑎44 − 𝜆)(𝑎11 − 𝜆)[(𝑎33 − 𝜆)(𝑎22 − 𝜆) − 𝑎32𝑎23] = 0                              

The eigenvalues, 𝜆1 = 𝑎11 = −(𝜇ℎ2
+ 𝑑ℎ + 𝛾ℎ2

), 𝜆2 = 𝑎44 = −(𝜇ℎ2
+ 𝑑ℎ + 𝛾ℎ2

), 𝜆3 =

𝑎55 = −(𝑣 + 𝑑ℎ) and 𝜆4 = 𝑎66 = −𝑑𝑟 ,  are negative.    
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                                [(𝑎88 − 𝜆)(𝑎77 − 𝜆) − 𝑎87𝑎78] = 0  

⟺    

                                     𝜆2 − (𝑎77 + 𝑎88)𝜆 + 𝑎77𝑎88 − 𝑎87𝑎78 = 0.       

If  𝑎77𝑎88 > 𝑎87𝑎78, then the eigenvalues are negative by Routh-Hurwitz Criteria (Routh, 

1877; Hurwitz, 1895).  

                   𝑎77𝑎88 > 𝑎87𝑎78  ⟺ (𝑘𝑟 + 𝑑𝑟)(𝜇𝑟 + 𝑑𝑟 + 𝛾𝑟 >  𝑘𝑟𝛽𝑟𝑟 𝑆𝑟 

                                               ⟺ 1 >
𝛽𝑟𝑟 Ʌ𝑟 𝑘𝑟

𝑑𝑟(𝑘𝑟+𝑑𝑟)(𝜇𝑟+𝑑𝑟+𝛾𝑟)
= 𝑅0

𝑟𝑟 

 Similarly, for the following equation  

                                  [(𝑎33 − 𝜆)(𝑎22 − 𝜆) − 𝑎32𝑎23] = 0 

⟺    

                                       𝜆2 − (𝑎22 + 𝑎33)𝜆 + 𝑎22𝑎33 − 𝑎32𝑎23 = 0   

when  𝑎22𝑎33 > 𝑎32𝑎23, the eigenvalues are negative by Routh-Hurwitz Criteria [18],[19].   

𝑎22𝑎33 > 𝑎32𝑎23 ⟺ (𝑘ℎ + 𝑑ℎ)(𝑞 + 𝜇ℎ1
+ 𝑑ℎ + 𝛾ℎ1

) > 𝑘ℎ𝛽ℎℎ𝑆ℎ 

                             ⟺  1 >
𝛽ℎℎɅℎ𝑘ℎ

𝑑ℎ(𝑘ℎ+𝑑ℎ)(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1) 
= 𝑅0

ℎℎ 

Thus, under the following conditions, the disease-free equilibrium is stable.  

                                        1 > 𝑅0
𝑟𝑟                                                                                                            (15) 

                                        1 > 𝑅0
ℎℎ                                                                                                           (16) 

Theorem 4. Under conditions (17) and (18), the endemic equilibrium point is asymptotically 

local stable. Otherwise, it is unstable. 

Proof. Let’s set the Jacobian matrix of the endemic equilibrium point in the form 

|𝐽𝐸2
− 𝜆𝐼8𝑥8| = 0 as      

JE2
=

[
 
 
 
 
 
 
 
 
a11 − λ 0 a13 0 0 0 0 a18

a21 a22 − λ a23 0 0 0 0 a28

0 a32 a33 − λ 0 0 0 0 0
0 0 a43 a44 − λ 0 0 0 0

a51 0 0 0 a55 − λ 0 0 0
0 0 0 0 0 a66 − λ 0 a68

0 0 0 0 0 a76 a77 − λ a78

0 0 0 0 0 0 a87 a88 − λ]
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and then get the characteristic polynomial of the matrix, 

[(𝑎88 − 𝜆)(𝑎77 − 𝜆)(𝑎66 − 𝜆) − 𝑎87𝑎78(𝑎66 − 𝜆) + 𝑎87𝑎76𝑎68](𝑎55 − 𝜆)(𝑎44 − 𝜆) 

              [(𝑎33 − 𝜆)(𝑎22 − 𝜆)(𝑎11 − 𝜆) − 𝑎32𝑎23(𝑎11 − 𝜆) + 𝑎32𝑎21𝑎13] = 0 

The eigenvalues, 𝜆1 = 𝑎44 = −(𝜇ℎ2
+ 𝑑ℎ + 𝛾ℎ2

) and 𝜆2 = 𝑎55 = −(𝑣 + 𝑑ℎ) are negative. 

Now, we examine the other eigenvalues as  

[(𝑎88 − 𝜆)(𝑎77 − 𝜆)(𝑎66 − 𝜆) − 𝑎87𝑎78(𝑎66 − 𝜆) + 𝑎87𝑎76𝑎68] = 0 

⟺    

                            𝑎3𝜆
3 + 𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0 = 0   

where, 𝑎3 =1 > 0, 𝑎2 = −(𝑎66 + 𝑎77 + 𝑎88) > 0, 𝑎1 = −𝑎87𝑎78 + 𝑎77𝑎88 + 𝑎66(𝑎77 +

𝑎88)  and 𝑎0 = −𝑎66𝑎77𝑎88 − 𝑎87𝑎76𝑎68 + 𝑎87𝑎78𝑎66.  If  𝑎0, 𝑎1 > 0 and 𝑎2𝑎1 > 𝑎3𝑎0, then 

the eigenvalues are negative. Similarly, for the following equation  

                        [(𝑎33 − 𝜆)(𝑎22 − 𝜆)(𝑎11 − 𝜆) − 𝑎32𝑎23(𝑎11 − 𝜆) + 𝑎32𝑎21𝑎13] = 0 

⟺    

                           𝑏3𝜆
3 + 𝑏2𝜆

2 + 𝑏1𝜆 + 𝑏0 = 0   

where, 𝑏3 =1>0, 𝑏2 = −(𝑎11 + 𝑎22 + 𝑎33) > 0, 𝑏1 = −𝑎32𝑎23 + 𝑎22𝑎33 + 𝑎11(𝑎22 + 𝑎33) 

and  𝑏0 = −𝑎11𝑎22𝑎33 − 𝑎32𝑎21𝑎13 + 𝑎32𝑎23𝑎11. If  𝑏0, 𝑏1 > 0 and 𝑏2𝑏1 > 𝑏3𝑏0, then the 

eigenvalues are negative by Routh-Hurwitz Criteria.  Thus, under the following conditions, the 

endemic equilibrium is stable.  

                     𝑎0,  𝑎1 > 0 and 𝑎2𝑎1 > 𝑎3𝑎0                                                                      (17) 

                     𝑏0, 𝑏1 > 0 and 𝑏2𝑏1 > 𝑏3𝑏0                                                                       (18) 

3 RESULTS AND DISCUSSION 

We presented and discussed model outputs in this section. It is important to emphasize 

that while we included the demographic parameters Ʌℎ, 𝑑ℎ, Ʌ𝑟 and 𝑑𝑟 in our analyses, they 

were not considered in the simulations. These parameters were utilized primarily to establish 

bounds on the model solutions in Section 2. Since these parameters pertain to the natural birth 

and death rates of specific populations and have no direct role in controlling infectious diseases, 

they are typically excluded in most infectious disease modeling frameworks [20], [21], [22]. 
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This approach reflects the general practice of focusing on parameters directly influencing 

disease transmission and progression. 

3.1 Stability Analysis 

We investigate the stability of the disease-free equilibrium and endemic equilibrium 

points by using the parameter values given in Table 2. First, it is important to mention that since 

we are not including the demographic parameters,  𝑅0 will be in the form: 

                       𝑅0 =
1

2
{(𝑅0

ℎℎ + 𝑅0
𝑟𝑟) + √(𝑅0

ℎℎ − 𝑅0
𝑟𝑟)2 + 4𝑅0

ℎ𝑟𝑅0
𝑟ℎ}                                      (19) 

where            𝑅0
ℎℎ =

𝛽ℎℎ

(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1) 
 ,    𝑅0

𝑟ℎ =
𝛽𝑟ℎ

(𝜇𝑟+𝑑𝑟+𝛾𝑟)
                                                          (20) 

                      𝑅0
ℎ𝑟 =

𝛽ℎ𝑟

(𝑞+𝜇ℎ1+𝑑ℎ+𝛾ℎ1)
  ,      𝑅0

𝑟𝑟 =
𝛽𝑟𝑟

(𝜇𝑟+𝑑𝑟+𝛾𝑟)
                                                        (21) 

and the disease-free equilibrium point will be in the form: 

𝐸1 = (𝑆ℎ
∗ , 𝐸ℎ

∗, 𝐼ℎ
∗ , 𝑄ℎ

∗ , 𝑃ℎ
∗, 𝑅ℎ

∗ , 𝑆𝑟
∗, 𝐸𝑟

∗, 𝐼𝑟
∗, 𝑅𝑟

∗) = (1,0,0,0,0,0,1,0,0,0). 

rather than  

𝐸1 = (𝑆ℎ
∗, 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑄ℎ

∗ , 𝑃ℎ
∗, 𝑅ℎ

∗ , 𝑆𝑟
∗, 𝐸𝑟

∗, 𝐼𝑟
∗, 𝑅𝑟

∗) = (
Ʌℎ

𝑑ℎ
, 0,0,0,0,0,

Ʌ𝑟

𝑑𝑟
, 0,0,0). 

Depending on our calculation by using parameter values given in Table 2, 𝑅0
ℎℎ = 3.26 >

1 and 𝑅0
𝑟𝑟 = 0.34 < 1. Having, 𝑅0

ℎℎ = 3.26 > 1 violate the stability of the disease-free 

equilibrium point (see Theorem 3). Thus, the disease-free equilibrium point is unstable. This 

finding highlights the need for additional efforts to control the outbreak. Specifically, 

incorporating control parameters v, b, and q is essential to reducing 𝑅0
ℎℎ and mitigating 

transmission rates. Similarly, when we investigated the endemic equilibrium point with the 

parameter values given in Table 2, we obtained followings 

𝑎3 = 1 > 0                                                      

𝑎2 = 1.2014 + 0.3𝐼𝑟 > 0                            

𝑎1 = −0.096𝑆𝑟 + 0.36𝐼𝑟 + 0.28 > 0.    

𝑎0 = 0.0846𝐼𝑟 > 0.                                     

and so, the condition (17) in Theorem 4 holds  

                                                      𝑎0,  𝑎1 > 0 and 𝑎2𝑎1 > 𝑎3𝑎0                        

since we obtained                 

                                                      𝑎2𝑎1 > 𝑎3𝑎0              
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                                       ⇔    0.3364 + 0.4325𝐼𝑟 − 0.1153𝑆𝑟 > 0.0846𝐼𝑟      

Even assuming 𝑆𝑟 ≅ 1 and 𝐼𝑟 ≅ 0, which are the extreme cases, the inequality still 

holds. Thus, the condition (17) in Theorem 4 holds. Now, let investigate the condition (18) in 

Theorem 4. If this condition holds, then endemic equilibrium point is stable otherwise unstable. 

We obtained the following 

𝑏3 = 1 > 0                                                                                                                             

𝑏2 = 0.3𝐼ℎ + 0.15𝐼𝑟 + 0.1427 + 𝑣 + 𝑏 + 𝑞 > 0                                                          

𝑏1 = −0.015𝑆ℎ + 0.05𝑞 + 0.0046 + (0.3𝐼ℎ + 0.15𝐼𝑟 + 𝑏 + 𝑣)(𝑞 + 0.1417)    

             𝑏0 = 0.05(0.3𝐼ℎ + 0.15𝐼𝑟 + 𝑏 + 𝑣)(𝑞 + 0.0917) + 0.015𝑆ℎ(0.3𝐼ℎ + 0.15𝐼𝑟 + 𝑏 + 𝑣) 

                         +0.015𝑆ℎ(0.3𝐼ℎ + 0.15𝐼𝑟) > 0     

It is challenging to determine whether the condition 𝑏2𝑏1 > 𝑏3𝑏0 holds with the given 

parameters in Table 2, as it also requires identifying the variables 𝑆ℎ, 𝐼ℎ, and 𝐼𝑟 and the control 

parameters v, b, and q.  While this could be investigated numerically, such an analysis falls 

outside the scope of this study. However, we emphasize that the control parameters (v, b, and 

q) play a crucial role in the stability of the endemic equilibrium point. In the following sections, 

we examine the effects of these control parameters to highlight their significance in mitigating 

monkeypox outbreaks. 

3.2 Sensitivity Analysis 

Several parameters significantly influence the behavior of the model (1). To identify the 

parameters most relevant to the infected cases (𝐼ℎ + 𝑄ℎ), we performed a sensitivity analysis. 

This analysis employed Latin Hypercube Sampling (LHS) combined with the Partial Rank 

Correlation Coefficients (PRCC) method, following the approach described by [23]. Using 

parameter ranges provided in Table 3, we generated samples from a uniform distribution and 

used these as inputs to simulate system (1) over 150 days. The final number of infected cases 

served as the output variable for this analysis. Table 3 presents the PRCC values, associated p-

values, and the parameter ranges used. 

The results highlight 𝑣, 𝑏, 𝑞, 𝛽ℎℎ, 𝑘ℎ, 𝛾ℎ1
 , 𝛾ℎ2

, 𝜇𝑟 and 𝛾𝑟 as statistically significant 

parameters based on their high PRCC values, suggesting they play a pivotal role in outbreak 

dynamics. Consequently, we further analyzed how varying 𝑣, 𝑏, 𝑞, and 𝛽ℎℎ affects the infected 

cases while keeping all other parameters fixed as listed in Table 2 and maintaining the initial 
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conditions in Table 1. Figures 2a-2d illustrate these findings, showing how the cumulative cases 

at the end of the simulation period respond to changes in these key parameters.  

This investigation demonstrated that the control parameters 𝑣 (vaccination) and 𝑏 

(social distancing) have nearly identical impacts on controlling the outbreak (see Figures 2a 

and 2b). This similarity is expected, as both parameters serve to reduce the spread of the disease 

in similar implementation in our model. In the absence of vaccination, implementing and 

managing social distancing measures can play a crucial role in mitigating monkeypox 

outbreaks. 

The analysis also revealed that the recovery rates in the model play a critical role in 

controlling the outbreak, as they are statistically significant parameters. Additionally, the 

incubation period parameter (𝑘ℎ) was identified as influential. Therefore, to effectively manage 

monkeypox outbreaks, it is essential to carefully examine this parameter to gain a better 

understanding of the disease dynamics. 

Table 3. Results of sensitivity analysis with partial rank correlation coefficient (PRCC),      

p-value, and the parameter ranges used for calculations of the PRCC and p-values. 

Parameters Descriptions PRCC p-value 
Parameter 

Ranges 

𝑣 
(Vaccine efficacy rate) x (the percentage of 

vaccinated susceptible individuals) 
-0.65 9.3𝑒−16 0.0001-0.1 

𝑏 
Rate of transition to social distancing class from 

susceptible class  
-0.63 2.6𝑒−15 0.0001-0.1 

𝑞 
Rate of moving infected to quarantined-infected 

individuals 
-0.48 5.1𝑒−10 0.001-0.3 

 𝛽ℎℎ Disease transmission rate from humans to humans 0.55 1.7𝑒−12 0.01-1 

𝛽𝑟ℎ Disease transmission rate from rodents to humans 0.20 0.05 0.01-1 

𝛽𝑟𝑟 Disease transmission rate from rodents to rodents 0.17 0.08 0.01-1 

 𝛽ℎ𝑟 Disease transmission rate from humans to rodents 0.07 0.5 0.01-1 

𝜇ℎ1
 

Disease-induced death rate of human population in 

𝐼ℎ 
-0.20 0.05 0.0001-0.1 

𝜇ℎ2
 

Disease-induced death rate of human population in 

𝑄ℎ 
-0.24 0.02 0.0001-0.1 

𝑘ℎ Rate of exposed individuals becoming infected  -0.61 1.9𝑒−14 0.001-1 

𝛾ℎ1
 Recovery rate due to natural immune response  -0.36 0.0002 0.001-0.5 

𝛾ℎ2
 Recovery rate due to hospitalization  -0.66 1.5𝑒−16 0.001-0.5 

𝑘𝑟 Rate of exposed rodents becoming infected  0.04 0.7 0.01-1 

𝜇𝑟 Disease-induced death rate of rodent population  -0.28 0.004 0.01-1 

𝛾𝑟 
Recovery rate of rodents due to natural immune 

response  
-0.35 0.0003 0.01-2 
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Figure 2. The total infected cases (𝑰𝒉 + 𝑸𝒉) at the final time with respect to control 

parameters: vaccination (a), quarantine (b), social distance (c), and the disease 

transmission rate (d). 

3.3 Analysis of Basic Reproduction Number, 𝑹𝟎 

We investigated the changes on the basic reproduction number, 𝑅0 depending on some 

of the important parameters presented by our sensitivity analysis in the previous subsection. We 

investigated the effect of the parameters 𝛾ℎ1
, 𝑞, 𝛽𝑟ℎ and 𝛽ℎℎ on 𝑅0 while keeping all other 

parameters fixed as listed in Table 2. This investigation revealed that improving treatment 

quality to accelerate the recovery of infected individuals can significantly aid in mitigating the 

outbreak. Similarly, the rapid identification of infected individuals is equally crucial in 

controlling the spread of the disease (see Figure 3a).  

 

a) b) 

c) d) 



M. Demir / BEU Fen Bilimleri Dergisi, 14 (1), pp. 361-384, 2025 

 

 

379 

     

  

Figure 3. Surface plots of  𝑹𝟎. Plot a: showing the simultaneous impact of 𝜸𝒉𝟏
 and 𝒒 on 

𝑹𝟎. Plot b: showing the simultaneous impact of 𝜷𝒓𝒉 and 𝜷𝒉𝒉 on 𝑹𝟎. 

Our analysis also highlighted the significant influence of the parameter  𝛽ℎℎ (human-to-

human transmission) on the number of infected cases, compared to 𝛽𝑟ℎ (rodent-to-human 

transmission). Notably, the human-to-human transmission was found to be nearly three times 

more impactful than the rodent-to-human transmission on the basic reproduction number (𝑅0) 

of the monkeypox virus (see Figure 3b). 

3.4 Effects of Control Parameters on Infected Cases 

As noted in the sensitivity analysis subsection (Figure 2), the control parameters v 

(vaccination) and b (social distancing) exhibit nearly identical effects on the number of infected 

cases. In Figure 4a, varying the parameters v or b between 0.0001 and 0.01 results in a similar 

reduction in infected cases, as indicated in the legend. However, applying both controls 

simultaneously leads to a substantially greater reduction in the infected cases, as demonstrated 

in Figure 4b. 

a) 

b) 
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Figure 4. Effects of vaccination and /or social distancing on Infected cases. Plot a: the 

effect of vaccination or social distancing on the infected cases. Plot b: simultaneous effect 

of vaccination and social distancing on the infected cases. 

When we applied only the quarantine parameter (q) to observe its effect on the infected 

cases, a noticeable shift in the peak of the infected cases curve emerged (see Figure 5a). This 

shift is influenced by the recovery rates: 𝛾ℎ2
, which governs the transition from the quarantine 

compartment (𝑄ℎ) to the recovered compartment, and 𝛾ℎ1
, which dictates recovery directly 

from the infected compartment to the recovered compartment. Since the recovery time is 

significantly longer in the quarantine compartment (𝑄ℎ), an increase in the number of 

individuals in 𝑄ℎ leads to this observed shift.  

When we simultaneously applied the three control parameters: v (vaccination), b (social 

distancing), and q (quarantine), we observed a significantly sharper reduction in the infected 

cases curve compared to when these controls were applied individually (see Figure 5b). The 

combined effect of these measures demonstrates the enhanced efficacy of a multi-faceted 

approach in the monkeypox outbreak mitigation. Specifically, when v and b are both greater 

a) 

b) 
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than 0.0025, and q exceeds 0.075, the number of infected cases is almost entirely eradicated. 

This finding underscores the importance of implementing these control measures together to 

achieve maximum suppression of disease transmission and highlights their combined impact 

on the control of monkeypox outbreaks. 

  

 

Figure 5. Plot a: the effect of quarantine on the infected cases. Plot b: the simultaneous 

combined effect of quarantine, vaccination and social distancing on the infected cases. 

4 CONCLUSION AND SUGGESTIONS 

In summary, our study provides a comprehensive analysis of the key parameters 

influencing the dynamics and control of the monkeypox outbreak, with a focus on stability 

analysis, sensitivity analysis, reproduction numbers, and the impact of control parameters. 

Stability analysis and Sensitivity analysis showed the importance of control parameters in the 

control of monkeypox outbreaks. Sensitivity analysis also revealed that parameters such as 

recovery rates and the incubation period play pivotal roles in shaping the outbreak trajectory. 

These findings highlight the importance of improving treatment quality and identifying infected 

a) 

b) 



M. Demir / BEU Fen Bilimleri Dergisi, 14 (1), pp. 361-384, 2025 

 

 

382 

individuals quickly to mitigate disease spread effectively. Moreover, the significant role of 

human-to-human transmission ( 𝛽ℎℎ) compared to rodent-to-human transmission ( 𝛽𝑟ℎ) 

underscores the need for targeted interventions to disrupt transmission pathways most critical 

to the disease's basic reproduction number (𝑅0). 

The investigation into the basic reproduction number further demonstrated that  𝛽ℎℎ is 

nearly three times as influential as  𝛽𝑟ℎ in determining 𝑅0. This highlights the priority of 

focusing on human-to-human interactions when designing control strategies. Limiting direct 

transmission among individuals can have a far greater impact on reducing the overall spread 

than focusing on rodent-related transmission alone. Such insights are invaluable for allocating 

resources efficiently during an outbreak. 

Finally, the analysis of control parameters v (vaccination), b (social distancing), 

and q (quarantine) emphasized their individual and combined effectiveness in reducing infected 

cases. While each parameter contributes meaningfully on its own, the simultaneous application 

of all three measures leads to a much sharper reduction in case numbers. Notably, when 

vaccination and social distancing parameters (v and b) exceed 0.0025, and the quarantine 

parameter (q) surpasses 0.075, the outbreak can be nearly eradicated. This demonstrates the 

power of a multifaceted approach, where integrating multiple control measures creates a 

synergistic effect, significantly enhancing outbreak mitigation. 

In conclusion, our findings stress the necessity of a multifaced control strategy for the 

control of the monkeypox virus. By focusing on the most influential parameters and leveraging 

their combined effects, policymakers and health practitioners can design more effective 

interventions to manage and ultimately contain monkeypox disease outbreaks.  
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