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ABSTRACT: This article addresses the development of a Proportional-Integral-Derivative (PID) controller 

design and set-point filter based on time response specifications for fractional-order systems. Fractional-order 

systems are challenging to control using traditional control methods due to the complexity of their dynamic 

behaviour. In this study, a set-point filter is integrated into the PID controller design to ensure the desired 

system performance and stability. During the design process, appropriate PID parameters and filter 

coefficients are determined by considering the system's time response specifications. The article first 

examines the mathematical models of fractional-order systems using integer-order approximation methods 

and then determines the PID controller parameters for these systems with an Improved-Grey Wolf 

Optimization-based optimization algorithm. The proposed approach aims to improve performance criteria 

such as overshoot, rise time, and settling time based on the desired system response. Simulation results 

demonstrate the effectiveness of the proposed method in improving system performance. This design 

approach offers significant potential to control complex systems commonly encountered in industrial 

applications. 
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1. Introduction 

Although fractional-order mathematics has advanced significantly in recent decades, the 

origins of the topic date back to ancient times. The first idea about this topic emerged in 

1695 during correspondence between Leibnitz and L'Hospital. In the following years, this 

subject began to attract more attention from researchers. The mathematical modeling and 

simulation of systems and processes expressed by fractional-order integro-differential 

equations has led to the need for solving fractional-order differential equations. With a 

better understanding of fractional-order mathematics, its applications in many fields have 

also started to increase. As in many fields, the impact of fractional-order mathematics has 

begun to be felt in control theory as well. One of the first studies on this subject, the position 

control of large objects, was presented by Tustin in 1958 (Tustin et al., 1958). In 1960, 

Manabe presented a study on the application of fractional-order integration to control 

systems (Manabe, 1961). In the following years, the use of fractional-order integro-

differential expressions in control applications and robotics has become more frequent.  

After the concept of fractional-order mathematics emerged, some mathematicians made 

approximate definitions regarding fractional-order derivatives and integrals. The models of 

fractional-order control systems with high integer orders can be obtained with the help of 

certain approaches. In this context, approaches such as Continuous Fraction Expansion 

(CFE) (Podlubny et al., 2002), Matsuda method (Matsuda & Fujii, 1993), Oustaloup 
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method (Oustaloup et al., 2000), Carlson method (Carlson & Halijak, 1964), and Charef 

method (Charef et al., 1992) can be used.  

The concept of fractional order mathematics has also influenced controller design, which is 

one of the important topics in control theory. Controller design for fractional order systems 

is quite significant, and many studies have been conducted in this topic (Dogruer & Tan, 

2018, 2019; Li & Gao, 2022; Luo et al., 2010; Zhao et al., 2005). Today, Proportional-

Integral-Derivative (PID) controllers are among the most commonly used controller 

structures due to their numerous advantages. The reasons for this include their simple, 

reliable, and robust structures, their widespread familiarity, and the small number of 

parameters. Some of the most important classical design methods for calculating PID 

controller parameters include Ziegler-Nichols (Ziegler & Nichols, 1942), Åström-

Hägglund (Åström & Hägglund, 1995), and Cohen-Coon (Cohen, 1953). Additionally, 

Refined Ziegler-Nichols (Hang et al., 1991), gain and phase margin-based methods 

(Cokmez et al., 2018; Ho et al., 1996), and frequency-domain design methods (Li & Gao, 

2022; Meng et al., 2020) are also available. However, these methods may not always 

produce the desired results. Different controller parameters can be found to improve the 

output response of the control system. Therefore, optimization methods have been 

developed to determine the optimal control parameters. The aim of these methods is to 

identify the controller parameters that provide the best response. These parameter tuning 

methods can yield different results in different control systems, so there is no single method 

for tuning the best controller parameters. 

At this point, optimization-based methods have become an important tool for maximizing 

the performance of control systems. In particular, nature-inspired methods such as Genetic 

Algorithms (GA) (Holland John, 1975), Particle Swarm Optimization (PSO) (Eberhart & 

Kennedy, 1995), and Artificial Bee Colony (ABC) (Karaboga & Basturk, 2007) algorithms 

are effectively used to determine control parameters. These methods go beyond traditional 

design approaches and have the ability to optimize multiple parameters simultaneously. 

One of these algorithms, the Grey Wolf Optimization (GWO) (Mirjalili et al., 2014) 

algorithm, has been effectively used in many engineering problems in recent years. 

However, the standard GWO algorithm can sometimes struggle to avoid local minima, and 

the solution quality may be lower than expected. Therefore, improvements made in the 

GWO algorithm are important for offering better performance and faster solution processes. 

The Improved-GWO (I-GWO) (Nadimi-Shahraki et al., 2021) aims to address these 

shortcomings. The I-GWO algorithm retains the advantages of the classical GWO while 

providing stronger exploration and exploitation capabilities. This improved version enables 

more effective results in the optimization of system parameters, offering benefits such as 

accelerated backtracking, better convergence rates, and reduced computation time. The 

GWO algorithm is used as a nature-based method to find the optimal values of parameters. 

By considering both linear and nonlinear behaviours of systems, it suggests more accurate 

and efficient solutions. The use of the I-GWO algorithm also offers a strong alternative for 

determining PID parameters. Such algorithms can produce different results in different 

control systems and can be customized to determine parameters suitable for each system's 

needs. As a result, the use of the I-GWO algorithm presents an important innovation in 

control system design, and the increasing prevalence of such optimization methods is 

expected. These types of improvements will allow for more efficient and effective results 

both practically and theoretically. 

Models obtained using approximation methods are typically of high order, and the control 

of these systems is more difficult. In this paper, a second-order set-point filter, dependent 
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on the PID controller parameters, is also used to achieve a more precise effect on the 

system's dynamics, thereby improving the system's response times. This approach allows 

high-order systems to become more manageable and makes the control processes more 

stable. In the study, simulation studies were conducted using Matsuda's fourth-order integer 

approximate model instead of the fractional-order plant. In the optimization algorithm, a 

multi-objective function based on the time response specifications, along with integral of 

time-absolute error (ITAE) and integral of time-square error (ITSE) integral performance 

criteria, was used to carry out the work. 

The remainder of the paper is organized as follows: In the second section, the modelling of 

fractional-order systems and the PID controller design procedure based on the I-GWO-

based are discussed, followed by an explanation of fractional-order control theory and its 

role in optimization processes. The third section tests the performance of the method 

through simulation studies. Finally, the fourth section discusses the results and evaluates 

the effectiveness of the methods. 

2. Material and Methods 

In this section, brief information about fractional order systems is given, as well as the 

procedure for determining PID controller parameters. 

2.1. Fractional order systems 

The history of fractional calculus dates back to the late 17th century. Beginning with 

Leibniz and L'Hospital, this field continued to develop through the works of renowned 

mathematicians such as Euler, Laplace, Fourier, Abel, and Laurent, laying the foundation 

for its current popularity. In the 18th century, significant contributions were made by 

Liouville, Grünwald, Letnikov, and Riemann (Machado et al., 2011). Although early 

studies were limited due to constrained computational capabilities, advancements in 

computer technology in recent years have turned fractional calculus into an area of interest 

for many researchers. In addition to being a branch of mathematics, it has found extensive 

applications in various disciplines, including signal processing, control theory, electrical 

circuits, bioengineering, and viscoelasticity. 

Fractional order systems are systems that use derivative and integral operators with non-

integer orders and are typically used in the modelling of dynamic systems (Sabatier et al., 

2007). These types of systems are often defined by fractional order calculus. The general 

form of fractional derivative and integral operators can be expressed as follows: 
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- α, represents the fractional order, which typically takes a value between 0 and 1. 

- D denotes the fractional derivative operator. 
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The three important definitions used for fractional-order derivatives and integrals are as 

follows: the Riemann-Liouville definition, the Grünwald-Letnikov definition, and the 

Caputo definition (Petráš, 2011). The Riemann-Liouville definitions for fractional-order 

derivatives and integrals are presented in Equations 2 and 3 (Petráš, 2011). Γ(⋅) is the 

Gamma function, commonly used in fractional calculations. 
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The Laplace transform is a technique used to simplify the analysis and synthesis of 

equations. The Laplace transform of the Riemann-Liouville definition for fractional-order 

derivatives is represented in Equation 4 (Petráš, 2011). 
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The Laplace transform of the Riemann-Liouville definition for fractional-order integration 

is presented in Equation 5. 

( ); ( )a tD f t s s F s                                                (5) 

Fractional-order systems, described by differential equations with real-valued orders, can 

represent the plant, the controller, or both in a control system. A Fractional Order Control 

System (FOCS) is modelled by a fractional-order differential equation, where r(t) and y(t) 

denote input and output signals, ak and bk are constants, and αk and βk are real numbers. 
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Equation 7 represents the transfer function derived from Equation 6. 
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For the Grünwald-Letnikov definition, and the Caputo definition, see reference (Podlubny, 

1998). 

2.2. PID controllers and tuning procedure 

PI (Proportional-Integral) and PID controllers have played a pivotal role in the evolution of 

control engineering, remaining essential tools for almost seven decades. These controllers 

are highly valued for their simplicity, effectiveness, and versatility in a wide range of 

applications. The first breakthrough in controller design came in 1934 when a tuning rule 

was introduced specifically for setting the parameters of a PD (Proportional-Derivative) 

controller. Shortly after, in 1935, another tuning rule was developed, extending these 

concepts to PI and PID controllers, marking a significant milestone in control theory 

(O’Dwyer, 2012). As industries began to embrace automation, the demand for robust and 
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efficient control systems grew. PI and PID controllers emerged as the standard due to their 

ability to maintain system stability, improve performance, and adapt to various dynamic 

environments. These controllers became indispensable in process control applications, 

where they regulate variables such as temperature, pressure, flow, and level with 

remarkable precision. Today, PI and PID controllers are estimated to be utilized in over 

95% of industrial process control applications, solidifying their reputation as the backbone 

of modern control systems (Monje et al., 2010). Their wide adoption is attributed to their 

straightforward implementation, ease of tuning, and ability to handle both simple and 

complex systems effectively.  

A typical feedback control system incorporating a controller with set-point filter, as shown 

in Figure 1, demonstrates the basic working principle. In such systems, the controller 

continuously monitors the error signal-defined as the difference between the desired set-

point and the actual process output and adjusts the control input to minimize this error. 

Depending on the system requirements, the proportional, integral, and derivative 

components of the controller work together to achieve optimal control performance, 

balancing speed, accuracy, and stability.  

 

 

Figure 1. Unit feedback control system block diagram with set-point filter  

Here, G(s) represents the system to be controlled, R(s) and Y(s) are the input and output 

signals, respectively, and C(s) represents the PID controller, with the equation given as 

follows. 

( ) i
p d

K
C s K K s

s
                                                     (8) 

Kp is the proportional gain, Ki the integral gain, and Kd the derivative gain. Proportional 

control speeds up the response but increases errors. Integral control eliminates steady-state 

error, while derivative control reduces overshoot and settling time, though it increases rise 

time and steady-state error. Combining these three effects yields a fast response with no 

steady-state error and limited maximum overshoot. In the study, a set-point filter is used in 

the control scheme to reduce the overshoot in the output, and its equation is as follows 

(Ajmeri, 2023). In the equation, Ti is the integral time constant, and Td is the derivative time 

constant. 

2
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1 i i d

F s
T s TT s
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                                                  (9) 

The number of parameters to be determined in a PID controller is three. It is well-known 

that optimization-based algorithms yield successful results in determining the controller 
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parameters. In this study, the I-GWO algorithm has been used to determine the parameters. 

The I-GWO is an optimization method based on the GWO algorithm, which is inspired by 

nature (Mirjalili et al., 2014). GWO models the behaviour of a wolf pack and aims to find 

the best solution in the solution space. The algorithm follows the paths of the leader wolves 

(the best solutions) and improves the solution by collaborating with other wolves. I-GWO 

enhances the performance of the GWO algorithm by making certain improvements, aiming 

to achieve faster and more accurate results. This improved version is particularly effective 

for solving complex problems such as the optimization of PID parameters. 

In control systems, integral performance criteria such as integral of square error (ISE), 

integral of absolute error (IAE), ITSE, and ITAE are frequently used and appear in objective 

functions (Dogruer & Can, 2022). In the proposed method, a multi-objective objective 

function based on the time response characteristics, as given in Equation 10, is used (Bingul 

& Karahan, 2018). Here, Mp is the maximum overshoot, ess is the steady-state error, ts is the 

settling time, tr is the rise time, and β is the weighting factor. The β value is chosen to 

equally weight both components of the multi-objective function. 

(1 )( ) ( )MO p ss s rJ e M e e t t                                                       (10) 

The block diagram of the proposed control scheme is given in Figure 2. 

 

Figure 2. Proposed control scheme with I-GWO algorithm 

The optimization process begins with the definition of the objective function and the 

initialization of the I-GWO algorithm. In the first iteration, the algorithm starts by assigning 

random values to the PID controller parameters. Time response characteristics are obtained 

from the closed-loop control system output in Figure 2 using a code and are transferred to 

the multi-objective function. Based on the value of the multi-objective function, the 

algorithm generates new values for the PID controller parameters. The time response 

characteristics of the output are then measured again, and based on the updated value of the 

multi-objective function, the algorithm updates the controller parameters. This process 

continues until the stopping criteria are met. 
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3. Simulation Study 

In this section, two fractional-order plants selected from the literature are considered, and 

PID controller designs are implemented based on the I-GWO algorithm.  

Example 1: The fractional-order system used in the literature by (Xue et al., 2006) is taken 

as an example below. 

2.2 0.9

( ) 1
( )

( ) 0.8 0.5 1

N s
G s

D s s s
 

 
                                                                                 (11) 

The integer-order approximation of the fractional-order transfer function given by Equation 

12 is expressed as a transfer function using Matsuda’s 4th-order approximation method, as 

shown below. In Matsuda's integer-order approximation, the lower and upper bounds of the 

angular frequency are taken as 10-3 and 103, respectively. 
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         (12) 

The lower and upper bounds for the Kp, Ki, and Kd parameters are set to [0, 100]. The I-

GWO algorithm is run for 100 iterations to determine the controller parameters. The I-

GWO algorithm is run 10 times, and the PID controller parameters are determined based 

on the multi-objective function. The figure shows the multi-objective function values 

according to the number of runs given in Figure 3. 

When Figure 3 is examined, it can be seen that the smallest objective function value is 

obtained in the 3rd run. The convergence of the multi-objective function values for this run 

according to the number of iterations is presented in Figure 4. The figure also includes 

convergence curves for the ITAE and ITSE performance criteria. All the graphs exhibit a 

similar decreasing trend, indicating that as the number of iterations increases, the multi-

objective function value decreases. In the first 10 iterations, there is a noticeable drop in all 

the graphs. This suggests that the algorithm achieves rapid convergence initially, meaning 

it quickly improves the function value. After the 10th iteration, the function values change 

more gradually and stabilize at a certain point. This implies that the optimization process 

reaches a kind of steady state, where the solution changes very little or has converged. 
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Figure 3. Multi-objective (MO) function values based on the number of runs 

 

Figure 4. The convergence curves for Example 1 (top: MO, middle: ITAE, bottom: ITSE) 

Upon the algorithm's termination, the best objective function value is achieved, and the 

corresponding PID controller parameters are identified. The determined controller 

parameters and fitness values are provided in Table 1. Based on the controller parameters, 

the set-point filter for multi-objective function is defined as follows: 

20.09479 0.56
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1
(

s s
F s

 
                                                           (13) 
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Table 1. PID controller parameters 

  Kp Ki Kd OF 

Example 1 

ITAE 45.1224       99.9998       9.63188 0.14419 

ITSE 41.9388       99.9997       8.15141 0.073057 

MO Function 52.6542       94.0652       8.92198 0.27119 

Example 2 

ITAE 58.9203       99.9879       10.2266 0.20727 

ITSE 53.4783       99.9999       6.91954 0.11061 

MO Function 70.3172       99.6728       7.47698 0.25306 

 

The unit step responses of closed-loop systems obtained with the determined PID controller 

parameters are presented in Figure 5. The multi-objective function used to tune the system 

ensures that the system exhibits a rapid rise and steadily approaches the reference value. 

Notably, no overshoot is observed in the system, which suggests that the system has a good 

damping ratio. Additionally, reaching the reference value and becoming stable in 

approximately 1 second demonstrates that the system has a fast settling time. The absence 

of oscillations or fluctuations during the settling time clearly indicates that the system 

exhibits stable performance. It is clearly observed that the PID controller designed with the 

ITSE performance criterion causes oscillations and overshoot in the system. It is noteworthy 

that the PID controller designed with the ITAE performance criterion results in significantly 

less overshoot while also achieving a shorter settling time. Overall, the system's ability to 

quickly and stably follow the reference value without excessive oscillations suggests that 

the control design has been effectively implemented. 

 

Figure 5. Step responses for Example 1 

Additionally, the time response characteristics for both examples are presented in detail in 

Table 2. 
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Table 2. Time response specifications  

  ts (2%) tr tp Mp (%) 

Example 1 

ITAE 0.8181 0.4806 0.9747 1.5984 

ITSE 2.0083 0.4140 0.8693 7.3030 

MO Function 1.5281 0.9554 2.3865 0 

Example 2 

ITAE 1.0944 0.6365 2.2177 0.3308 

ITSE 2.4817 0.5105 1.0699 6.9066 

MO Function 1.9410 1.2867 3.1748 0 

 

Example 2: Let us consider below the FO-LTI plant model used in the literature by Monje 

et al (Monje et al., 2010).: 
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The fractional-order transfer function given by Equation 14 is expressed using Matsuda's 

4th-order integer approximation method as follows. In Matsuda's integer-order 

approximation, the lower and upper bounds of the angular frequency are taken as 10-3 and 

103, respectively. 
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                  (15) 

As in Example 1, the lower and upper bounds for the Kp, Ki, and Kd parameters are set to 

[0, 100]. The I-GWO algorithm is executed for 100 iterations to optimize the controller 

parameters. For the plant defined in Equation 15, the optimization algorithm is run 10 times 

for each objective function. The values obtained after 10 runs of the multi-objective 

function are presented graphically in Figure 6. From the figure, it is clearly observed that 

the smallest objective function value was achieved in the 9th run. The obtained PID 

controller parameters are provided in Table 1. Furthermore, Figure 7 illustrates the 

convergence of the multi-objective function values during the 9th run as a function of the 

number of iterations. Additionally, the figure presents the convergence curves for the ITAE 

and ITSE performance criteria. All curves demonstrate a consistent decreasing trend, 

highlighting that the multi-objective function value progressively diminishes with an 

increasing number of iterations. 
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Figure 6. Multi-objective function values based on the number of runs for Example 2 

 

Figure 7. The convergence curves for Example 2 (top: MO, middle: ITAE, bottom: ITSE) 

The closed-loop unit step responses of the systems obtained by applying the designed PID 

controllers to the system in Equation 15 are shown in Figure 8. The figure also includes the 

step response obtained using the PID controllers designed by (Monje et al., 2010). The 

Monje et al.’s method provides a slow transition without overshoot, but the long settling 

time may pose a disadvantage for applications requiring fast responses. The ITAE criterion 

yields a fast transient response with low overshoot and balanced performance but includes 

some oscillations. The ITSE criterion provides the fastest response but with higher 

overshoot and oscillations. The step response obtained according to the multi-objective 

function balances overshoot and response speed, providing an advantage. Therefore, the 

advantages and disadvantages of these methods should be evaluated based on application 

requirements. The figure offers valuable information for selecting an appropriate controller 

by clearly showing the performance of different control designs. 
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Figure 8. Step responses for Example 2 

4. Conclusion  

This study presents a controller design method for fractional-order systems. In the proposed 

approach, the parameters of a PID controller with a set-point filter are optimized using an 

I-GWO algorithm-based method. The algorithm is formulated with various objective 

functions, emphasizing the determination of controller parameters through a multi-

objective function derived from time-domain response characteristics. To assess the 

performance of the proposed method, two different fractional-order systems were selected, 

and controller designs were implemented for each. The presence of the set-point filter in 

the proposed method has significantly contributed to achieving smooth responses without 

overshoot in the system outputs. The time responses of the controlled systems were 

analysed comparatively, highlighting the effectiveness of the proposed method. 
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