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 An existing microcontroller-based power factor correction system has been able to improve 
the overall conversion of electrical power into a useful work of a highly industrial load. 
However, more improvements are still desired to get the existing power factor value close to 
1 as much as practically possible. With the current microcontroller-based power factor 
correction system, microcontroller has to be replaced often due to power fluctuation and a 
low-quality power available. The microcontroller requires ordering for new replacement as it 
is not reprogrammable to meet the new operational demands. Artificial intelligence tools, 
neural network and fuzzy logic are considered. Neuro-fuzzy system approach is settled for as 
an alternative to microcontroller-based power factor correction system. Neuro-fuzzy system 
is able to learn through training, testing, and validation processes and controls the automatic 
switching of the capacitor banks to adequately compensate for the lagging loads. Results 
obtained were compared to the existing microcontroller power factor correction system. 
Neuro-fuzzy system shows better performance over microcontroller-based system. The 
neuro-fuzzy system automatically adjusts itself to suit the present operational requirement to 
always have a power factor result closer to 1 as compared with that of a microcontroller-based 
system which does not give room for reprogramming making it static to a larger extent in its 
operational duties. 
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1. Introduction  
 

It is desired that electrical power being delivered to 
any systems be fully converted into a useful work. This is 
the role that power factor (PF) plays in measuring on a 
scale of 0 to 1, how effectively electrical power has been 
converted into a useful work [1]. “1” being fully 
converted and shows perfect systems [2]. However, such 
is not always the case in practice due to inductive loads 
that generate reactive element that make power lag [3]. 
To mitigate the effect of lag loads, capacitor banks are 
introduced into the system to provide a leading effect in 
order to raise the value of power factor to a value that is 
1 or closer to 1 [4]. The introduction of capacitor banks 
into the system for compensation is to be done 
sequentially to ensure adequate balance in the operation 
of the system [5, 6]. So, adequate switching technique is 
to be adopted into the system either manually or 

automatic [7]. For a manual approach, it involves a 
human operator who engages or disengages the 
capacitor banks one after the other into or from the 
system depending on the power factor value as obtained 
from the overall system [8]. 

On the other hand, automatic switching technique is 
adopted to automatically engage or disengage the 
capacitor banks as the PF correction system in which the 
microcontroller acts as the reasoning and decision-
making faculty of the system [9]. It continuously 
measures the power factor value and engages or 
disengages the capacitor banks seamlessly using relays 
as the switching mechanism. Many automatic power 
factor correction topologies run using microcontrollers 
as they have proven to be stable, reliable, and efficient. 
However, microcontroller, once programmed cannot be 
reprogrammed again [10]. This is an important factor 
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that needs to be looked into as power system is dynamic 
in nature and therefore requires implementation of 
changes. Also, microcontrollers are susceptible to 
damage by static charge [11]. So, in an environment that 
experiences low-power quality, longevity of 
microcontroller is in doubt and could fail at any time [12]. 
These and many more of these vulnerabilities of a 
microcontroller led to seeking an alternative in artificial 
intelligence (AI) based on its capabilities and flexibility in 
areas of applications [13, 14]. 

Remarkable results have been achieved with the use 
of artificial intelligence tools in power systems [15]. 
From power generation to power transmission. From 
power transmission to power distribution. From power 
distribution to end users. So, with AI having proven to be 
smart and efficient with many possibilities, its tools that 
are suitable for power system applications are 
considered in this work [16, 17]. The intelligent and 
learning capabilities of neural networks and the 
decision-making capacity of fuzzy system were 
combined in neuro-fuzzy system that formed the basis 
for its performance investigation in the area of power 
factor correction which is the focus of this work [18, 19, 
20]. The neuro-fuzzy results would be compared with the 
existing microcontroller-based system results. The rest 
of the paper contains materials and methods, results and 
discussion as well as conclusions. 

 

2. Method 
 

Generally, the relationship amongst real power, 
apparent power, and reactive power is represented by 
“power triangle” of Figure. 1. The red line is the active 
power, P (W). The green line is the apparent power, S 
(VA). The purple line represents the reactive power, Q 
(var). 

 

 
Figure 1. Power triangle 

 
Mathematically [4], 

𝑃 = 𝑉𝐼𝑐𝑜𝑠𝜃     (1) 

𝑆 = 𝑉𝐼 = 𝑃 + 𝑗𝑄    (2) 

𝑄 = 𝑉𝐼𝑠𝑖𝑛𝜃 = 𝑃√(
1

𝑝𝑓2 − 1)   (3) 

where,  

V is the root mean square voltage. I is the root mean square current. 

Θ is the phase angle between the real power and the apparent power.  

𝑃𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑝𝑓 =
𝑃

𝑆
= 𝑐𝑜𝑠𝜃   (4) 

 

2.1. Existing Microprocessor-based System 
 

The existing microcontroller-based power factor 
system of Figure 2 makes use of the configuration above 
to aid the automatic switching operations of the 
capacitor banks. The NCP1681 is the microcontroller 
utilized and operates in Boundary Conduction Mode 
(BCM), Continuous Conduction Mode (CCM), and 
Discontinuous Conduction Mode (DCM) being a multi-
mode engine. For high-power applications and to keep 
CCM, mode change is inhibited [21]. 

 
 
Figure 2. Existing microcontroller operations at high 
power mode 

 

2.2 Neuro-fuzzy Approach 
 

The neuro-fuzzy model used is of two inputs 
parameters and one output parameter as shown in 
Figure 3. The membership functions of the two inputs, 
that is, real power and reactive power used to determine 
the power factor at various loads are presented in 
Figures 4 and 5 respectively. Normalization of data to 
values between 0 and 1 was carried out using adapted 
data linearization model [22]. 

 
Figure 3. Fuzzy inference system used 
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Figure 4. Real power membership functions 
 

 
Figure 5. Reactive power membership functions 

 
The applied rules were 25 utilizing the “if-then” logic 

as represented mathematically by Eqs. (5) and (6). 
𝜇𝐴∪𝐵(𝑥) = max [𝑈𝐴(𝑥), 𝜇𝑩(𝑥)]   (5) 

The union and intersection of the two input in relation to 
the output is given by Eqs. (6) and (7). 

 
𝜇𝐴∪𝐵(𝑥) = 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥)  (6) 

 
𝜇𝐴∩𝐵(𝑥) = 𝜇𝐴(𝑥)𝜇𝐵(𝑥)    (7) 

where A and B are two subset of U which represent the truth of 
A and B. 
Linear normalization technique was utilized to convert the 
parameters between 0 and 1 using the adapted model of Eq. 8. 

𝑥𝑖
∗(𝑘) =

max 𝑥𝑖(𝑘)−𝑥𝑖

max 𝑥𝑖(𝑘)−min 𝑥𝑖(𝑘)
   (8) 

where i = 1, 2, 3, …, m and k = 1, 2, 3, …, n. m and n are 
parameters used for the experiment and corresponding 
outputs. 
𝑥𝑖(𝑘) and 𝑥𝑖

∗(𝑘) are the original sequence and the sequence 
post data pre-processing. max 𝑥𝑖(𝑘)  is the largest value of 𝑥𝑖(𝑘) 
and  min 𝑥𝑖(𝑘) is the smallest value of 𝑥𝑖(𝑘). 
Eq. (8) justifies Fig.ure 6 which is used to determine the fuzzy 
rules from the training data by the neural network before 
initialization of data. 

 
 

 
Figure 6. Cycle of the fuzzy rules using the training data 

Once the rules were established, the outputs 
combined with the neural network system to complete 
the neuro-fuzzy processes as presented in Figure 7. This 
system was utilized in the automatic switching of the 
capacitor banks in response to the changes in power 
factor value of the loads. Decisions of the neuro-fuzzy 
system were fast and prompt in response to the target 
power factor value that the entire system is aiming to 
achieve and maintain. The neuro-fuzzy model structure 
is presented in Figure 8 and the training sequence is 
shown in Figure 9 with the blue nodes depicting the 
“and” rules that were utilized. 

 
Figure 7.  Neuro-fuzzy system operational flow 
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Figure 8. Neuro-fuzzy structure 

 

 
Figure 9. ANFIS training session 

 
3.  Results  
For the measured real power and apparent power 
measured for various load points that were connected to 
the power supply, the existing microcontroller system 
power factor readings and the corresponding neuro-
fuzzy power factor outputs are presented in table 1. 
These simulated results were obtained using MATLAB 
R2018a software platform. 

 
Table 1. Microcontroller power factor results and neuro-
fuzzy power factor results 

Real Power 
(W) 

Apparent 
Power 
(VA) 

PF of 
Microcontroll
er Output 

PF of Neuro-
fuzzy Output 

124.95 117.247 0.9381 0.999622288 

97.1196 91.4091 0.92309 0.950057207 

128.653 99.1362 0.95511 0.854444993 

672.3899 322.79 0.47503 0.556639373 

673.2517 321.027 0.47941 0.535673904 

1230.03 997.473 0.81447 0.809634985 

1242.4317 1014.44 0.81521 0.823725906 

1229.5057 1006.17 0.8198 0.817780017 

1255.62 1001.94 0.80914 0.807493487 

1253.92 1005.74 0.80499 0.812270472 

1222.69 989.757 0.80525 0.805138557 

1164.25 942.786 0.80747 0.811584866 

1169.15 944.67 0.80777 0.808344257 

585.823 280.203 0.47992 0.443998101 

1193.5 934.042 0.78835 0.783152638 

1224.87 998.963 0.79614 0.812419737 

1235.95 998.509 0.80924 0.808952125 

1248.55 1005.91 0.80843 0.813581935 

667.52 329.62 0.80944 0.642951446 

1204.77 987.64 0.80964 0.810113083 

1216.78 988.67 0.80554 0.80638964 

1214.64 986.491 0.80963 0.805479188 

1219.33 986.681 0.80874 0.803809447 

1214.9 973.124 0.80865 0.794915801 

1214 983.489 0.80905 0.803404028 

656.625 308.708 0.46277 0.469095241 

643.571 309.198 0.48115 0.520336879 

1151.72 898.396 0.8005 0.813053681 

95.0875 89.1937 0.94266 0.944496379 

93.7079 88.3105 0.9418 0.945016668 

92.2514 87.0201 0.945 0.943122177 

99.7175 93.751 0.9431 0.953854538 

654.699 311.945 0.4917 0.508588351 

1210.64 977.773 0.81342 0.800560502 

132.178 180.128 0.69094 1.412340956 

97.874 147.192 0.65931 1.331226547 

105.953 153.383 0.65732 1.338296405 

101.703 159.697 0.64664 1.400751175 

110.19 165.231 0.6455 1.402182753 

105.042 147.977 0.71472 1.304796933 

105.14 146.415 0.71704 1.293520336 

100.08 143.265 0.7304 1.294274041 

147.628 214.092 0.68935 1.590544424 

144.093 209.995 0.69353 1.575566963 

160.655 237.934 0.6691 1.710665204 

164.807 245.394 0.64663 1.74868722 

150.609 231.057 0.63957 1.700632688 

145.947 227.337 0.66294 1.692449326 

133.43 216.7 0.68875 1.666841162 

125.795 196.333 0.68923 1.553958418 

130.897 190.801 0.66965 1.493466057 

141.394 199.768 0.67535 1.513482898 

129.354 190.958 0.67794 1.501059238 

151.702 217.22 0.68774 1.596520184 

153.71 212.228 0.66775 1.552336947 

130.899 221.431 0.68555 1.710650974 

140.26 222.375 0.66644 1.679703641 

149.862 216.043 0.68881 1.595500532 

947.532 1302.95 0.73014 0.861452395 

959.501 1291.15 0.71554 0.859922941 

947.321 1301.09 0.72554 0.861479357 

945.6 1290.78 0.72471 0.861699271 

96.7324 125.671 0.74236 1.187978109 

102.506 130.406 0.77115 1.19438304 

100.203 125.263 0.77656 1.169299893 

100.302 125.792 0.78725 1.172503579 

334.311 815.24 0.41326 1.763595357 

862.305 1224.14 0.69254 0.872341853 
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The output from the neuro-fuzzy system is shown in 
Figure 10 which typically shows the power factor value 
per real power   and reactive power. 

 
Figure 10. Neuro-fuzzy system output 
 

The measured power factor value of the 
microcontroller-based system against designated system 
nodes is shown in Figure 11. Also, the outputs from the 
neuro-fuzzy system from designated power system 
nodes are displayed in Figure 12 as well. Figure 13 draws 
the comparison between the power factor outputs of the 
microcontroller-based system and the neuro-fuzzy based 
system. 

 

 
Figure 11. Power factor results from microcontroller-
based system 

 

 
Figure 12. Power factor results from neuro-fuzzy system 

 

 
Figure 12. Microprocessor PF (in-red colour) and Neuro-
fuzzy PF compared (in-black colour) 
 

4.  Discussion 
 

The neuro-fuzzy system model structure for the 
engagement of the capacitor banks switching operation 
targets a desired power factor value of 0.9 at least. This 
model consists of a 5-layer structure with 2-input and 1-
output. The two inputs were combined to form a 25-rule 
operational set. This acts as the decision faculty of the 
operations. The input data used for the neuro-fuzzy 
system were trained using grid partitioning technique in 
order to ensure smooth and continuous uniqueness of 
each data. Issues of overshadowing is thereby prevented. 
It also allows for error tolerance. An error value of 
0.050691 was recorded at 50 epochs as displayed in Fig. 
9. From the neuro-fuzzy power factor results, it could be 
observed that system responded to steep rise in real 
power between 100 kW and 225 kW as depicted between 
node 0.1 and 0.5 trying to maintain the target value of at 
least 0.9. A sharp rise in power factor value was 
experienced by the system above the value of 1 at values 
above 250 kW followed by the system response to 
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maintain the target value of 0.9 as shown between node 
0.8 and node 0.9.  

A sharp drop was noticed in power factor value 
between nodes 0.9 and 1 bringing the power factor value 
to the target value of 0.9. This is an indication that the 
neuro-fuzzy system has gained the required experience 
in making its decisions for onward control of the 
switching actions of the actuator connected to the 
capacitor banks. A quick check of Figure 12 clearly shows 
that neuro-fuzzy power factor correcting system 
surpasses microcontroller-based power factor 
correcting system at heavy loads. As load increases, the 
better the performance of neuro-fuzzy power correcting 
system in maintaining the target power factor value of 
0.9 unlike the microcontroller-based power correcting 
system that struggled at higher loads. 

This neuro-fuzzy system takes over at higher loads to 
efficiently deliver the 0.9 power factor which is the 
desired value. A power factor monitoring sensor 
constantly monitors the micro-controller output. This 
switching operation ensures dynamic switching of 
capacitors and/or inductors as load conditions change in 
the system. In this manner, precision in terms of reactive 
power compensation is guaranteed. The background 
artificial intelligence tool is neuro-fuzzy logic and the 
hardware tool implementation could be realized using 8-
bit Motorola 68HC711E9 microcontroller. Windows V5 
could be used as the compiler. This hardware device is 
suitable to handle power factor correction duty. 

 

5. Conclusion  
This work has presented a neuro-fuzzy approach to 

improving the power factor of an industrial power 
system. This approach has brought about automatic 
operations of the switching action of the capacitor banks 
to compensate for the lagging current present in the 
system due to inductive loads that are prevalent in 
industrial power systems. The obtained results due to 
neuro-fuzzy system show an improved performance over 
the existing microcontroller-based power factor 
correction system especially at heavy loads. 
Improvement in the associated gains in terms of 
reduction in power consumption rate, economic gain, 
and smooth equipment performance leading to increase 
in their life span could be achieved by using neuro-fuzzy 
power factor correction system over microcontroller-
based power factor correction system. 
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