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ABSTRACT 
 

The security of the RSA algorithm is based on the difficulty of the integer factorization problem. Two large prime 

numbers are required to construct an RSA algorithm for each user. This leads to the issue of generating large prime 

numbers in cryptography. In the literature, there are two main primality test methods: probabilistic and 

deterministic primality tests. This paper reviews the probabilistic primality tests such as the Fermat, Slovay-

Strassen and Miller-Rabin test algorithms. Then we evaluate and compare their performance based on their 

execution times for different sizes of inputs. We present performance analyses based on their execution times. We 

also review the RSA encryption algorithm that uses two sufficiently large prime numbers. 

Keywords: Cryptology, Prime numbers, Probabilistic Primality tests, RSA algorithm  
 
1. INTRODUCTION 

The Integer Factorization Problem (IFP) is assumed to be a difficult problem in mathematics for 

sufficiently large numbers. The security of the RSA algorithm is based on the difficulty of the IFP for 

the product of two large prime numbers. Thus, to ensure the security of the RSA algorithm, sufficiently 

large prime numbers must be generated. This is a challenging problem in cryptography (indeed, in 

number theory). In the literature, there are deterministic primality tests such as the AKS primality test, 

but they are not efficient for large numbers. Thus, the probabilistic primality tests are used to generate 

large prime numbers for the RSA algorithm and the other public key cryptosystems. Public key 

cryptosystems based on prime numbers are frequently used for encryption, signature and key-exchange 

processes in real life. Sufficiently large prime numbers are required to ensure the security of certain 

public key cryptosystems. Thus, prime numbers are always needed in cryptography. The mystery of 

prime numbers, which is still not fully understood, increases interest in mathematics and computer 

science. Primality tests are among the first studies conducted on prime numbers. 

 

Prime numbers were first studied in detail by the mathematicians of the Pythagorean school in ancient 

Greece between 500 - 300 BC. In 200 BC, Eratosthenes developed a method for finding prime numbers 

and named this method the "Sieve of Eratosthenes." The Sieve of Eratosthenes is a method used to find 

prime numbers up to a certain integer. However, this method is not practical to test very large numbers. 

In the literature, numerous scientists have studied the characterization of prime numbers and discovered 

significant results on prime numbers. However, any efficient deterministic primality test algorithm has 

not yet been proposed in the literature to test sufficiently large numbers. Therefore, in cryptography, 

probabilistic primality tests are used to test sufficiently large prime numbers. 
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In the literature, several studies are focusing on primality tests for large numbers (for example, 

[4,6,7,9,10,11,12,13]). The famous textbook [9] presents a comprehensive study of modern 

cryptography including prime numbers, and their role in cryptography. The other popular textbook [11] 

discusses different ways of using cryptographic algorithms. Menezes and Oorschot have written the 

main handbook on modern cryptography and its applications  [7]. In this nice book, a new method for 

finding prime numbers has been provided and a perfect secure prime number sequence has been defined. 

The thesis [6] investigates different methods for prime number detection. An algorithmic approach has 

been emphasized focusing on efficiency estimates. In the paper [13], a deterministic testing method has 

been developed to determine whether an odd number is prime. In the paper [4], the average probability 

of errors in the Miller-Rabin test is examined, and it is concluded that this probability decreases as the 

length of the tested numbers increases.  

The paper is organised as follows. In Section 2, the probabilistic primality tests such as the Fermat, 

Solovay-Strassen and Miller-Rabin tests are discussed. These tests allow us to determine whether an 

odd number is composite or prime with high probability. In Section 3, we address the RSA algorithm 

based on two large prime numbers. In Section 4, the performance analyses of the probabilistic primality 

tests are provided in terms of their running time and error rate. 

2. PROBABILISTIC PRIMALITY TESTS 

In this section, we review the probabilistic primality tests such as the Fermat, Slovay-Strassen and 

Miller-Rabin tests.  

Probabilistic primality tests are used to test whether an odd large number is composite or prime with 

high probability. The well-known probabilistic primality tests are the Fermat, Solovay-Strassen and 

Miller-Rabin tests. 

The probabilistic primality test is based on the concept of a witness and a liar.  We first provide their 

definitions. 

Definition 1. [13] Let 𝑛 be a composite number and let 𝑎 be a number between 1 and 𝑛 − 1.  If the base 

𝑎 confirms that n  is a composite number according to the test, then 𝑎 is called witness for the composite 

number 𝑛. If the base  𝑎 says that 𝑛 is probably prime although 𝑛 is a composite number, then 𝑎 is called 

a liar for a composite number 𝑛.  

Note that when the liar 𝑎 is used in the test, the test will incorrectly declare a composite number 𝑛 to 

be prime. To avoid such errors, repeating the test t  times (for a sufficiently large value t ) will further 

reduce the probability of error. 

2.1. Fermat’s Primality Test 

The Fermat probabilistic primality test is the first test that forms the basis of probabilistic primality tests. 

It is based on Fermat's little theorem, which was proposed by Fermat in 1640. Fermat's little theorem 

can be stated as follows. 

Theorem  1. [6] (Fermat's little theorem)  If 𝑝 is an odd prime number and if 𝑎 is any integer which is 

not a multiple of 𝑝, then we have the congruence  
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𝑎𝑝−1 ≡ 1 mod 𝑝 (1) 

Usually, we assume that 1 ≤ 𝑎 ≤ 𝑝 − 1.  For 𝑎 = 1 and 𝑎 = 𝑝 − 1, it is trivial that 𝑎𝑝−1 ≡ 1 mod 𝑝. 

Thus, we assume that 2 ≤ 𝑎 ≤ 𝑝 − 2 in the test. 

The equivalent statement of Theorem 1 is given as follows.  If 𝑎𝑝−1  ≢ 1 mod 𝑝 for at least one base 𝑎 

with 2 ≤ 𝑎 ≤ 𝑝 − 2, then 𝑝 is not a prime (namely, a composite number). Conversely, if 𝑎𝑝−1 ≡
1 mod 𝑝 for some base number 𝑎 with 2 ≤ 𝑎 ≤ 𝑝 −2, then 𝑝 may still be a prime or composite number. 

In this case, we cannot say 𝑝 is an odd prime number, but we call 𝑝 as a pseudoprime number with a 

base 𝑎.  

The Fermat probabilistic primality test is based on Fermat's little theorem. For simplicity, we refer to 

the Fermat test. Because of the above observation, we define the Fermat test as follows.  

Fermat Test: Let 𝑛 ≥ 3  be an odd integer, pick randomly some number 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2.  If the 

congruence 𝑎𝑛−1 ≢ 1 mod 𝑛, then return “𝑛 is composite,” else return “𝑛 is pseudoprime base 𝑎”. 

In the Fermat test, the congruence in (1) is checked for  𝑡 different values of base 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2 

to determine whether the number 𝑛 is a composite or pseudoprime number with a certain error rate 

𝐸𝑛 (𝑡).  

If 𝑡 different values of base 𝑎 are randomly selected, there is at most 
1

2𝑡  probability that the Fermat test 

will not detect the compositeness of the composite number 𝑛. Hence, the probability of a false result in 

the Fermat test is at most 
1

2𝑡. This says that the error rate of the Fermat test is defined as 𝐸𝑛 (𝑡) =
1

2𝑡. For 

a large enough 𝑡, this probability (i.e. error rate) is almost zero. 

The algorithm of the Fermat test is given below for an odd number 𝑛. 

Algorithm 1. Fermat Primality Test Algorithm 

Input: An odd integer  𝑛 and 𝑡 ∈ ℤ+ 

Output: 𝑛 is a composite or a pseudoprime with the error rate 𝐸𝑛 (𝑡) 

1: 𝐅𝐨𝐫  pick an integer randomly 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2  

2:      𝑑 ← gcd (𝑎, 𝑛) 

3:      𝐢𝐟 𝑑 > 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

4:      𝐞𝐥𝐬𝐞 𝑏 ← 𝑎𝑛−1 mod 𝑛 

5:      𝐞𝐧𝐝 𝐢𝐟 

6:      𝐢𝐟 𝑏 ≠ 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

7:      𝐞𝐧𝐝 𝐢𝐟 

8: 𝐞𝐧𝐝 𝐟𝐨𝐫 

9: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛 is a pseudoprime with the error rate  𝐸𝑛 (𝑡) 

Below you can find an example of Algorithm 1.  

Example 1. We verify whether 571 is composite or pseudoprime by the Fermat test. 

Input: 𝑛 = 571 with 𝑡 = 3 iterations. 

1: For  pick an integer randomly 𝑎 with 2 ≤ 𝑎 ≤ 569   

2: For  𝑎 = 2,       𝑎𝑛−1 = 2570 ≡ 1 mod 571 

3: For 𝑎 = 42 ,     𝑎𝑛−1 = 42570 ≡ 1 mod 571 

4: For 𝑎 = 123,    𝑎𝑛−1 = 123570 ≡ 1 mod 571 

Output: 571 is a pseudoprime number with the error rate 𝐸𝑛(𝑡) =
1

23 

Definition 2. Let 𝑛  be an odd composite number and 𝑎 be an integer with 1 ≤ 𝑎 ≤ 𝑛 − 1. 

• An integer 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2 is called a Fermat witness if 𝑎𝑛−1 ≢ 1 mod 𝑛. An integer 𝑎 

approves that 𝑛 is composite. 
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• An integer 𝑎 with 1 ≤ 𝑎 ≤ 𝑛 − 1 is a Fermat liar for 𝑛 if  𝑎𝑛−1 ≡ 1 mod 𝑛. 

The Fermat primality test gives always misleading results for some composite numbers. These 

composite numbers are called Carmichael numbers. Initially, in 1910, R. D. Carmichael discovered such 

numbers.  

Definition 3.  (Carmichael Numbers) If a composite number 𝑛 passes the Fermat primality test for any 

base 𝑎, then 𝑛 is called a Carmichael number.  

According to Fermat's little theorem, for 𝑛 to be a prime number, for every base 𝑎, 𝑎𝑛 − 𝑎 must divide 

𝑎. However, there are composite Carmichael numbers that satisfy this division. Therefore, the Fermat 

test fails to detect Carmichael numbers. More clearly, when we apply the Fermat test to a Carmichael 

number, the result will always be probably prime. Then the Fermat test will always give a false result 

for a Carmichael number.  The error probability of the Fermat test is virtually 100%. 

Example 2. We verify whether 561 is a pseudoprime or composite by the Fermat test. 

Input: 𝑛 = 561 with 𝑡 = 5 iterations. 

1: For  pick an integer randomly 𝑎 with 2 ≤ 𝑎 ≤ 559   

2: For 𝑎 = 13, 𝑎𝑛−1 = 13560 ≡ 1 mod 561 

3: For 𝑎 = 29,  𝑎𝑛−1 = 3560 ≡ 1 mod 561 

4: For 𝑎 = 52,  𝑎𝑛−1 = 52560 ≡ 1 mod 561 

5: For 𝑎 = 76,  𝑎𝑛−1 = 76560 ≡ 1 mod 561 

6: For 𝑎 = 125,  𝑎𝑛−1 = 125560 ≡ 1 mod 561 

Output: 561 is a pseudoprime number with the error rate 𝐸𝑛(𝑡) =
1

25 

Since 561 = 3 ⋅ 11 ⋅ 17 is a composite number, the bases 𝑎 = 13, 29, 52, 76 and 125 are Fermat liars 

for the composite number 561. A composite number 561 is a Carmichael number. 

2.2. Solovay-Strassen Primality Test 

The Solovay-Strassen primality test, developed by Robert Solovay and Volker Strassen, is the 

first probabilistic primality test used in Public Key Cryptography. This test is based on the Jacobi symbol 

and Euler’s criterion. The Jacobi symbol is a generalisation of the Legendre symbol, introduced by 

Jacobi in 1837. 

Jacobi Symbol.  [12] Given any positive odd integer 𝒏 and any integer 𝒂, the Jacobi symbol (
𝒂

𝒏
) is 

defined as 

(
𝑎

𝑛
) = {

1 if  𝑎 is a quadratic residue mod 𝑛         
−1 if  𝑎 is a quadratic nonresidue mod 𝑛
0 if  𝑎 divides 𝑛                                               

 

Theorem 2. (Euler's Criterion) If 𝒑 is an odd prime number and 𝒂 is a positive integer satisfying 

(𝒂, 𝒑) = 𝟏, then the following congruence holds: 

𝒂(𝒑−𝟏)/𝟐 ≡ (
𝒂

𝒑
)  𝐦𝐨𝐝 𝒑 

Equivalently, if this congruence does not hold, then 𝒑 is a composite number. Conversely, if this 

congruence holds for at least one base 𝒂, then 𝒑 is pseudoprime for base 𝒂. 

 

Given these observations, the Solovay-Strassen primality test is defined as follows. 

 

Solovay-Strassen Test: Let 𝒏  be an odd number and 𝒂 be a number with 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. If  
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𝒂(𝒏−𝟏)/𝟐 ≡ (
𝒂

𝒏
)  𝐦𝐨𝐝 𝒏 

then 𝒏 is called pseudoprime with the base 𝒂. Otherwise, 𝒏 is a composite number.  

This test is repeated 𝒕 times using 𝒕 different values of 𝒂. The probability of a composite number passing 

the test for  𝒕 times are at most  
𝟏

𝟐𝒕. The error rate of the Solovay-Strassen test is defined as 𝑬𝒏 (𝒕) =
𝟏

𝟐𝒕.  

The algorithm of the Solovay-Strassen test is given below. 

 

Algorithm 2: Solovay-Strassen Test Algorithm 

Input: An odd integer 𝑛 and 𝑡 ∈ ℤ+
 

Output: 𝑛 is either composite or pseudoprime with the error rate 𝐸𝑛(𝑡). 

1: 𝐅𝐨𝐫 pick an integer randomly 𝑎 with 1 ≤ 𝑎 ≤ 𝑛 − 1  

2:        𝑑 ← gcd (𝑎, 𝑛) 

3:         𝐢𝐟 𝑑 > 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

4:         𝐞𝐥𝐬𝐞 𝑏 ← 𝑎
𝑛−1

2  mod 𝑛 

5:         𝐞𝐧𝐝 𝐢𝐟  

6:         𝐢𝐟 𝑏 ≠ ±1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

7:         𝐞𝐧𝐝 𝐢𝐟 

8:          𝐽 ← (
𝑎

𝑛
) 

9:          𝐢𝐟 𝑏 ≠ 𝐽 mod 𝑛  𝐫𝐞𝐭𝐮𝐫𝐧  “composite” 

10:       𝐞𝐧𝐝 𝐢𝐟 

11: 𝐞𝐧𝐝 𝐟𝐨𝐫 

12: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛 is pseudoprime with the error rate 𝐸𝑛(𝑡) 

We provide an example of Algorithm 2.  

Example 3. We determine if 349 is composite or pseudoprime by the Solovay-Strassen test. 

Input: 𝑛 = 349, 𝑡 = 3 ∈ ℤ+ 

1: For 𝑎 = 2,  𝑏 = −1 ← 2348/2 mod 349 

2: 𝐽 =  −1 ← (
2

349
) 

3: For 𝑎 = 3,  𝑏 = −1 ← 3348/2 mod 349 

4: 𝐽 =  −1 ← (
3

349
)  

5: For 𝑎 = 5,  𝑏 = −1 ← 5348/2 mod 349 

6: 𝐽 =  −1 ← (
5

349
)  

Output: 349 is pseudoprime with the error rate 𝐸𝑛(𝑡) =
1

23
 

Definition 4.  Let 𝒏 be an odd composite number and 𝒂 is a number in the range 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. 

• If 𝒂(𝒏−𝟏)/𝟐 ≢ (
𝒂

𝒏
)  𝐦𝐨𝐝 𝒏, then 𝒂 is called an Euler witness of 𝒏. 

• If 𝒂(𝒏−𝟏)/𝟐 ≡ (
𝒂

𝒏
) 𝐦𝐨𝐝 𝒏, then 𝒂 is called an Euler liar of 𝒏. 

We finally review the Miller-Rabin probabilistic primality test, which is the fastest and has a lower 

error rate compared to the Solovay-Strassen test and the others. 
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2.3. Miller-Rabin Primality Test 

One of the most commonly preferred techniques for testing the primality of a given large odd 

number is the Miller-Rabin (M-R) probabilistic primality test. This test was developed by Michael Rabin 

based on the idea of Gary Miller and is particularly known for its low error rate. 

The Miller-Rabin primality test fails with 25% probability on every composite number. This test is 

repeated t times using t different values of 𝑎. The probability of a composite number passing the test for  

t times is at most 
1

4𝑡 . Then, the error rate of the Miller-Rabin test is defined as 𝐸𝑛 (𝑡) =
1

4𝑡.   

In the Miller-Rabin probabilistic test, to determine whether a given odd number 𝒏 is prime, the first step 

is to find the number 𝒔 and odd number 𝒓 such that 𝒏 − 𝟏 = 𝟐𝒔 𝒓. 

 

Theorem 3. Let 𝒑 be a positive odd integer and 𝒂 be a number with 𝟏 ≤ 𝒂 ≤ 𝒑 − 𝟏. Write 𝒑– 𝟏 = 𝟐𝒔𝒓, 

where 𝒓 is an odd integer and 𝒔 is an integer. If 𝒑 is an odd prime number, then the equation 

𝒂𝒓  ≡ 𝟏 𝐦𝐨𝐝 𝒑 holds or the equation 𝒂𝟐𝒋𝒓 ≡ −𝟏 𝐦𝐨𝐝 𝒑 holds for any 𝒋 with 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏. 

Equivalently, if the equation 𝒂𝒓  ≢ 𝟏 𝐦𝐨𝐝 𝒑 and the equation 𝒂𝟐𝒋𝒓 ≢ −𝟏 𝐦𝐨𝐝 𝒑 for every 𝒋 with 𝟎 ≤
𝒋 ≤ 𝒔 − 𝟏, then 𝒑 is a composite number. Conversely, for an integer 𝒂 in the range 𝟏 ≤ 𝒂 ≤ 𝒑 − 𝟏, if 

the equation 𝒂𝒓 ≡ 𝟏 𝐦𝐨𝐝 𝒑 holds, or if for 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏, the equation 𝒂𝟐𝒋𝒓 = 𝟏 𝐦𝐨𝐝 𝒑 holds, then 𝒑 

is considered as a pseudoprime for the base 𝒂. 

 

Given the above observations, we define the Miller-Rabin primality test based on Theorem 3. One can 

check whether a positive odd integer 𝒏 is prime as follows. 

 

Miller-Rabin Test: Let 𝒏 be a positive odd integer and 𝒂 be a number with 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. Write 

𝒏– 𝟏 = 𝟐𝒔𝒓, where 𝒓 is an odd integer and 𝒔 is an integer. 

• If the equation 𝒂𝒓  ≢ 𝟏 𝐦𝐨𝐝 𝒏 and the equation 𝒂𝟐𝒋𝒓 ≢ −𝟏 𝐦𝐨𝐝 𝒏 for every 𝒋 with 𝟎 ≤ 𝒋 ≤
𝒔 − 𝟏, then 𝒏 is a composite number. 

• If 𝒂𝒓 ≡ 𝟏 𝐦𝐨𝐝 𝒏 or 𝒂𝟐𝒋𝒓 ≡ −𝟏 𝐦𝐨𝐝 𝒏 holds for any 𝒋 in the range 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏, then 𝒏 is 

called a pseudoprime for the base 𝒂.  

The algorithm of the Miller-Rabin test is given below. 

Algorithm 3. Miller-Rabin Test Algorithm 

Input: An odd integer  𝑛 and 𝑡 ∈ ℤ+ 

Output ∶  𝑛 is either composite or prime with the error rate 𝐸𝑛(𝑡). 

1: Write 𝑛 − 1 = 2𝑠𝑟 where 𝑟 is an odd integer 

2:  𝐅𝐨𝐫 pick an integer randomly 𝑎 with 1 ≤ 𝑎 ≤ 𝑛 − 1  

2:        𝑑 ← gcd (𝑎, 𝑛) 

3:         𝐢𝐟 𝑑 > 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

4:         𝐞𝐥𝐬𝐞 𝑏 ← 𝑎𝑟 mod 𝑛 

5:         𝐞𝐧𝐝 𝐢𝐟  

6:         𝐢𝐟 𝑏 ≠ ±1 

7:      for  𝑗 from 1 to 𝑠 − 1  

8:         𝑐 ← 𝑎2𝑗𝑟 mod 𝑛 

9:                         𝐢𝐟 𝑐 = 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

10:   𝐞𝐧𝐝 𝐢𝐟 
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11.  end for 

12    𝐢𝐟 𝑐 ≠ −1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

13:  𝐞𝐧𝐝 𝐢𝐟 

14: 𝐞𝐧𝐝 𝐢𝐟 

15: end for 

16: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛 is a pseudoprime with the error rate  𝐸𝑛 (𝑡) 

We present an example of Algorithm 3. 

Example 4. We apply the Miller-Rabin test to check whether 91 is prime. 

Input: 𝑛 = 91 and 𝑡 = 1 

Write 𝑛 − 1 = 90 = 2 ∙ 45, where 𝑠 = 1 and  𝑟 = 45  

For   𝑎 = 2,  𝑏 = 𝑎𝑟 = 245 ≡ 57 mod 91  

Since  𝑏 ≠ ± 1 mod 91, 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

Output: 91 is composite 

Example 5. Check whether 91 is prime by the Miller-Rabin test 

Input: 𝑛 = 91 and 𝑡 = 3  

Write 𝑛 − 1 = 90 = 2 ∙ 45, where  𝑠 = 1, 𝑟 = 45 

For   𝑎 = 9,       𝑏 = 𝑎𝑟 = 945 ≡ 1 mod 91 

For  𝑎 = 16,     𝑏 = 𝑎𝑟 = 1645 ≡ 1 mod 91 

For 𝑎 = 75,      𝑏 = 𝑎𝑟 = 7545 ≡ 1 mod 91 

Output: 91 is pseudoprime with the error rate 𝐸𝑛(𝑡) =
1

43 

Definition 5.  Let 𝒏 be an odd composite number and 𝒂 is a number in the range 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. Write 

𝒏– 𝟏 = 𝟐𝒔𝒓, where 𝒓 is an odd integer and 𝒔 is an integer. 

• If the equation 𝒂𝒓  ≢ 𝟏 𝐦𝐨𝐝 𝒏 and the equation 𝒂𝟐𝒋𝒓 ≢ −𝟏 𝐦𝐨𝐝 𝒏 for every 𝒋 with 𝟎 ≤ 𝒋 ≤
𝒔 − 𝟏, then then 𝒂 is called a "strong witness" for 𝒏. 

• If 𝒂𝒓 ≡ 𝟏 𝐦𝐨𝐝 𝒏 or 𝒂𝟐𝒋𝒓 ≡ −𝟏 𝐦𝐨𝐝 𝒏 holds for any 𝒋 in the range 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏 although 𝒏 

is an odd composite number, 𝒂 is called a strong liar of 𝒏. 

In Example 4, 𝑎 = 2 is a strong witness for the composite number 91. In Example 5, 𝑎 = 9, 𝑎 = 16,

𝑎 = 75 are strong liars for the composite number 91. 

 

In the following section, we review the RSA algorithm. 

3. RSA ALGORITHM 

In this section, we review the RSA algorithm as an application of large prime numbers. In 1977, 

Ronald Rivest, Adi Shamir and Leonard Adleman proposed the RSA cryptosystem, which became the 

most widely used public-key cryptography scheme [10]. 

The RSA cryptosystem is based on the product of two large prime numbers. The security of RSA relies 

on the difficulty of factoring a large integer that is the product of two sufficiently large prime numbers. 

The RSA algorithm's reliability is directly proportional to the size of the prime numbers. The RSA 

cryptosystem is the most widely used public-key cryptography scheme. The RSA system is used in 

many application areas such as SSL/TLS protocol, S-MIME, S/WAN, STT and web security certificates 

for credit card transactions.  

The RSA algorithm has three main components: key generation, encryption and decryption. We assume 

that person Alice wants to send a secret message 𝒎 to person Bob. Bob generates a key pair: a public 

key and a private key for the RSA algorithm. Alice encrypts a message 𝒎 by using Bob’s public key. 
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Below are the steps that Alice would follow for RSA encryption to encrypt a message 𝒎  and send the 

encrypted message 𝒄 to Bob. 

Bob follows the RSA key generation steps. 

RSA Key Generation 

1. Two distinct large prime numbers 𝒑 and 𝒒 are generated.  

2. The value of 𝒏 = 𝒑 ⋅ 𝒒 is calculated. 

3. The value of Euler's Totient function 𝚽(𝒏) = (𝒑 − 𝟏) ∙ (𝒒 − 𝟏) is calculated. 

4. A random number 𝒆 is selected from 𝟏 < 𝒆 < 𝚽(𝒏) such that 𝐠𝐜𝐝 (𝒆, 𝚽(𝒏)) = 𝟏. 

5. The value of 𝒅 is found such that 𝒆 ∙ 𝒅 ≡ 𝟏 𝐦𝐨𝐝 𝚽(𝒏). 

 

The pair (𝒏, 𝒆) are the public parameters, and (𝒑, 𝒒, 𝚽(𝒏), 𝒅) are the private parameters. The RSA 

modulo parameter 𝒏 is always public. The parameter 𝒆 is the encryption key (public key) and the 

parameter 𝒅 is the decryption key (private key). 

Alice obtains Bob's public key pair (𝒏, 𝒆) and encrypts a message 𝒎 as follows. 

 

RSA Encryption 

• The message 𝒎 is written in the range 𝟏 ≤ 𝒎 ≤ 𝒏 − 𝟏. 

• Alice encrypts 𝒄 ≡ 𝒎𝒆  𝐦𝐨𝐝 𝒏. 

• Alice sends the encrypted message 𝒄 to Bob. 

Bob receives the encrypted message 𝒄 from Alice and decrypts it by using his private key 𝒅. 

RSA Decryption 

• Bob decrypts 𝒎 ≡  𝒄𝒅 𝐦𝐨𝐝 𝒏  

• Bob obtains the original message 𝒎. 

Hence, Alice and Bob establish a secure communication using the RSA algorithm. The security of the 

RSA algorithm derives from the difficulty of factoring large numbers. The public key and private key 

are functions of a pair of large prime numbers. RSA, one of the public-key encryption algorithms, uses 

two different keys. Plaintext encrypted with the public key can only be decrypted with the corresponding 

private key. The security of the RSA algorithm relies on selecting very large prime numbers. To ensure 

the system's security, it is crucial to generate the secure prime numbers of 𝑝 and 𝑞 such that 𝑛 = 𝑝 𝑞 are 

resistant to factorization algorithms. Therefore, prime numbers 𝑝 and 𝑞 should be selected according to 

certain criteria [2]. The selected parameters provide a security level that is proportional to the size of the 

RSA modulo 𝑛 [12]. 

The paper [11] discusses how the RSA system can be used in the upcoming era of electronic mail. 

In the paper [9], the measurement of the distance between the selected primes 𝑝 and 𝑞 for RSA is 

defined. In the book [10], the authors explain the most important techniques of modern cryptography. 

In the paper [7], the author uses the perfect secure prime number sequence defined in a new method for 

finding prime numbers in the RSA encryption method. For more details about the RSA system, the 

reader is directed to the main works [2,5,7,9,10,11]. 
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4. THE PERFORMANCE ANALYSES OF THE PRIMALITY TESTS 

In this section, we discuss the performance analyses of the probabilistic primality test algorithms.  

We implement in the C++ programming language the probabilistic primality tests such as the Fermat, 

Solovay-Strassen and Miller-Rabin tests given in Algorithms 1, 2 and 3. This section aims to perform 

and compare the performance analyses of these tests. The following criteria such as runtime, memory 

requirements and the number of operations are considered in the analysis of the performance of these 

tests.  When we compare the Fermat, Solovay-Strassen and Miller-Rabin primality tests, we observe 

that the Miller-Rabin test performs better than the others in terms of error rate and runtime. The error 

rate of the Fermat test is rather high, and so it is weak in detecting Carmichael numbers. The Solovay-

Strassen test has a high runtime due to  Jacobi symbol calculations. Additionally, while the Fermat test 

and the Solovay-Strassen perform with an error rate of 𝑬𝒏 (𝒕) =
𝟏

𝟐𝒕 , the Miller-Rabin test provides more 

accurate results with an error rate of 𝑬𝒏 (𝒕) =
𝟏

𝟒𝒕  (see in [12] for more detail). 

Below, we compare the performance of the probabilistic primality tests in terms of runtime for 

numbers with digit lengths ranging from 2 to 10. 

 Fermat Test: The Fermat test runtimes for numbers with digit lengths ranging from 2 to 10 are 

presented in Table 1.  

Table 1. Fermat Test runtime 

FERMAT TEST 

Number of Digits Mersenne Number Runtime (seconds) 

2 31 1,84 

4 1023 1,84 

6 262143 3,15 

8 16777215 6,04 

10 2147483647 7,18 

 

Solovay-Strassen Test: The Solovay-Strassen test runtimes for numbers with digit lengths ranging from 

2 to 10 are presented in Table 2.  

Table 2. Solovay-Strassen Test runtime 

SOLOVAY-STRASSEN TEST 

Number of Digits Mersenne Number Runtime (seconds) 

2 31 1,84 

4 1023 1,84 

6 262143 3,15 

8 16777215 4,04 

10 2147483647 5,62 

 

Miller-Rabin Test: Miller-Rabin Test runtimes for numbers with digit lengths ranging from 2 to 10 are 

preented in Table 3.   

Table 3. Miller-Rabin Test runtime 

MILLER-RABIN TEST 

Number of Digits Mersenne Number Runtime (seconds) 

2 31 1,67 
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4 1023 1,80 

6 262143 3,00 

8 16777215 3,10 

10 2147483647 3,22 

When we perform the performance analysis for numbers in the range of 20 to 200 digits using the Miller-

Rabin test and the Solovay-Strassen test, we observe that the Miller-Rabin test is faster than the Solovay-

Strassen test. The runtimes of the Miller-Rabin and Solovay-Strassen tests are given in Figure 1.  

 

Figure 1. Comparison of the runtimes of the Miller-Rabin and Solovay-Strassen tests 

 

5. CONCLUSION 

The RSA algorithm is the most popular public-key cryptosystem. This cryptosystem has 

both encryption and signature algorithms. The security of the RSA cryptosystem is based on 

the hardness of the integer factorisation problem for two sufficiently large prime numbers. To 

design the RSA cryptosystem for each person, two sufficiently large prime numbers are 

required. Thus, finding sufficiently large prime numbers is a significant research problem in the 

literature. To generate large prime numbers, the probabilistic primality tests are used in 

cryptography. In this paper, we review the probabilistic primality tests such as the Fermat, 

Solovay-Strassen and Miller-Rabin test algorithms. Moreover, the performance analyses of the 

Fermat, Solovay-Strassen and Miller-Rabin algorithms have been discussed, and their runtimes 

have been compared. Based on the obtained experimental results, it was concluded that the 

Miller-Rabin probabilistic primality test is more efficient in terms of error rate and performance 

criteria. 
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