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Abstract

This study examines the existence and approximation of solutions for a coupled system of fourth-
order boundary value problems (4th-BVPs), which model the interactions between two distinct but
interrelated physical systems. These coupled boundary value problems arise in various applications
in engineering and physics, including the analysis of bending behaviors in beams and vibrations in
interconnected structural components. By leveraging Green‘s functions and building upon prior
research in fourth-order differential equations, we derive sufficient conditions for the existence
and uniqueness of solutions to the system. Additionally, we provide a numerical framework for
approximating these solutions, offering practical insights for real-world applications.

1. Introduction

4th-BVPs play a crucial role in many engineering and physics applications, such as analyzing the bending behavior of elastic
beams, the stability of mechanical systems, fluid dynamics, biomechanical processes, and vibration models. These problems
enable the mathematical modeling and analysis of system behaviors by incorporating higher-order derivatives, which are
essential for capturing complex physical phenomena.

In real-world scenarios, physical systems rarely function in isolation; they often involve intricate interactions among multiple
structural elements, variables, or external forces. Modeling and analyzing such systems, particularly those with multiple
degrees of freedom or coupled dynamics, necessitate the formulation of systems of interdependent differential equations. These
systems provide a robust framework for understanding how the behavior of one component affects the entire system.

In this study, we focus on a coupled system of two fourth-order differential equations that represent two distinct yet interrelated
physical systems. The coupled system is described as follows:

ϕ ′′′′1 (x)+β 2
1 ϕ ′′1 (x) = Γ1(x,ϕ1(x),ϕ2(x))

ϕ ′′′′2 (x)+β 2
2 ϕ ′′2 (x) = Γ2(x,ϕ1(x),ϕ2(x))

ϕ1(0) = ϕ2(0) = ϕ1(L) = ϕ2(L) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(L) = ϕ ′2(L) = 0

, x ∈ [0,L]


(1.1)

Here, ϕ1 and ϕ2 represent the solutions corresponding to two distinct yet interacting physical systems, such as the bending
behaviors of two beams or the vibrations of two structural components. The functions Γ1 and Γ2 model the mutual interactions
between the two systems.

Such coupled systems are particularly significant in engineering disciplines, where the analysis of interconnected structures is
critical. They provide insight into how individual components influence the overall system behavior, enabling more effective
designs and analyses of complex structures.
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The motivation for this study stems from the need to model and analyze singular systems frequently encountered in engineering
and physics. Such systems are characterized by interdependent components, often described by a complex network of equations
due to their inherent interactions. For instance, in structural mechanics, beam systems or load-bearing elements interact with
one another in ways that cannot be adequately captured by isolated models. To address these challenges, systems of coupled
equations, such as those considered here, are essential for understanding the interplay between different components. The
analysis and solutions of such systems are of paramount importance for designing and optimizing physical systems.

4th-BVPs, in particular, pose significant challenges due to their nonlinearity and complex boundary conditions. These
difficulties make the investigation of existence, uniqueness, and approximation of solutions critical. The importance of such
analyses is underscored by their wide-ranging applications in engineering and physics, where understanding system behaviors
requires accurate mathematical modeling and solution methodologies.

Previous studies have substantially advanced the understanding of 4th-BVPs. For example, Agarwal [1] explored the existence
and uniqueness of solutions to 4th-BVPs in the context of elastic beam bending. Kaufmann and Kosmatov [2] and Habib
[3] extended this work to other applications. More recently, Almuthaybiri and Tisdell [4] established stricter conditions for
the existence and uniqueness of solutions, while Chen and Cui [5] investigated the continuity of derivatives for solutions to
4th-BVPs.

Despite this progress, studies addressing coupled systems of dependent differential equations remain relatively rare. Interest in
this area has grown in recent years, as seen in the work of Zhai and Anderson [6], who established existence and uniqueness
results for doubly dependent differential equation systems. Granas and Guenther [7] contributed analytical techniques for
solving more general systems of this type.

The objective of this work is to analyze the coupled system of 4th-BVPs defined by (1.1), focusing on the conditions for the
existence and uniqueness of solutions. Additionally, we aim to develop iterative methods for approximating solutions when
they exist, providing a comprehensive understanding of the system and its numerical treatment.

In a related study, Rao and Jagan [8] investigated the following boundary value problem (BVP):

ϕ ′′′′(x)+β 2ϕ ′′(x) = Γ(x,ϕ(x))

ϕ(0) = ϕ ′(0) = ϕ ′(L) = ϕ(L) = 0
, x ∈ [0,L]

 (1.2)

Using Green’s method, they demonstrated the existence of a solution for this equation, thereby contributing to the growing
body of work on 4th-BVPs.

Proposition 1.1. (see [8]) Let Γ(x,ϕ(x)) be a continuous function on [0,L]×R and Lipschitz with a Lipschitz constant K with
respect to the second variable. Assume that ω = 2−βLsin(βL)−2cos(βL) 6= 0, Γ(x,0) 6= 0, and

M <
1
K

where M = L3

6 k1 +
L4

24 (1+ k2) with

k1 =

∥∥∥∥ (sin(β t)−β t))(1− cos(βL)+(1− cos(β t))(βL− sin(βL))
βω

∥∥∥∥
∞

,

and

k2 =

∥∥∥∥ (cos(β t)−1))(1− cos(βL)+(β t− sin(β t))sin(βL)
ω

∥∥∥∥
∞

.

Then the equation (1.2) has a unique solution, and

L∫
0

|G(x, t)|dt ≤M.

is satisfied, where the Green’s function associated with (1.2) is defined as follows

G(x,ξ ) =


G1(x,ξ ), 0≤ ξ ≤ x≤ L,

G2(x,ξ ), 0≤ x≤ ξ ≤ L.
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where

K(x,ξ ) =
1

β 3 [β (x−ξ )− sinβ (x−ξ )] ,

Kx(x,ξ ) =
1

β 2 [1− cosβ (x−ξ )] ,

G1(x,ξ ) =
Kx(L,ξ ) [(βL− sinβL)(1− cosβx)]

β (2−2cosβL−βLsinβL)
+

Kx(L,ξ ) [(1− cosβL)(sinβx−βx)]
β (2−2cosβL−βLsinβL)

+
K(L,ξ ) [sinβL(βx− sinβx)]
(2−2cosβL−βLsinβL)

+
K(L,ξ ) [(1− cosβL)(cosβx−1)]

(2−2cosβL−βLsinβL)
+K(x,ξ ),

G2(x,ξ ) =
Kx(L,ξ ) [(βL− sinβL)(1− cosβx)]

β (2−2cosβL−βLsinβL)
+

Kx(L,ξ ) [(1− cosβL)(sinβx−βx)]
β (2−2cosβL−βLsinβL)

+
K(L,ξ ) [sinβL(βx− sinβx)]
(2−2cosβL−βLsinβL)

+
K(L,ξ ) [(1− cosβL)(cosβx−1)]

(2−2cosβL−βLsinβL)
.

From now on, let X denote the space of all functions that are four times differentiable, C(4)[0,L] where the norm ||ϕ||∞ on X is
the supremum norm. Additionally, the norm ||(ϕ1,ϕ2)|| on X2 is defined by ||(ϕ1,ϕ2)||= ||ϕ1||∞ + ||ϕ2||∞.

2. Main Results

Building on Proposition 1, we present our first result concerning the existence of solutions and their approximation for the
4th-BVPs system (1.1) in the following theorem.

Theorem 2.1. If

‖Γi(x,ϕ1(x),ϕ2(x))−Γi(x, ϕ̃1(x),ϕ2(x)‖∞
≤ Ki||ϕ1(x)− ϕ̃1(x)||∞

||Γi(x,ϕ1(x),ϕ2(x))−Γi(x,ϕ1(x), ϕ̃2(x))||∞ ≤ Li||ϕ2(x)− ϕ̃2(x)||∞

for i = 1,2, Γ1(x,0,ϕ2(x)) 6= 0, Γ2(x,ϕ1(x),0) 6= 0, and

θ = max{K1 +K2,L1 +L2}M < 1

where M = max{M1,M2}, and M1,M2 are given as in Proposition 1.1 for the first and second equations, respectively, then the
system (1.1) has a solution which is unique. Furthermore, the iteration {(ϕ1,n,ϕ2,n)}n≥0 defined by

ϕ1,n+1(x) =

L∫
0

G(x, t)Γ1(t,ϕ1,n(t),ϕ2,n(t))dt (2.1)

ϕ2,n+1(x) =

L∫
0

G(x, t)Γ2(t,ϕ1,n(t),ϕ2,n(t))dt

where (ϕ1,0,ϕ2,0) ∈ X2, is convergent to the solution.

Proof. Let T (ϕ1,ϕ2) =

(
L∫
0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt,
L∫
0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt
)

. Since we have

‖T (ϕ1,ϕ2)−T (ϕ̃1, ϕ̃2)‖ =

∥∥∥∥∥∥
L∫

0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt−
L∫

0

G(x, t)Γ1(t, ϕ̃1(t), ϕ̃2(t))dt

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
L∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt−
L∫

0

G(x, t)Γ2(t, ϕ̃1(t), ϕ̃2(t))dt

∥∥∥∥∥∥
∞

≤ M1 ‖Γ1(x,ϕ1(x),ϕ2(x))−Γ1(x, ϕ̃1(x), ϕ̃2(x))‖∞
+M2 ‖Γ2(x,ϕ1(x),ϕ2(x))−Γ2(x, ϕ̃1(x), ϕ̃2(x))‖∞

≤ K1M||ϕ1− ϕ̃1||∞ +L1M||ϕ2− ϕ̃2||∞ +K2M||ϕ1− ϕ̃1||∞ +L2M||ϕ2− ϕ̃2||∞
≤ M max{K1 +K1,L1 +L2}||(ϕ1,ϕ2)− (ϕ̃1, ϕ̃2)||
= θ ||(ϕ1,ϕ2)− (ϕ̃1, ϕ̃2)||,
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for any ϕ1,ϕ2, ϕ̃1, ϕ̃2 ∈ X , T is contraction and by Banach contraction principle, T has a unique fixed point which is also the
solution of (1.1) . Let (ϕ1,p,ϕ2,p) be the fixed point of T . Then, we have∥∥(ϕ1,n+1,ϕ2,n+1)− (ϕ1,p,ϕ2,p)

∥∥ =
∥∥T (ϕ1,n,ϕ2,n)−T (ϕ1,p,ϕ2,p)

∥∥
≤ θ ||(ϕ1,n,ϕ2,n)− (ϕ1,p,ϕ2,p)||
≤ θ

2||(ϕ1,n−1,ϕ2,n−1)− (ϕ1,p,ϕ2,p)||
...

≤ θ
n+1||(ϕ1,0,ϕ2,0)− (ϕ1,p,ϕ2,p)||.

Since θ < 1, we conclude that limn→∞||(ϕ1,n+1,ϕ2,n+1)− (ϕ1,p,ϕ2,p)||= 0.

Example 2.2. Let X =C(4)[0,1] and consider the following system of BVPs

ϕ ′′′′1 (x)+22ϕ ′′1 (x) = 2ϕ1(x)− 2
3 ϕ2(x)+1

ϕ ′′′′2 (x)+32ϕ ′′2 (x) =
6
5 ϕ1(x)−4ϕ2(x)+1

ϕ1(0) = ϕ2(0) = ϕ1(1) = ϕ2(1) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(1) = ϕ ′2(1) = 0

, x ∈ [0,1]


(2.2)

Then M1 = 1.104e− 01 and M2 = 6.985e− 02. Since Γ1(x,ϕ1(x),ϕ2(x)) = 2ϕ1(x)− 2
3 ϕ2(x)+ 1 and Γ2(x,ϕ1(x),ϕ2(x)) =

6
5 ϕ1(x)−4ϕ2(x)+1,it is also satisfied that

||Γ1(x,ϕ1(x),ϕ2(x))−Γ1(x, ϕ̃1(x),ϕ2(x))||∞ =

∥∥∥∥2ϕ1(x)−
2
3

ϕ2(x)+1− (2ϕ̃1(x)−
2
3

ϕ2(x)+1)
∥∥∥∥

∞

≤ 2‖ϕ1(x)− ϕ̃1(x)‖∞
, K1 = 2,

||Γ2(x,ϕ1(x),ϕ2(x))−Γ2(x, ϕ̃1(x),ϕ2(x))||∞ =

∥∥∥∥6
5

ϕ1(x)−4ϕ2(x)+1−
(

6
5

ϕ̃1(x)−4ϕ2(x)+1
)∥∥∥∥

∞

≤ 6
5
||ϕ1(x)− ϕ̃1(x)||∞, K2 =

6
5
,

||Γ1(x,ϕ1(x),ϕ2(x))−Γ1(x,ϕ1(x), ϕ̃2(x))||∞ =

∥∥∥∥2ϕ1(x)−
2
3

ϕ2(x)+1− (2ϕ1(x)−
2
3

ϕ̃2(x)+1)
∥∥∥∥

∞

≤ 2
3
||ϕ2(x)− ϕ̃2(x)||∞, L1 =

2
3
,

||Γ2(x,ϕ1(x),ϕ2(x))−Γ2(x,ϕ1(x), ϕ̃2(x))||∞ =

∥∥∥∥6
5

ϕ1(x)−4ϕ2(x)+1−
(

6
5

ϕ1(x)−4ϕ̃2(x)+1
)∥∥∥∥

∞

≤ 4||ϕ2(x)− ϕ̃2(x)||∞, L2 = 4,

for all ϕ1,ϕ2, ϕ̃1, ϕ̃2 ∈ X . Obviously, since K1M1 < 1 and K2M2 < 1, by Proposition 1.1,

ϕ1(x) =
1∫

0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt

has a solution for fixed ϕ2 ∈ X and

ϕ2(x) =
1∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt

has a solution for fixed ϕ1 ∈ X. Let

T (ϕ1,ϕ2) =

 1∫
0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt,
1∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt


=

 1∫
0

G(x, t)
(

4
7

ϕ1(t)+
1
4

ϕ2(t)+1
)

dt,
1∫

0

G(x, t)
(

2
3

ϕ1(t)−
1
2

ϕ2(t)+1
)

dt

 .
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Since

θ = max{K1 +K2,L1 +L2}M

= max
{

2+
6
5
,

2
3
+4
}

1.104e−01

= 5.155e−01 < 1,

the system (2.2) has the solution by Theorem 2.1. In addition, the iteration {(ϕ1,n(x),ϕ2,n(x))}n≥0 defined by

ϕ1,n(x) =

1∫
0

G(x, t)
(

4
7

ϕ1,n(t)+
1
4

ϕ2,n(t)+1
)

dt (2.3)

ϕ2,n(x) =

1∫
0

G(x, t)
(

2
3

ϕ1,n(t)−
1
2

ϕ2,n(t)+1
)

dt

is convergent to the solution staring with (ϕ1,0,ϕ2,0) = (x,x). Let R(x,n,Γi) = |ϕ ′′′′i,n (x)+β 2ϕ ′′i,n(x)−Γi(x,ϕ1,n(x),ϕ2,n(x))|
be the residual error for i = 1,2 and n > 0. The Residual errors for n = 1,2, 3 are shown in Figure 1 and Table 1.
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n=1 n=2 n=3
R(x,1,Γ1) R(x,1,Γ2) R(x,2,Γ1) R(x,2,Γ2) R(x,3,Γ1) R(x,3,Γ2)

0 6,619E-02 8,347E-03 5,435E-03 3,253E-03 4,366E-04 1,394E-04
0.1 6,782E-02 6,436E-03 5,613E-03 3,372E-03 4,492E-04 1,343E-04
0.2 7,231E-02 1,722E-03 6,091E-03 3,689E-03 4,834E-04 1,222E-04
0.3 7,906E-02 4,229E-03 6,787E-03 4,143E-03 5,339E-04 1,088E-04
0.4 8,759E-02 9,935E-03 7,622E-03 4,674E-03 5,957E-04 9,953E-05
0.5 9,743E-02 1,416E-02 8,530E-03 5,233E-03 6,646E-04 9,895E-05
0.6 1,082E-01 1,604E-02 9,461E-03 5,783E-03 7,373E-04 1,102E-04
0.7 1,197E-01 1,518E-02 1,038E-02 6,305E-03 8,115E-04 1,342E-04
0.8 1,316E-01 1,169E-02 1,128E-02 6,805E-03 8,862E-04 1,697E-04
0.9 1,439E-01 6,216E-03 1,219E-02 7,306E-03 9,623E-04 2,131E-04
1.0 1,566E-01 1,674E-04 1,313E-02 7,856E-03 1,042E-03 2,587E-04

Table 1: Residual errors for n = 1,2, and 3

Theorem 2.3. Let Γi for i = 1,2 and θ be as in Theorem 2.1 and assume that there exist Γ̃i(x,ϕ1(x),ϕ2(x)) functions on
[0,L]×X2 such that

||Γi(x,ϕ1(x),ϕ2(x))− Γ̃i(x,ϕ1(x),ϕ2(x))||∞ ≤ ξi

for i = 1,2, and the following system

ϕ ′′′′1 (x)+β 2ϕ ′′1 (x) = Γ̃1(x,ϕ1(x),ϕ2(x))

ϕ ′′′′2 (x)+β 2
1 ϕ ′′2 (x) = Γ̃2(x,ϕ1(x),ϕ2(x))

ϕ1(0) = ϕ2(0) = ϕ1(L) = ϕ2(L) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(L) = ϕ ′2(L) = 0

, x ∈ [0,L]


(2.4)

has a solution. Then

||(ϕ1,p,ϕ2,p)− (ϕ̃1,p, ϕ̃2,p)|| ≤M
ξ1 +ξ2

1−θ

holds for (ϕ1,p,ϕ2,p) and (ϕ̃1,p, ϕ̃2,p), where (ϕ1,p,ϕ2,p) and (ϕ̃1,p, ϕ̃2,p) are the the solutions of systems (1.1) and (2.4),re-
spectively, and M = max{M1,M2}, and M1,M2 are given as in Propositon 1.1 for first and second equation, respectively.

Proof. Let

T (ϕ1,ϕ2) =

 L∫
0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt,
L∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt


and

S(ϕ1,ϕ2) =

 L∫
0

G(x, t)Γ̃1(t,ϕ1(t),ϕ2(t))dt,
L∫

0

G(x, t)Γ̃2(t,ϕ1(t),ϕ2(t))dt

 .

Then, by Theorem 2.1, T has a fixed point (ϕ1,p,ϕ2,p) which is the unique solution of system (1.1). Let (ϕ1,0,ϕ2,0) =
(ϕ̃1,p, ϕ̃2,p) be a fixed point of S, which is also a solution of system (2.4), and define (ϕ1,n+1,ϕ2,n+1) = T (ϕ1,n,ϕ2,n). Then,
{(ϕ1,n+1,ϕ2,n+1)}n≥0 converges to (ϕ1,p,ϕ2,p) by Theorem 2.1. Since

||(ϕ1,n+1,ϕ2,n+1)− (ϕ1,n,ϕ2,n)|| = ||T (ϕ1,n,ϕ2,n)−T (ϕ1,n−1,ϕ2,n−1)||
≤ θ ||(ϕ1,n,ϕ2,n)− (ϕ1,n−1,ϕ2,n−1)||

...

≤ θ
n||(ϕ1,1,ϕ2,1)− (ϕ1,0,ϕ2,0)||,
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then

||(ϕ1,n,ϕ2,n)− (ϕ1,0,ϕ2,0)|| ≤
n

∑
k=1
||(ϕ1,k,ϕ2,k)− (ϕ1,k−1,ϕ2,k−1)||

≤
n

∑
k=1

θ
k−1||(ϕ1,1,ϕ2,1)− (ϕ1,0,ϕ2,0)||

≤ 1
1−θ

||(ϕ1,1,ϕ2,1)− (ϕ1,0,ϕ2,0)||

=
1

1−θ
||T (ϕ1,0,ϕ2,0)−S(ϕ1,0,ϕ2,0)||

≤ 1
1−θ


∥∥∥∥ L∫

0
G(x, t)Γ1(t,ϕ1,0(t),ϕ2,0(t))dt−

L∫
0

G(x, t)Γ̃1(t,ϕ1,0(t),ϕ2,0(t))dt
∥∥∥∥

∞

+

∥∥∥∥ L∫
0

G(x, t)Γ2(t,ϕ1,0(t),ϕ2,0(t))dt−
L∫
0

G(x, t)Γ̃2(t,ϕ1,0(t),ϕ2,0(t))dt
∥∥∥∥

∞



≤ 1
1−θ


∥∥∥∥ L∫

0
G(x, t)dt

∥∥∥∥
∞

∥∥ Γ1(x,ϕ1,0(x),ϕ2,0(x))− Γ̃1(x,ϕ1,0(x),ϕ2,0(x))
∥∥

∞

+

∥∥∥∥ L∫
0

G(x, t)dt
∥∥∥∥

∞

∥∥ Γ2(x,ϕ1,0(x),ϕ2,0(x))− Γ̃2(x,ϕ1,0(x),ϕ2,0(x))
∥∥

∞


≤ M

ξ1 +ξ2

1−θ

which implies that

||(ϕ1,p,ϕ2,p)− (ϕ̃1,p, ϕ̃2,p)|| ≤M
ξ1 +ξ2

1−θ
.

Example 2.4. Consider the following system of BVP

ϕ ′′′′1 (x)+22ϕ ′′1 (x) = 2ϕ
9
10

1 (x)− 2
3 ϕ

4
3

2 (x)+ x+9
x+10

ϕ ′′′′2 (x)+32ϕ ′′2 (x) =
6
5 ϕ

cos(ϕ1(x))
1 (x)−4ϕ

sin(ϕ2(x))
ϕ2(x)

2 (x)+1

ϕ1(0) = ϕ2(0) = ϕ1(1) = ϕ2(1) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(1) = ϕ ′2(1) = 0

, x ∈ [0,1]


(2.5)

Solving the this system of BVP directly is highly challenging or even infeasible due to the nonlinear functions involved in.
However, thanks to Theorem 2.3, approximate solutions close to the exact one can be obtained without directly solving the
equation.

Let X , Γ1, Γ2,β , and β2 be as defined in Example 2.2. Additionally, let X = {ϕ ∈ X : 0≤ ϕ(x)≤ 1}. It can be observed from

Figure 1 that the solution of system (2.2) belongs to X×X. Then the functions Γ̃1(x,ϕ1(x),ϕ2(x)) = 2ϕ
9
10

1 (x)− 2
3 ϕ

4
3

2 (x)+ x+9
x+10

and Γ̃2(x,ϕ1(x),ϕ2(x)) = 6
5 ϕ

cos(ϕ1(x))
1 −4ϕ

sin(ϕ2(x))
ϕ2(x)

2 +1 satisfy the following

||Γ1(x,ϕ1(x),ϕ2(x))− Γ̃1(x,ϕ1(x),ϕ2(x))||∞ =

∥∥∥∥ 2ϕ1(x)− 2
3 ϕ2(x)+1−

(
2ϕ

9
10

1 (x)− 2
3 ϕ

4
3

2 (x)+
x+9

x+10

) ∥∥∥∥
∞

≤
∥∥∥2ϕ1(x)−2ϕ1(x)

9
10

∥∥∥
∞

+

∥∥∥∥2
3

ϕ2(x)−
2
3

ϕ
4
3

1 (x)
∥∥∥∥

∞

+

∥∥∥∥1− x+9
x+10

∥∥∥∥
∞

≤ 2.43e−01 = ξ1,

||Γ2(x,ϕ1(x),ϕ2(x))− Γ̃2(x,ϕ1(x),ϕ2(x))||∞ =

∥∥∥∥∥ 6
5 ϕ1(x)−4ϕ2(x)+1−

(
6
5 ϕ

cos(ϕ1(x))
1 (x)−4ϕ

sin(ϕ2(x))
ϕ2(x)

2 (x)+1

) ∥∥∥∥∥
∞

≤
∥∥∥∥6

5
ϕ1(x)−

6
5

ϕ
cos(ϕ1(x))
1 (x)

∥∥∥∥
∞

+

∥∥∥∥∥4ϕ2(x)−4ϕ

sin(ϕ2(x))
ϕ2(x)

2 (x)

∥∥∥∥∥
∞

≤ 1.52e−01 = ξ2,
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for all ϕ1,ϕ2 ∈ X .Since M1 = 1.104e− 01 and M2 = 6.985e− 02, we have M = max{M1,M2} = 1.104e− 01. Then, by
Theorem 2.3, we have:

||(ϕ1,p,ϕ2,p)− (ϕ̃1,p, ϕ̃2,p)|| ≤ M
ξ1 +ξ2

1−θ

= 9.02e−02

where (ϕ1,p,ϕ2,p) is the solution of the system (2.2) and (ϕ̃1,p, ϕ̃2,p) is the solution of the system (2.5). As a result, without
solving the system (2.5) which is more challenging to solve, it is possible to approximate the solution by solving the simpler
system (2.2), which closely resembles the original system (2.5).

Theorem 2.5. Let M be as in Proposition 1.1. If

||Γ(x,ϕ1(x))−Γ(x,ϕ2(x))||∞ ≤ K||ϕ1(x)−ϕ2(x)||∞

and θ = KM < 1, then the iteration defined by

ϕn+1(x) =
L∫

0

G(x, t)Γ(t,ϕn(t))dt (2.6)

is convergent to the solution of the following BVP problem

ϕ ′′′′(x)+β 2ϕ ′′(x) = Γ(x,ϕ(x))

ϕ(0) = ϕ ′(0) = ϕ(L) = ϕ ′(L) = 0
, x ∈ [0,L]

 . (2.7)

Proof. Let T (ϕ) =
L∫
0

G(x, t)Γ(t,ϕ(t))dt. Then T is a contraction, indeed,

‖T (ϕ1)−T (ϕ2)‖∞
=

∥∥∥∥∥∥
L∫

0

G(x, t)Γ(t,ϕ1(t))dt−
L∫

0

G(x, t)Γ(t,ϕ2(t))dt

∥∥∥∥∥∥
∞

≤ M ‖Γ(x,ϕ1(x))−Γ(x,ϕ2(x))‖∞

≤ θ ||ϕ1−ϕ2||∞,

for any ϕ1,ϕ2 ∈ X , and thus, T has a unique solution by Proposition 1.1. Let ϕp = T (ϕp) =
L∫
0

G(x, t)Γ(t,ϕp(t))dt be the

unique fixed point of T . Then, we have ∥∥ϕn+1−ϕp
∥∥

∞
=

∥∥T (ϕn)−T (ϕp)
∥∥

∞

≤ θ ||ϕn−ϕp||∞
≤ θ

2||ϕn−1−ϕp||∞
...

≤ θ
n+1||ϕ0−ϕp||∞

which gives limn→∞||ϕn+1−ϕp||= 0, since θ < 1.

Example 2.6. Let X =C(4)[0,1] and consider the following BVP

ϕ ′′′′(x)+22ϕ ′′(x) = 2ϕ(x)+ x2 +1

ϕ(0) = ϕ(0) = ϕ(1) = ϕ(1) = 0
, x ∈ [0,1]

 (2.8)

Then M = 2.209e−01. Since Γ(x,ϕ(x)) = 2ϕ(x)+ x2 +1,

||Γ(x,ϕ1(x))−Γ(x,ϕ2(x))||∞ = ||2ϕ1(x)+ x2 +1− (2ϕ2(x)+ x2 +1)||∞
≤ 2||ϕ1(x)−ϕ2(x)||∞, K = 2,

for all ϕ1,ϕ2 ∈ X . Obviously, since KM < 1, by Proposition 1.1, we have

ϕp(x) =
1∫

0

G(x, t)Γ(t,ϕp(t))dt
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n=1 n=2 n=3
R(x,1, f ) R(x,2, f ) R(x,3, f )

0 7,710E-02 6,489E-03 5,481E-04
0.1 7,953E-02 6,701E-03 5,659E-04
0.2 8,607E-02 7,269E-03 6,139E-04
0.3 9,564E-02 8,095E-03 6,838E-04
0.4 1,072E-01 9,089E-03 7,678E-04
0.5 1,200E-01 1,017E-02 8,593E-04
0.6 1,332E-01 1,128E-02 9,531E-04
0.7 1,465E-01 1,239E-02 1,046E-03
0.8 1,596E-01 1,347E-02 1,138E-03
0.9 1,727E-01 1,455E-02 1,229E-03
1.0 1,863E-01 1,568E-02 1,324E-03

Table 2: Residual errors for n = 1,2,and 3

which is the solution of equation (2.8). Also,

ϕn+1(x) =
1∫

0

G(x, t)(2ϕn(t)+ t2 +1)dt (2.9)

is convergent to the solution ϕp. Let R(x,n,Γ) = |ϕ ′′′′n (x)+β 2ϕ ′′n (x)−Γ(x,ϕn(x))| be the residual error for n > 0. Residual
errors for n = 1,2,and 3 are shown in Figure 2 and Table 2.
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Figure 2

Theorem 2.7. Let Γ and θ be as in the Theorem 2.5 and M be as in Proposition 1.1. Assume that there exist Γ̃(x,ϕ(x))
functions on [0,L]×X such that

||Γ(x,ϕ(x))− Γ̃(x,ϕ(x))||∞ ≤ ξ .

If

ϕ ′′′′(x)+β 2ϕ ′′(x) = Γ̃(x,ϕ(x))

ϕ(0) = ϕ ′(0) = ϕ(L) = ϕ ′(L) = 0
, x ∈ [0,L]

 (2.10)

has a solution, then

||ϕp− ϕ̃p||∞ ≤M
ξ1

1−θ

holds for ϕp, ϕ̃p which are the the solutions of BVPs (2.7) and (2.10),respectively.
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Proof. Let T (ϕ) =
L∫
0

G(x, t)Γ(t,ϕ(t))dt and S(ϕ) =
L∫
0

G(x, t)Γ̃(t,ϕ(t))dt. Then by Theorem 2.1, T has a fixed point ϕp which

is the unique solution of system (1.2). Let ϕ0 = ϕ̃p be the fixed point of S which is also the solution of system (2.10). Define
ϕn+1 = T (ϕn). Then {ϕn}n≥0 converges to ϕp by Theorem 2.5. Since

||ϕn+1−ϕn||∞ = ||T (ϕn)−T (ϕn−1)||∞
≤ θ ||ϕn−ϕn−1||∞

...

≤ θ
n||ϕ1−ϕ0||∞,

||ϕn−ϕ0||∞ ≤
n

∑
k=1
||ϕk−ϕk−1||∞

≤
n

∑
k=1

θ
k−1||ϕk−ϕk−1||∞

≤ 1
1−θ

||ϕk−ϕk−1||∞

=
1

1−θ
||T (ϕ0)−S(ϕ0)||∞

=
1

1−θ

∥∥∥∥∥∥
L∫

0

G(x, t)Γ(t,ϕ0(t))dt−
L∫

0

G(x, t)Γ̃(t,ϕ0(t))dt

∥∥∥∥∥∥
∞


≤ 1

1−θ

∥∥∥∥∥∥
L∫

0

G(x, t)dt

∥∥∥∥∥∥
∞

∥∥∥Γ(x,ϕ0(x))− Γ̃(x,ϕ0(x))
∥∥∥

∞


= M

ξ

1−θ

which implies that

||ϕp− ϕ̃p||∞ ≤M
ξ

1−θ

Example 2.8. Consider the following BVP:

ϕ ′′′′(x)+22ϕ ′′(x) = 2ϕϕ2(x)+cos(ϕ(x))(x)+ x2 +1

ϕ(0) = ϕ ′(0) = ϕ(1) = ϕ ′(1) = 0
, x ∈ [0,1]

 (2.11)

Solving this BVP directly is highly challenging or even infeasible due to the nonlinear functions involved in. However, thanks
to Theorem 2.3, approximate solutions close to the exact one can be obtained without directly solving the equation.

Let Γ and β be as defined in Example 2.6 and X = {ϕ ∈ X : 0≤ ϕ(x)≤ 1}. It can be observed from figure 2 that the solution
of equation (2.5) belongs to X×X. Then Γ̃(x,ϕ(x)) = 2ϕϕ2(x)+cos(ϕ(x))(x)+ x2 +1 satisfy the following

||Γ(x,ϕ(x))− Γ̃(x,ϕ(x))||∞ =
∥∥∥2ϕ(x)+ t2 +1− (2ϕ

ϕ2(x)+cos(ϕ(x))(x)+ x2 +1)
∥∥∥

∞

≤
∥∥∥2ϕ(x)−2ϕ

ϕ2(x)+cos(ϕ(x))(x)
∥∥∥

∞

≤ 0.61e−01 = ξ

for all ϕ ∈ X and since M = 2.209e−01 and θ = KM = 4.419e−01.Then, by Theorem 2.3 we have the following estimate
for the solution of the system (2.5)

||ϕp− ϕ̃p||∞ ≤ M
ξ1

1−θ

= 2.42e−02

in which ϕp is the solution of the equation (2.2) and ϕ̃p is the solution of the equation (2.11). As a result, without solving the
equation (2.11) which is more challenging to solve, it is possible to approximate the solution of the equation (2.11) by solving
the simpler equation (2.2) , which closely resembles the original equation.
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3. Conclusion

In this study, we have analyzed a system of interdependent fourth-order differential equations that model coupled physical
phenomena, such as the bending of elastic beams and the vibrations of structural elements. By establishing conditions for
the existence and uniqueness of solutions, we have provided a rigorous mathematical framework for addressing higher-order
boundary value problems. Furthermore, our application of iterative methods not only demonstrates the solvability of such
systems but also offers practical tools for engineers and scientists working on related applications.

Our findings contribute significantly to the literature by extending classical results on fourth-order boundary value problems
and complementing prior works. Beyond the theoretical advancements, our results open several promising directions for future
research. One key extension involves exploring more generalized nonlinear coupled systems and their numerical solutions.
Additionally, investigating the stability and convergence properties of iterative methods in different boundary conditions could
enhance their applicability.

In conclusion, this study underscores the importance of coupled fourth-order differential equation systems in mathematical
modeling and highlights the need for advanced analytical and numerical techniques for their solution. The broader impact of
this work lies in its potential to bridge theoretical insights with practical applications across multiple scientific and engineering
domains.
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