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ON COMPLEX MODIFIED GENUINE
SZASZ-DURRMEYER-STANCU OPERATORS

NURSEL QETIN

ABSTRACT. In this paper, we introduce complex modified genuine Szdsz-Durrmeyer-
Stancu operators to improve the results obtained in [4] and present overcon-
vergence properties of these operators. We obtain some estimates on the rate

of convergence, a Voronovskaja-type result and the exact order of approxima-

tion for these operators attached to analytic functions of exponential growth

on compact disks.

1. INTRODUCTION

For a function f € C[0,00) satisfying an exponential growth condition, that is
|f(z)] < CeP? z € [0,00), with some constants C > 0 and B > 0, Phillips [20]
first defined the following operators

o0

L(fi) = 1Y pos(2) [ Drsa (OOt + pra()0) | 0> B
j=1 0
where }

pn,j(x) =e j' } j S N07 WS [0700)7

which in the literature often are known as Phillips operators. Since Phillips op-
erators preserve constant as well as linear functions, these operators can be also
named as genuine Szdsz-Durrmeyer operators. After that in case of real variable,
these operators and their various generalizations have been widely studied by sev-
eral researchers, see e.g. [IL [6] [14] 18] T9] etc.

Recently, the problem of approximation of complex operators has been one of
the interesting research area. Some approximation properties of complex Bernstein
polynomials in various domains in complex plane were presented by Wright [23],
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Kantorovich [I6], Bernstein [2], Tonne [2I] and Lorentz [I7]. The first result con-
cerning the convergence of complex Szdsz operators which is a generalization of
the Bernstein polynomials was proved by Gergen et. al. [10]. Then, Jakimovski
et. al. [15], Wood [22] and Deeba [5] studied some generalizations of Szdsz oper-
ators in complex domains. But all these above mentioned results were obtained
without any quantitative estimate. In [7], Gal obtained quantitative estimates for
the convergence and Voronovskaja’s theorem in addition to the results obtained in
[I7] and [10]. Also, Gal compiled the results on overconvergence properties of the
well known complex operators in his book [7]. Later on, a large number of authors
have established approximation properties with quantitative estimates for different
operators in complex domain (see e.g. [3} 8 [O] [IT] 12} 13]).

Motivation for the present work is the complex modified genuine Szdsz-Durrmeyer
operators which have been introduced and studied in [4]. In order to improve the
results obtained in [4], we consider the Stancu variant of complex modified genuine
Szdsz-Durrmeyer operators as

oo

gy & ant + ab,
LR = 5 S mnates@ s 01 (252 )
j=1 0
+ (z)f(&) (1.1)
Pabn,0 an + Bby,” .
where
J
—Z—"z(anz)

pan,bmj(z) =€ °'n .'bj

where {a,,}, {b,} are given sequences of strictly positive numbers such that lim 2= =

n—oo “n

0 and o <1 5 and also «, 8 are two given real parameters satisfying the condition
0 <« < S. Note that for the special case a = § = 0, we get the operators defined

in []. Also, by taking a,, = n, b, = 1 and a = 8 = 0, these operators become com-
plex genuine Szdsz-Durrmeyer operators given in [9]. In this work, we investigate
the overconvergence properties of the operators defined by in compact disks.
We obtain the rate of convergence, the Voronovskaja-type result with quantitative
estimate and the exact order of approximation for these operators.

In our results, by H (Dg) with Dp = {z€ C:|z|] < R, 1 <R < oo} we con-
sider the class of the functions satisfying f : [R,00) U D — C is integrable on

[0, 00), continuous in [R,00) U Dy and analytic in Dg i.e. f(z chzk for all

z € Dg.

2. AUXILIARY RESULTS

The following auxiliary results will be very useful to prove our main results.
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Lemma 1. Lete, (z) =2Y, v e NU{0},2€C, ne N and 0 < o < 8. Then, we
have
k k—v
kN a? (aby)
re i) =3 (F) B, e
vz;) v (anJFan)k ’
where L, , denotes L( ’)n

Proof. From the definition (1.1), we have

o0

( 8) ant + ab k
an: (ex;z) = Zpa”, b ( /pa”, borj—1(1) <an+5bn> dt
0
ab,
—|—Pan,bn,0(z)(m) :
By binomial theorem, we get
[e%S) k k—v
kN a® (aby,)
L(a f) (ek Z) = on an n] \/pa71 bn,j— 1 ( )n n tUdt
b 32:: 0 U—O v (a'n +ﬁbn)k
k -
k\ a (aby,)
0.0 3 ( )"0“
‘ UZ::O v (an+5bn)k
k k—v
k\ a¥ (ab,
= Z ( >W€Lan,bn(ev;z)-
v=0 v (an+/6bn)
O
Lemma 2. Let «, 8 be satisfying 0 < a < 8 and suppose that f € H (Dgr) and
there exist B,C > 0 such that |f(x)| < CeP®, for all x € [R +oo) Also let ng € N
be such that 3» —l—ﬂ B > 0 for allm > ng. Denoting f(z chz z € Dpg, we
k=0
have L chL ek, z), for all z € D and n > ng with n,ng € N.

Proof. For any m € N and 0 < r < R, we define

fm(z) = icjzj if |z| <7 and f,(x) = f(z)if z € (r,+00).

Jj=0

Since |fm(2)] < Z lcj|ri = C,, for all |z| <7 and m € N, f is continuous [r, R],
Jj=0

from the hypothesis on f, there exists a constant C, r > 0 (independent of m)

such that |f,,(z)] < C,. geP®, for all m € N and z € [0,+0c). This implies that
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by the ratio criterion, for each fixed m,n € N, z € C and for all n > ny with
= +B8-B>0,

oo j -1
(@) f ‘ < In ‘e*%fz M‘/ef%t (ant) f (ant—i_abn)‘dt
ﬂ.'ru 7( m; % ) - b, le j'b% J (] 1)!bj—1 m a, + b,
an ab,
+‘€ B #
S <an +an>'
an | —per| o () it
S n eibzz Z n n /efbnttj 1CTR€ (“7;1+Bb:)dt
bn =1 ]'b% (]71)'1);7,_10 s
_4n bn Olbn >m
+le W% |cog+ ¢ +...+em
0 ! n +/8bn m <an+6bn
n 7 i an|Z| aj ! B_ob i (& Ban ) i 1
S 7 eibnz CTRe an+gbn /67 ﬁ*m t]— dt
bn = g, (-1t J
+\e’ﬁz\{|c()l+\c1\+...+|cm|}
| _an i g o
D e < O —
i 'bj b] , (a, Ba )J
J=1 n no__ n
bn an+Bbr
+ e_ﬁzl{lc()l +ler] + v+ leml}
J
. [(“") el / (g2 —ﬁ;bn)}
= CryReBngn e b:’z :
j=0 7!
+\€’ﬁz\{la)l+\c1\+...+|cm|}
< (Crr A leol + lea] + - + [em]) ’e—* Battrr () %1a/ (82— B0 )
< o0

Therefore, L((;i’fgi (fm; 2) is well-defined. Denoting

i (2) = crer(2) if |z| <rand fi,x(z) =

n{(x) if z € (r,00),

+1
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it is clear that each f,, j is of exponential growth on [0, 00) and fi,, (2 Z Sk (

Since L 6 ) is linear, we have
(a’ﬂ (fm32) chL ek;z), for all |z| <,

it suffices to prove that hm L( ’B) C(fmi2) = Ll(la’f) (f;2) for any fixed n € N and
e nsbn

|z| <. But this is 1mmedlate from im || fm = fll, =0, from |[fu. = fll 5o, 4+00) <

| f — fll,, and from the following inequality

(LD (fs 2) = L) (£32)

S al e ‘Z;’z i (aﬂ |Z|)j /67%t (ant)J7 - fm (ant+ abn) _ f (ant+abn
by, = j'b% ) (] )'bj an + Bb, an + Bb,
an ab ab
—52z n B n
Tl fm <an+ﬁb > f(“ﬂ"'ﬁbn)'
< ai 6*2—22 i an |Z| a%—l ||f _ f” e*%tt]‘—ldt
= b, — bl (-t B0
Jj=1 0
+‘€7b7 _f||BO+oo)
o e S ol @ CR—
< ‘e " ZT [ fm — f||B[o,+oo)§+‘e " = fllBj0,+00)
j=1 :On n
- \e* 2| B2 o = £l g, o0
< lemmr e = I,
valid for all [z| <. Here ||| 5[y 40 denotes the uniform norm on C'[0, +o00) — the
space of all real-valued bounded functions on [0, +00) . O

Lemma 3. If we denote Lq,, p, (€r; 2) := L((L(l’?b)n (ex; 2), where ey, (2) = 2, then for
all |z| <7 withr > 1, n €N and k € NU{0}, we have

| La, b, (ek; 2)| < Kl

Proof. We will use the following recurrence formula obtained in the proof of Theo-
rem 1(i) in [4], that is

by bn
La, b, (er4152) = =2 (La, b, (er; 2)) + <Z + k) L, b, (ex; 2)

n n

)|
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forall z € C, k € NU{0}, n € N. Since L,,, 5, (€o; 2) = 1, for k = 0 we have
[Lay b, (e1;2)] <7

for all |z| < r. Then, for k =1 we get

by,

GQp

by,
(2] £ 220 B 159 |+ (4 22 ) (e
n

Taking into account that by Lemma 1 in [4] L, 5, (ex; 2) is a polynomial of degree
k, the well-known Bernstein’s inequality gives

k
‘(Lavwbn (ek;z))l‘ S ; HLanybn(ek; Z)Hr .

By the last inequality, we find
bn bn
Lownlenid)l S 2 ILonler 2l + (74 22 ) Kanneri2)
bn,
r (r + 2) .
Qnp
By writing for k = 2,3, ..., step by step we easily obtain

|La, b, (€k32)] < r<r+2b") (r+2(k—1)bn)

Qn an

IN

IN
<
>
—
/N
—
—+
[N}
<
|
=
5a
—

Using b2 < %, the last inequality follows that

an —

k
La, b, (e 2)| < 7 ] 5 = r*&!
j=1

for all |z2| <7, ke NU{0},n eN. O

3. MAIN RESULTS

We obtain upper quantitative estimates for the operator (|1.1)) in the following
theorem.

Theorem 1. Let 0 < o < 8, f € H(Dg) and suppose that there exist M,C, B
>0 and A € (%,1)7 with the property |cx| < M%;C, for all k = 0,1,..., (which
implies |f(2)] < Me?! for all z € Dp ) and |f(z)| < CeP®, for all x € [R,0).
Also let ng € N be such that ‘;n + 68— B >0 for all n > ng.
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i) Let1 <r < 4 be arbitrarily fized. For all |z| <7 andn > ng withn,ng € N,
we have

by, [an (1 + ﬁ) + /an}
an (an + Bbn) 7

LD (£52) = £(2)] < Cra
where

Cra=2MY (k+1)(rA)"*
k=1

it) For the simultaneous approzimation, we have: if 1 <r <ry < % are arbitrarily
fized, then for all n > ng, |z2| <r andn,p € N,

<
= C’m,A an (an _|_ ﬂbn) (Tl _ ,,,)p+17

(2o ua)” - e

where Cy, 4 is given in (7).
Proof. (i) By Lemma 1, we can write

LD (e >—-ek< )

::2 ) ah (@) i) +§()%f£)<a

an—i—ﬂb ;

ok
+7" [Lanbo(er; 2) —ep (2)] = |1 = ———— | ex (2),
(an +an) (an Jrﬂbn)k
which follows that
‘L(a’ﬁ) — e
k— k—j k—1 ; k—j
k\ a?, (aby, ,
Z ( )k | La, b, (e5) —e;ill, + Z < ) (7)“"7
-0 (an + ﬁbn) =0 J (an + ﬁbn)
al ak
+—"—= |La, b, (er) — el + [1 = ———— rk.
(an + Bbn)"* (an + Bbn)*

Using the following inequality

b, _
|La’7l’bn (ek) - 6k| < = (k + 1)!7“k 1 (3.1)

n
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obtained in the proof of Theorem 1(i) in [4], by some calculations the last inequality
can be written

£ () = |
k—1 j k—j
S bn /42+1 Jo— 12( ) Otbn +T’k <k> ay, (Olbn) .
an (an +86)" 5 \d) (an + Bby)
k b k
T (k+1) () R R
(an + Bb,)" @ (an + Bby)
k k k
< <an+abn> bl(k+1)!rk—l+ (an+04bn) o ) - ’I"k
an + Bby, Gp an + Bby (an + ﬂbn)
k k
+a7"kb—"(k+1)!r’“—1+ 1-— On =l
(a’n + an) an (an + ﬂbn)
k
< 2bi(k+1)!rk—1+2 - —In |
ap (an+ﬂbn)
b kb
< 22 (k+1)lrhl g2 T gk
- an( T an + Bbs
1 6 Qp, (1 + 6) + ﬁbn
< 1)l —t — | =2 Dipky, 2= 22~ F°1 (39
(o 1 (an+an+ﬂbn> (1) an (an + Bby) (32

As a consequence, from Lemma 2, (3.2) and the hypothesis on ¢, we get

gzj“ﬁn (f;2)— f(z )’ < ai’ﬁi(ek;z) — e (z)‘

k=1
n (14 B) 4 Bby,
< M—Q (k + 1)!r*p,, a(—
[an (1+8) + Bb] S k
= 2M Y (k+1)(rA)
an (an + Bbn) —
_ bule (14880,
an (an + Bbn)
where
Cra=2MY (k+1)(rA)"
k=1
foralll <r< A Note that f(z Z 2+ and its derivative f(z Z (k+1)
k=1 =l

are absolutely and uniformly convergent in |z| < r, for any 1 <r < A
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(ii) For simultaneous approximation, denoting by ~ the circle of radius r1 > r

and center 0, since for any |z| < r and v € 7y, we have |v — z| > r1 —r, by Cauchy’s
formulas it follows that for all |z| <7 and n > ng with = + 3 — B > 0, we have

LD (f;0) - f()

o, (p) p!
(o) - )| < 3[R
vy
|
< Mo by [an (1+38)+ Bb,]  27r;

% A Ganp (an + an) (7‘1 - T‘)p+1
by [an (1 + B) + Bby) plry
an (an + Bby)  (rp —r)ptt’

= C’I”l,A
O

For the Voronovskaja-type formula with a quantitative estimate, we present the
following.

Theorem 2. Suppose that the hypotheses on the function f and on the constants
ng, R, M,C, B, A in the statement of Theorem 1 hold. Also, let 0 < a < 3 and
1<r <. Then for alln > ny and |z| < r, we have

LD i) - 1) - O B2
< (Z’;)z K4+ mnfiﬂbﬁcﬁf{ﬁ) - %(af%cﬁg@,
where
Kea = t—]‘ff(mz) (k+1) (rA)* < oo,
k=2
Cl9? = (P +af+284) M i k(k—1) (rA)* < oo,
k=0
c'5” = (a+p) MAi (k+1)k(rA)f ! < oo
k=0
Proof. For all z € Dp, we can write
LoD i) - 1) - S - B
L (£32) = £(2) = 222+ LD (£32) — Loy, (fi2) — DD gy,

Ap nbn an + Bb,
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(o)
Taking f (z) = . cxz¥, we obtain
k=0

(055) _(a_ﬂz)bn / _bi "
) - 1) - E ) - )
= Z Ck (Lamb” (ex; 2) —ex (2) — b—”zk (k—1) zk'_Q)
k=0 "
+kz::00k <L$L’7€i(ek; z) — La, b, (€r; 2) — mkzkl) .

By Theorem 2 in [4], for all n > ny and |z| < r, we have

Lo (Fi2)— 1 (: )—"zf”(z>’<(”")2z<r,m

Qnp

where K, 4 = 4/ Z (k+2)(k+1) (rA)" <

To estimate the second sum, using Lemma 1 and making rearrangements, we
easily get

(a— B2) by,
an + By

k—1 )kfj
- 2 ()E e
=0 n n
— (1 — “) Lan,bn(ek;z) (a - ﬁz) k k—1
2

L (e 2) = Lay 1, (er: 2) - ook

(an + b an + Bby
k— , k—j -
E\ of (ab,)" ™’ ka*—1ab,
= Y ( > ”(7),}%,17” (ej:2) + ——""La, v, (€x—1;2)
=0 7/ (an + Bby) (an + Bby)
k—2 ; k—j _
kN a? (8b,)" 77 kak—130b,, a— Bz)b, _
_ ( ; "(Bi)kl;anybn(ek; 2) — niﬁklian,bn(elc; 2) — %kzk 1
=\ (an + Bby) (an + Bby) an + Bby
k—2 , k—j -
kN of (aby,)" ™’ kak~lab,
= Z )Tl()Lan,bn (ej;2) + ———7 [Lan b, (€r—152) — ex—1 (2)]
=0 J (an + ﬁbn) (a}n + an)
k

—2 j k—j -1
<k> (B0 g (enie) = P g (exiz) — ek ()]

(an + Bbn)" (an + Bbn)"

__kabn Pt - an + el 21— —a’;_l . (3.3)
an + Bbn (an + 5bn)k71 an + Bbn (an + ﬂbn)]%l
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By applying (3.1]), Lemma 3 and the following inequalities

k
kb,
1 - =
(an + ﬁb Z < Gn + an> ay, + Bby,

and

k—2 k—j
k\ al (aby,
Z < > ) Lan7bn (e]; Z)

iz J) (an + Bby )

27k ol (abn)
< 2 (J)W an,bn (€53 2)]
_ b2 k(k—1) (k - 2) al (abn)’“‘jﬂrj
T S G=DE— =D\ J )/ (an+ b))

k(k—1) (aby)? 2 < ) (ab )‘“*j*2
: 2 (an + 5bn) =20 Z (an + /an) -
< k(k_ 1) (abn)2 (k—2)!7’k_2,

2 (an+ Bbn)’
in (3.3) we immediately obtain

(a —BZ) bnkzk—l

L(a’ﬁ) er;z) — Lg er; 2) —
(Ln7bn( k ) nabn( k ) an+ﬁbn

k(k—1) (aby)® kaak=1b, b, k, o

k—2)lrh?
B 2 (an + an)z ( 2) ' " (an + Bby, )
2
TG ML 2k!rk+ U Pbn_bu (k+ 1)t
2 (an + an) (an + ﬁbn) an
kab, ., (k—1)8by, kBb, 4 (k—1)Bby
+an+5bnr an + Bby, +an+ﬁbnr an + Bby,
k(k—1) (aby)” - kab? ho  K(k=1)(Bb) 4
S AT (k—2)) — Tkl 2 A g
2 (an + Bbn)” S (an + Bby) T (an+560)°
kfb;, p i1, k(k—1)aBb] i1 K (k—1) (8b,)*
+an (an, + Bby) (kD™ (an + Bbpn)’ * (an + Bby)’ "
b, b,

IN

57k (k — 1) k! [0 + o +26°] +

(an —+ ﬂbn) (79} (an + an)

Pk (k+ D! o+ 4]
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Therefore, we have

3 “ o —PBz)by _
S er (E0 1)~ Lanuleni) - L s 1)‘

k=0 an + Bby,

- — Bz)b
< enl [LE) (e 12) — L er;z) — 7@ B2) D f Rl
< ’;O| Kl | Lo, b, (€55 2) b (€85 2) T
< L (a2+aﬁ+252) Mik(k— 1) (rA)k
T (an + Bby)’ s

b2 - k—1
+—"1 — (a+B)MA k+1)k(rA ,
e Ay TP MAS (b 1)k (A)
where the series are convergent for 1 <r < %. This proves the theorem. (]

Now we obtain the exact orders in approximation by the operators (|1.1)) and
their derivatives on compact disks, respectively.

Theorem 3. Suppose that the hypothesis of Theorem 1 holds. If f is not a poly-
nomial of degree < 0 for 0 < a < B, if f is not a polynomial of degree < 1 for
a= =0 and if f is not of the form f (z) = CeP* with A # B for 0 = a < B3, then
foralll <r< % and n > ng, we have

| -1

where the constants in the equivalence depend only on f,«a, 8 and r.

b

)
T Qp,

Proof. For all |z| <r and n € N, we get

2
LD (Fn) - f) = {(a 89 £ @)+ @+ 2 () [0 - )
(a - ﬂz) bn / bn " bn an /
S O A () - s a2 f <z>} } .

Applying the following inequality
IF+ Gl = [I[F = Gl = I1FIl = 1G],

we immediately obtain

e n-1, = b i@ gen s e, - (2]
@ b T a, 1 1 r a,

bn
_(a_ﬂel)bnf/_bielf//_ BbrzL

an + Bb, anp Qnp (an + an)

LD ()~ f

(a —Ber) f'

J
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Considering the hypotheses on f, it is immediate that ||(oc — fe1) f* +ei f”]], > 0.
Indeed, let us suppose the contrary. It follows that

(= B2) f' (2) + 2" (2) =0
for all z € D,.. Here, we have three possible cabes If 0 < a < B, denoting y (2) =
1 (z), searching y(z) in the form y(z) = Z §12% and replacing in the above

differential equation, we easily obtain d; = 0 for all k = 0,1,..., which implies
that f (z) is a polynomial of degree< 0, a contradiction. If &« = § = 0, then we
immediately get f”(z) = 0 for all |z] < r, i.e. f is a polynomial of degree< 1,
a contradiction. If 0 = a < 3, the differential equation easily gives the solution
f (2) = CeP? C € C arbitrary complex constant, which is a contradiction.

By Theorem 2, it follows that

2 2
an (a,8) (a B ﬁel) bn / bn 1" an /
- L — f_ _ _ —
<bn> ‘ Qnybn (f) f an + ﬁbn f an 61f an (an + an) (OL 661) f .
2
an (a,8) (a - 661) bn / bn 1" /
< _n _f_ _
- (bn> ‘ Faned D=0 =2 | e Bb 5= peu) £l
< Koat — 0P ¢ ol oy g,
' (an + ﬂbn) ’ an + ﬁb Gn + ﬂbn
< Koa+ OGP+ 057 1+ 8 (a+Br)IIF N, -

Consequently, there exists an index n; > ng (depending on f, o, § and r only) such
that for all n > ny, we get

(e = Bex) f +erf”]],

2
> 2l = gen) £ +erfl,
which implies that
|t =], = 5o e =Ben £+ eas”l,
foralln > ny. Forn € {ng+1,....,n1 — 1}, we have
|- o, = 2 Mnh)
with M, (f) = = Liifi(f) =1 > 0. Therefore, for all n > ng, finally we get
| -o] = 22
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where

G, () = min {M+ () oo My 1 (), S = Ber) £/ + elf"nr} |

2

Combining the last inequality with Theorem 1(i), it gives the desired conclusion. O

Theorem 4. Suppose that the hypothesis of Theorem 1 holds and let 1 <r <11 <
% and p € N be fized. If f is not a polynomial of degree < p —1 for 0 < a < j3,
if f is not a polynomial of degree < p for « = [ = 0 and if f is not of the form
f(2) = CeP* with A # B for 0 = a < f3, then for all n > ng and |z| < r, we have

bn

~—, neN

T n

[CHAT N

where the constants in the equivalence depend only on f,«, 5, p, 71 and r.

Proof. Taking the upper estimate in Theorem 1 (ii) into consideration, it remains
(p)

(Ll(ljﬁbi(f)) — f@®1 .| Denoting by T the circle

of radius r1 and center 0 (where 1 > r > 1), we have |1T1 —z| > ry —r valid for all

|z| <rand v el.
For all v € I" and n > ng, we have

LR (f50) = f (v)

to prove the lower estimate for

= Z{(a—ﬁv)f'(v)+vf"(v)+z: (ZZ) ( a,[,ﬁ)(f» v) — f(v)
B ) - B ) - B e )]}

Applying Cauchy’s formula for derivatives, we can write

(2 (s >)(”) £ = 2 - g £ () 2 ()

n

/b“ (L&) (F50) = f(0) = il pr )—%vf”(v))d

_ \pt1
/ (v—2)

_Iﬂ/mﬁ%(a—ﬁ”)f'(v)dv
211 ('U—z)p+1
r

For all |z| < and n > ng, we obtain

{H (a—Ber) f' + e f"P

an,b z T

H LB ( ®_w

all
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,% L‘/ (%:)2 (Lgiﬁi(f;v) - f(v) - +[ﬂb bn f/( ) N %:Uf” (’U))

d
Qp 21 (’U — Z)p-‘,-l v
T
_p! (aﬁfﬁbn) (o = Bv) f' (v) y
271 (’U — z)p+1
r T

From Theorem 2, for all n > ng, it follows

p! /(az) ( D (frv) = flo) - o2l g (v )—Z—va”(v))

d
27i (v—z)P! :
r
Zﬂ/mﬁf&)w(a—ﬁv)f’(v) .,
2mi — )Pt
T (U Z) T
< B (K at COP 4 CP) 4 B2 B at Br) £,
T 2w (et T 2 2 (ry — )Pt "

By the hypothesis on f , we have H[(a — Ber) [+ elf”](p)

by exactly the lines in the proof of Theorem 3, we easily prove our assertion. [

‘ > (. In continuation,
T
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