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Abstract
Here, the composition operators on Orlicz spaces with finite ascent and descent as well as infinite ascent
and descent are characterized.
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1. Introduction and preliminaries

Before going to start, let us recall the notion of ascent and descent of an operator on an arbitrary vector space X .
So if T : X → X is an operator on X , then N(T ) and R(T ) denotes the null space and range space of T respectively,
that is

N(T ) = {x ∈ X : T (x) = 0} and R(T ) = {T (x) : x ∈ X}

The null space of T k is a T -invariant subspace of X , that is, T (N(T k)) ⊆ N(T k) for every positive integer k. Indeed,
if x ∈ N(T k) then T k(x) = 0 and therefore, T k(T (x)) = T (T k(x)) = 0, i.e., T (x) ∈ N(T k). We also have the
following subspace inclusions:

N(T ) ⊆ N(T 2) ⊆ N(T 3) ⊆ · · ·

The range R(T k) = T k(X) of each operator T k is clearly another T -invariant subspace of X . Moreover:

R(T ) ⊇ R(T 2) ⊇ R(T 3) ⊇ · · ·

Following definitions and well known results are relevant to our context ([1], [15], [19]);

Theorem 1.1. For an operator T : X → X on a vector space we have following:

1. If N(T k) = N(T k+1) for some k, then N(Tn) = N(T k) for all n ≥ k.

2. If R(T k) = R(T k+1) for some k, then R(Tn) = R(T k) for all n ≥ k.

We now introduce ascent and descent of an operator.

Definition 1.1. Let T : X → X be an operator on a vector space.

1. The ascent α(T ) of T is the smallest natural number k such that N(T k) = N(T k+1). If there is no k ∈ N such
that N(T k) = N(T k+1), then we say that ascent α(T ) is infinite.
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2. Similarly, the descent δ(T ) of T is the smallest natural number k such that R(T k) = R(T k+1). If there is no
k ∈ N such that N(T k) = N(T k+1), then we say that descent δ(T ) is infinite.

It turns out that if ascent and descent of an operator is finite then they are equal. This useful result stated next:

Theorem 1.2. If an operator T : X → X on a vector space has finite ascent and descent, then they must be coincide i.e.,
α(T ) = δ(T ) = p <∞, and

X = N(T p)⊕R(T p)

Moreover, if X is a Banach space and T is linear, then R(T p) is a closed subspace.

Let T : X → X be a bounded operator on the Banach space X . A pair (V,W ) of closed subspaces of X is said to
be a reducing pair of the operator T if X = V ⊕W . Now we have the following result:

Theorem 1.3. A bounded operator T : X → X on a Banach space X has finite ascent and descent if and only if T has a
reducing pair of closed subspaces (V,W ) such that the operator T : V → V is nilpotent and T : W →W is invertible.
Moreover, if p = α(T ) = δ(T ) <∞, then “the pair (V,W ), where V = N(T p) and W = R(T p) is the only reducing pair".

F. Riesz in [6] introduced the concept of ascent and descent for a linear operator in a connection with his
investigation of compact linear operators. Also the study of ascent and descent has been done as a part of spectral
properties of an operator ([3], [12]). Since the composition operator provide the diverse and illuminating example
of operators which leads to study useful insight into structure theory of operators, it is desirable to study ascent
and descent of these operators. In this paper, we study the ascent α(T ) and descent δ(T ), where T is a composition
operator on Orlicz Spaces.

2. Composition operator on Orlicz spaces

Let (Ω,Σ, µ) be a σ-finite complete measure space, where Σ is a σ-algebra of subsets of an arbitrary set Ω and
µ is a non-negative measure on Σ. Let φ : [0,∞) → [0,∞) be non-decreasing continuous convex function such
that φ(x) = 0 if and only if x = 0 with lim

x→0
φ(x)/x = 0 and lim

x→∞
φ(x)/x =∞. Such a function φ is known as an

Orlicz function. Let L0(Ω) be denote the linear space of all equivalence classes of Σ-measurable functions on Ω,
where we identify any two functions are equal in the sense of µ-almost everywhere on Ω. Then the functional
Iφ : L0(Ω)→ [0,∞], defined by

Iφ(f) =

∫
Ω

Φ(f(t))dµ(t)

where f ∈ L0(Ω), is a pseudomodular [10], which is also defined as a modular in [8]. Let Lφ(Ω) be the set of all
measurable function such that

∫
Ω
φ(α|f |)dµ <∞ for some α > 0. The space Lφ(Ω) is called as Orlicz space and it is

a Banach space with two norms: the Luxemberg norm [18], defined as

||f ||φ = inf

{
k > 0 : Iφ

(
|f |
k

)
≤ 1

}
and the Orlicz norm in the Amemiya form [7, 13] is given as

||f ||0φ = inf
k>0

(1 + Iφ(kf))/k.

Note that the equality of the Orlicz norm and the Amemiya norm was proved in [7]. If φ(x) = xp, 1 < p < ∞,

then Lφ(Ω) = Lp, the well known Banach space of p-integrable function on Ω with ||f ||φ =
(

1
p

) 1
p ||f ||p ([18]). It

is well known that ||f ||φ ≤ ||f ||0φ ≤ 2||f ||φ and ||f ||φ ≤ 1 if and only if Iφ(f) ≤ 1 ([4, 11]). Moreover, if A ∈ Σ

and 0 < µ(A) < ∞, then ||χA||φ = 1
φ−1( 1

µ(A)
)
, where χA is the characteristic function on A ([13], p. 78). For more

literature concerning Orlicz spaces, we refer to [2], [9] and [13].
Let τ : Ω → Ω be a measurable transformation, that is, τ−1(A) ∈ Σ for any A ∈ Σ. If µ(τ−1(A)) = 0 for any

A ∈ Σ with µ(A) = 0, then τ is called nonsingular. This condition implies that the measure µ ◦ τ−1, defined by
µ ◦ τ−1(A) := µ(τ−1(A)) for A ∈ Σ, is absolutely continuous w.r.t µ (µ ◦ τ−1 � µ). Then the Radon-Nikodym
theorem implies that there exist a non-negative locally integrable function fτ (x) on Ω such that

µ ◦ τ−1(A) =

∫
A

fτ (x)dµ(t) for A ∈ Σ.



72 Ratan Kumar Giri & Shesadev Pradhan

Any nonsingular measurable transformation τ induces a linear operator (Composition operator) Cτ from L0(Ω)
into itself which is defined as

Cτf(t) = f(τ(t)), t ∈ Ω, f ∈ L0(Ω).

Here, the non-singularity of τ guarantees that the operator Cτ is well defined. Now, if the linear operator Cτ maps
an Orlicz space Lφ(Ω) into itself, then we call Cτ is a composition operator in Lφ(Ω).

An Orlicz function φ is said to be satisfied the ∆2 condition if there exists a positive constantK such that φ(2x) ≤
Kφ(x) for all x > 0 ([11]). In [20] the necessary and sufficient condition about the boundedness and compactness of
composition operators on Orlicz spaces are described. Regarding the boundedness of the composition operator Cτ
from an Orlicz space Lφ(Ω) into itself, we have the following theorem (Theorem 2.2, [20]).

Theorem 2.1. The composition operator Cτ is bounded from an Orlicz space Lφ(Ω) into itself if µ(τ−1(A)) ≤ Kµ(A) holds
for some K > 0 and for all A ∈ Σ with µ(A) <∞ and also converse holds when the Orlicz function φ satisfies ∆2 condition
for all x > 0.

Through out this paper, we assume that the composition operator is continuous. In [16], kernel of the Com-
position operator Cτ is obtained. It is shown that N(Cτ ) = Lφ(Ω◦), where Ω◦ = {x ∈ Ω : fτ (x) = 0} and
Lφ(Ω◦) = {f ∈ Lφ(Ω) : f(x) = 0 for x ∈ Ω \ Ω◦}. For systematic study on composition operators on different
spaces we refer to [5], [14] and [17].

Now, we will characterized the composition operator on Orlicz spaces Lφ(Ω) with finite ascent and descent as
well as infinite ascent and descent.

3. Main Results
Let us consider τ : Ω → Ω be a nonsingular measurable transformation. Now τ is a nonsingular measurable

transformation implies that τk is also nonsingular measurable transformation for every k ≥ 2 with respect to
the measure µ. Hence τk is also induces a composition operator Cτk . Note that for every measurable function f ,
Ckτ (f) = f ◦ τk = Cτk(f). Also we have

· · · � µ ◦ τ−(k+1) � µ ◦ τ−k � · · · � µ ◦ τ−1 � µ.

Take µ ◦ τ−k = µk. Then by Radon-Nikodym theorem, there exists a non-negative locally integrable function fτk on
Ω so that the measure µk can be represented as

µk(A) =

∫
A

fτk(x)dµ(x), for all A ∈ Σ.

The function fτk is known as the Radon-Nikodym derivative of the measure µk with respect to the measure µ. Now
the following theorem characterized the composition operators with ascent k:

Theorem 3.1. The composition operator on Orlicz space Lφ(Ω) has ascent k ≥ 1 if and only if k is the first positive integer
such that the measures µk and µk+1 are equivalent.

Proof. Suppose that µk and µk+1 are equivalent. Then µk+1 � µk � µk+1. Since µk � µk+1 � µ, hence the chain
rule of Radon-Nikodym derivative implies that

dµk
dµ

(x) =
dµk
dµk+1

(x) · dµk+1

dµ
(x) (3.1)

⇒ fτk(x) =
dµk
dµk+1

(x) · fτk+1(x) (3.2)

Similarly, µk+1 � µk � µ implies that

fτk+1(x) =
dµk+1

dµk
(x) · fτk(x) (3.3)

Now kernel of the Ckτ given by N(Ckτ ) = N(Cτk) = Lφ(Ωk) where Ωk = {x ∈ Ω : fτk(x) = 0} and Lφ(Ωk) = {f ∈
φ(Ω) : f(x) = 0 for x ∈ Ω \ Ωk}. Similarly, N(Ck+1

τ ) = Lφ(Ωk+1), where Ωk+1 = {x ∈ Ω : fτk+1(x) = 0}. Now
from 3.2 and 3.3, it follows that Ωk = Ωk+1. Therefore we have,

N(Ckτ ) = Lφ(Ωk) = Lφ(Ωk+1) = N(Ck+1
τ ).
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Since k is the least hence ,This shows that ascent of Cτ is k.
Conversely, suppose that ascent of Cτ is k. Now this implies that if N(Ckτ ) = Lφ(Ωk) and N(Ck+1

τ ) = Lφ(Ωk+1),
then Lφ(Ωk) = Lφ(Ωk+1). Hence Ωk = Ωk+1 almost everywhere with respect to the measure µ. So Ωk = {x ∈ Ω :
fτk(x) = 0} = {x ∈ Ω : fτk+1(x) = 0}. Now it is known that µk+1 � µk. Only to show µk � µk+1. For this let
E ∈ Σ such that µk+1(E) = 0. Now we have the following cases:
Case-1: when E ∩ Ωk = ∅
Then 0 = µk+1(E) =

∫
E
fτk+1(x)dµ(x) implies that µ(E) = 0 as on E, fτk+1(x) > 0. As µk(E) =

∫
E
fτk(x)dµ(x)

and µ(E) = 0, hence µk(E) = 0.
Case-2: when E ∩ Ωk 6= ∅
Then we have,

0 = µk+1(E) =

∫
E

fτk+1(x)dµ(x)

=

∫
E\(E∩Ωk)

fτk+1(x)dµ(x) +

∫
E∩Ωk

fτk+1(x)dµ(x)

=

∫
E\(E∩Ωk)

fτk+1(x)dµ(x)

Now this implies that µ(E \ (E ∩ Ωk)) = 0. Therefore, in either case µk+1(E) = 0 implies that µk(E) = 0. Thus
µk+1 � µk � µk+1.

Corollary 3.1. Ascent of the composition operator Cτ on Orlicz spaces is infinite if and only if there does not exist any positive
integer k such that the measures µk and µk+1 are equivalent.

We say that a measurable transformation τ is measure preserving if µ(τ−1(E)) = µ(E) for all E ∈ Σ. Then we
have the following results:

Corollary 3.2. 1. If the measure µ is measure preserving then the ascent of the composition operator Cτ on Orlicz spaces
Lφ(Ω) is 1.

2. If τ is a nonsingular surjective measurable transformation such that µ(τ−1(E)) ≥ µ(E) for all E ∈ Σ, then also ascent
of the composition operator induced by τ on Orlicz spaces is 1.

Note that for a nonsingular surjective measurable transformation τ : Ω→ Ω, measure of set a A ⊆ Ω positive
does not always imply that the measure of τ−1(A) is also positive. Example of one such measurable transformation
is following:

Example 3.1. Consider unit interval [0, 1] with Lebesgue measure. Let C be the Cantor set. Map C onto [0, 1
2 ]. For

example convert ternary expansion to binary expansion and half it. Let the map be S1. Next, map [0, 1] \ C onto
[ 1
2 , 1] in a nonsingular way. In fact we can get a one-one bimeasurable map S2 from [0, 1] \ C onto [ 1

2 , 1] such that
measure of S2(A) equals half measure of A, for each A in [0, 1] \ C. Let τ be the map which is S1 on C and S2 on
[0, 1] \ C.
This will satisfy our requirement. Here [0, 1

2 ] has positive measure but its inverse has measure zero. However if B is
a set of zero measure then measure of τ−1(B) is same as measure of S−1

2 (B) intersected with [ 1
2 , 1].

Now the next result gives a necessary and sufficient condition for infinite ascent of the composition operator Cτ
on Orlicz spaces Lφ(Ω) in terms of range of τ .

Theorem 3.2. Suppose that in the measure space Ω = (Ω,Σ, µ), τ : Ω → Ω is a nonsingular surjective measurable
transformation such that if µ(A) > 0 then also µ(τ−1(A)) > 0, where A ∈ Σ. Then ascent of Cτ on Orlicz space φ(Ω) is
infinite if and only if there exists a sequence of subsets {Ωk} of Ω such that for all k ≥ 1

1. 0 < µ(Ωk) <∞

2. Ωk * R(τk) but Ωk ⊆ R(τk−1)

3. µ(Ωk ∩R(τk)) = 0 and µ(Ωk ∩ Ωk+1) = 0.
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Proof. Assume that ascent of Cτ is infinite. Then N(Ckτ ) 6= N(Ck+1
τ ) for every k ≥ 0. For k = 0, this implies that

there exists f 6= 0 a.e. in φ(Ω) such that f ∈ N(Cτ ) i.e., f ◦ τ = 0 a.e. . Take Ω◦ = {x ∈ Ω : f(x) = 0}. As f 6= 0, the
set Ω \ Ω◦ = Ω1 (say) is not empty. Since the measure µ is σ-finite, hence it has a subset of finite (positive) measure.
Without loss of generality, we may assume that 0 < µ(Ω1) <∞.
Claim: Ω1 * R(τ)
If Ω1 ⊆ R(τ), then τ(W1) = Ω1, where W1 = {x ∈ Ω : τ(x) ∈ Ω1}. Then for all x ∈ W1, f ◦ τ(x) 6= 0 and by the
given conation of τ , µ(W1) = µ(τ−1(Ω1)) > 0 as 0 < µ(Ω1) < ∞. This shows that f ◦ τ 6= 0 a.e. and f /∈ N(Cτ ),
which is a contradiction.
Claim: µ(Ω1 ∩R(τ)) = 0
If Ω1 ∩ R(τ) = ∅, then its obvious. If not, then Ω1 ∩ R(τ) = Ω′1 (say) is a proper subset of both Ω1 and R(τ)
respectively. Then τ(W ′1) = Ω′1, where W ′1 = {x ∈ Ω : τ(x) ∈ Ω′1 ⊂ Ω1}. Now if µ(Ω′1) > 0, then by the given
condition of τ , implies that µ(W ′1) = µ(τ−1(Ω′1)) > 0. But for all x ∈W ′1, f ◦ τ(x) 6= 0. This shows that f /∈ N(Cτ ),
which is a contradiction. Therefore µ(Ω′1) = 0.
Now for k = 1, we have N(Cτ ) 6= N(C2

τ ). This implies that there exist f 6= 0 a.e. in Lφ(Ω) such that f ◦ τ2 = 0 a.e.
but f ◦ τ 6= 0 a.e. . So if Ω′2 = {x ∈ Ω : f ◦ τ(x) 6= 0}, then by the σ-finiteness of measure µ, we can assume that
0 < µ(Ω′2) <∞. Take Ω2 = τ(Ω′2). Then Ω2 ∈ R(τ). As τ satisfies the given condition as above and Cτ is bounded,
hence 0 < µ(Ω2) <∞. Now τ is nonsingular measurable transformation imply that τ2 also. Then by the similar
kind of arguments it can be seen that Ω2 * R(τ2) and µ(Ω2 ∩R(τ2)) = 0.
Therefore, we have two subsets Ω1 and Ω2 of finite measure with the following properties:

• Ω1 ⊆ R(τ0) = R(I) ( I denote the identity map ) but Ω1 * R(τ) and µ(Ω1 ∩R(τ)) = 0

• Ω2 ⊆ R(τ) but Ω2 * R(τ2) and µ(Ω2 ∩R(τ2)) = 0

Now Ω1 ∩ Ω2 is a subset of Ω1 ∩ R(τ). As µ(Ω1 ∩ R(τ)) = 0, hence µ(Ω1 ∩ Ω2) = 0. Hence by continuing similar
process for every k ≥ 2, we get a sequence {Ωk} of subsets of finite measure such that Ωk * R(τk) but Ωk ⊆ R(τk−1)
and µ(Ωk ∩R(τk)) = 0 and µ(Ωk ∩ Ωk+1) = 0.
Conversely, suppose that the given conditions are holds. As 0 < µ(Ωk) <∞, hence the characteristic function χΩk

is in Orlicz space Lφ(Ω). As Ωk ⊆ R(τk−1) hence τk−1(Wk) = Ωk, where Wk = {x ∈ Ω : τk−1(x) ∈ Ωk}. Then we
have,

Ck−1
τ χΩk(Wk) = χΩk(τk−1(Wk))

= χΩk(Ωk)

= 1

This implies that χΩk /∈ N(Ck−1
τ ). But

Ckτ χΩk(Ω) = χΩk(τk(Ω))

= 0 a.e.

as Ωk * R(τk) = τk(Ω) and µ(Ωk ∩ R(τk)) = 0. Therefore, we have χΩk ∈ N(Ckτ ) but χΩk /∈ N(Ck−1
τ ). Since k is

arbitrary, hence the ascent of Cτ is infinite.

Remark 3.1. Here if we take our Orlicz function φ to be xp with Ω = N and the measure µ is the counting measure,
then the Orlicz space Lφ(Ω) becomes the well known lp sequence spaces. Now suppose that τ : N → N is onto.
Then the measure µ satisfy previous criteria for τ . Hence by the previous theorem we can say that “ascent of the
composition operator Cτ on lp sequence space is infinite if and only if there exists a sequence of disjoints positive integers {nk}
such that nk /∈ R(τk) but nk ∈ R(τk−1) for each k ≥ 1".

Now the following results are characterized the composition operators Cτ on Orlicz spaces Lφ(Ω) with finite
descent:

Theorem 3.3. If the map the map τ : R(τN )→ R(τN ) is one-one for some N , then descent of composition operator is less
than or equal to N .

Proof. Suppose that the map τ : R(τN ) → R(τN ) is one-to-one. Let f ∈ R(CNτ ). Then f = CNτ (g) for some
g ∈ Lφ(Ω). Now define the function

h(x) =

{
g(y) ; if y ∈ R(τN ) and τ(y) = x

0 ; otherwise
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As τ : R(τN )→ R(τN ) is one-to-one, hence the map h is well defined and g ∈ Lφ(Ω) implies that h also in Lφ(Ω).
Note that h ◦ τ(x) = g(x) for all x ∈ R(τN ). Now we have,

h(τn+1(x)) = h(τ(τN (x))

= g(τN (x))

= f(x)

This shows that f ∈ R(CN+1
τ ). Therefore, R(CNτ ) ⊆ R(CN+1

τ ). Hence this implies that descent of the composition
operator is less than or equal to N

Corollary 3.3. If descent of composition operator is infinite then the map τ : R(τk)→ R(τk) is not one-one for all k ≥ 0.

Theorem 3.4. Assume that in the measure space Ω = (Ω,Σ, µ) every singleton set has positive measure. Then descent of
composition operator is infinite if the map τ : R(τk)→ R(τk) is not one-one for all k ≥ 0.

Proof. Suppose that the map τ is not one-one. Then there exist x1 6= x2 ∈ R(τk) such that τ(x1) = τ(x2). Take
Ω1 = {x ∈ Ω : τk(x) = x1} and Ω2 = {x ∈ Ω : τk(x) = x2}. Note that Ω1 ∩ Ω2 = ∅ and τk+1(Ω1) = τk+1(Ω2). Now
consider the function f = χΩ1 − χΩ2 . As 0 < µ(Ω1) < ∞ and 0 < µ(Ω2) < ∞, hence χΩ1 and χΩ2 are belongs to
Orlicz space LφΩ) and hence f also in Lφ(Ω). Take g = χ{x1} − χ{x2}. Then g also in Lφ(Ω) and Ckτ (g) = f . This
implies that f ∈ R(Ckτ ). Now claim is that f /∈ R(Ck+1

τ ). If so then f = Ck+1
τ (g) for some g ∈ Lφ(Ω). Then

1 = f(Ω1) = Ck+1
τ g(Ω1)

= g(τk+1(Ω1))

= g(τk+1(Ω2))

= f(Ω2)

= −1,

which is a contradiction. Hence we have f ∈ R(Ckτ ) but f /∈ R(Ck+1
τ ). Since k is arbitrary, hence descent of Cτ is

infinite.

Corollary 3.4. Suppose that the measure µ is as above. Then descent of the composition operator is N if and only if there
exists a natural number N (smallest) such that the map τ : R(τN )→ R(τN ) is one-one.
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