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Abstract. Let R be a ring with identity. A right R-module M has the com-

plete max-property if the maximal submodules of M are completely coindepen-

dent (i.e., every maximal submodule of M does not contain the intersection

of the other maximal submodules of M). A right R-module is said to be a

good module provided every proper submodule of M containing Rad(M) is an

intersection of maximal submodules of M . We obtain a new characterization

of good modules. Also, we study good modules which have the complete max-

property. The second part of this paper is devoted to investigate supplements

in a coatomic module which has the complete max-property.
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1. Introduction

Let R be a unitary ring and M a right R-module. A submodule N of M is called

small in M (written N �M) if for every proper submodule L of M , N + L 6= M .

A submodule L of M is called coclosed in M if L/K is not small in M/K for any

proper submodule K of L. We denote by Rad(M) the radical of M . A module

M is called coatomic if every proper submodule of M is contained in a maximal

submodule, that is, Rad(M/N) 6= 0 for every proper submodule N ≤ M . Let L

be a submodule of M . A submodule K of M is called a supplement of L in M if

K is minimal with respect to the property M = L+K; equivalently, M = L+K

and K ∩ L � K. A submodule P of M is called a supplement submodule if P is

a supplement of some submodule of M . The module M is called supplemented if

every submodule of M has a supplement in M . A module M is called semilocal if

M/Rad(M) is semisimple. A module M is called cosemisimple (or a V-module) if

every simple R-module is M -injective, or equivalently, every proper submodule of

M is an intersection of maximal submodules (see [7, 23.1]). A module M is called a
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good module if M/Rad(M) is a cosemisimple module (see [7, 23.3]). A non-empty

family of submodules Ni (i ∈ I) of a module M is called coindependent if, for any

j ∈ I and any finite subset J of I \ {j}, Nj +
⋂

i∈J Ni = M . The family Ni (i ∈ I)

is called completely coindependent if, for every j ∈ I, Nj +
⋂

i6=j Ni = M (see [4, p.

8]). Following [6, p. 74], a module M is said to have the complete max-property if

the maximal submodules of M form a completely coindependent set of submodules

of M . In this paper, we adopt the convention that the intersection of an empty set

of submodules of a module M is M itself.

In Section 2, we provide some new characterizations of good modules (Theorem

2.3). Also, we investigate the interplay between the complete max-property and

each one of the properties coatomic and good.

The investigations in Section 3 focus on supplements in a coatomic module which

has the complete max-property. After characterizing them, we show that for a

coatomic module M , if M has the complete max-property, then any supplement

submodule in M has also the complete max-property. In addition, we prove that if

M is a coatomic module which has the complete max-property and F is a supple-

ment of a submodule K in M , then ∆F (M) = K + Rad(F ) = K + Rad(M) where

∆F (M) denotes the intersection of the maximal submodules of M not containing

F .

Throughout this paper, R will denote an associative ring with identity and all

modules are unitary right R-modules. By Q and Z we denote the ring of rational

and integer numbers, respectively.

2. Good modules having the complete max-property

Recall that a module M is said to be a good module if for any module N and

any homomorphism f : M → N , f(Rad(M)) = Rad(f(M)). In this section, we

obtain a new characterization of good modules. Moreover, we shed some light on

good modules which have the complete max-property.

Let F be a submodule of a module M . We follow the notation of [3]. So

the intersection of all maximal submodules of M containing F will be denoted by

RadF (M). It is easily seen that F + RadM ⊆ RadF (M). On the other hand, we

do not have equality, in general, as shown in [3, Remark 3.4]. In the same vein, we

exhibit the following examples.

Example 2.1. (i) Consider the submodule F = pkZ of M = Z for some prime

integer p and some integer k ≥ 2. We have Rad(M) = 0. So F + Rad(M) = F ,

but RadF (M) = pZ.
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(ii) Let p and q be two prime integers such that p 6= q. Consider the submodule

F = pnqmZ of M = Z, where n and m are natural numbers with n ≥ 2 and m ≥ 2.

Clearly, Rad(M) = 0. Then F + Rad(M) = F . However, RadF (M) = pqZ.

In [3], the authors provided some conditions under which RadF (M) = F+RadM

for a submodule F of M . Among other results, it is shown in [3, Proposition 3.8]

that if M is a good module, then RadF (M) = F + RadM for any submodule F of

M . The next proposition shows that the converse of this result is true.

Proposition 2.2. The following statements are equivalent for a module M :

(i) M is a good module;

(ii) Every proper submodule of M containing Rad(M) is an intersection of

maximal submodules of M ;

(iii) RadF (M) = F + Rad(M) for every submodule F of M .

Proof. (i) ⇔ (ii) This follows from [7, 23.1 and 23.3].

(i) ⇒ (iii) By [3, Proposition 3.8].

(iii) ⇒ (ii) Let L be a proper submodule of M such that Rad(M) ⊆ L. By

hypothesis, we have RadL(M) = L + Rad(M) = L. Hence L is an intersection of

maximal submodules of M . �

Let F be a submodule of a module M . The intersection of the maximal sub-

modules of M not containing F will be denoted by ∆F (M).

Theorem 2.3. The following statements are equivalent for a module M :

(i) M is a good module;

(ii) RadF (M) = F + Rad(M) for every submodule F of M ;

(iii) RadF (M) ⊆ F + ∆F (M) for every submodule F of M ;

(iv) For any submodule F of M and any collection of maximal submodules Ni

(i ∈ I) of M , we have F+(
⋂

i∈I Ni) = M or F+(
⋂

i∈I Ni) is an intersection

of maximal submodules of M ;

(v) For any submodule F of M , we have F + ∆F (M) = M or F + ∆F (M) is

an intersection of maximal submodules of M .

Proof. (i) ⇔ (ii) This follows from Proposition 2.2.

(ii) ⇔ (iii) By [3, Proposition 3.5].

(i) ⇒ (iv) This follows from Proposition 2.2.

(iv) ⇒ (v) ⇒ (iii) These are obvious.

�
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Remark 2.4. From Theorem 2.3, it follows that a module M for which

F + ∆F (M) = M for all F ≤M

is a good module.

Definition 2.5. A module M is said to have the strong max-property if for every

submodule F of M , we have F + ∆F (M) = M .

We shall say that a module M has the max-property if the maximal submodules

of M form a coindependent set of submodules of M (i.e., M = L+∩ni=1Li for every

positive integer n and distinct maximal submodules L, Li (1 ≤ i ≤ n) of M) (see

[6]).

It is clear that the following implications hold:

Strong max-property ⇒ complete max-property ⇒ max-property.

The following lemma is a direct consequence of [6, Proposition 4.2 and Theorem

6.8].

Lemma 2.6. Let M be an R-module which has the complete max-property such

that M/Rad(M) is coatomic. Then M is a semilocal module.

Proposition 2.7. Any module which has the strong max-property is semilocal.

Proof. Let M be a module with the strong max-property. By Theorem 2.3, M is a

good module. Thus M/Rad(M) is a cosemisimple module. Hence M/Rad(M) is a

coatomic module. Note that M has the complete max-property. Applying Lemma

2.6, we conclude that M is semilocal. �

Theorem 2.8. The following statements are equivalent for a module M :

(i) M is a good module and M has the complete max-property;

(ii) M has the strong max-property.

Proof. (i) ⇒ (ii) Suppose that F + ∆F (M) 6= M for some submodule F of M .

Then F + ∆F (M) is an intersection of maximal submodules of M by Theorem 2.3.

Therefore RadF (M) ⊆ F + ∆F (M) and hence RadF (M) + ∆F (M) = F + ∆F (M).

But RadF (M) + ∆F (M) = M by [6, Proposition 6.1]. So F + ∆F (M) = M , a

contradiction. This shows that M has the strong max-property.

(ii) ⇒ (i) This is immediate. �

In the next example we present a coatomic good module which is not semilocal.

Example 2.9. Let R be a right cosemisimple ring (i.e., R is a right V -ring) which

is not semisimple (e.g., we take a field F and R =
∏

i≥1 Fi where Fi = F for

all i ≥ 1). Then the R-module RR is coatomic, but RR is not semilocal since

Rad(RR) = 0. Moreover, it is clear that RR is a good module.
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From Lemma 2.6, we get the following proposition which provides a sufficient

condition for a coatomic module to be semilocal.

Proposition 2.10. Let M be a coatomic module which has the complete max-

property. Then M is semilocal. In particular, M is a good module.

Combining Theorem 2.8 and Proposition 2.10, we obtain the following result.

Corollary 2.11. Let M be a coatomic module. Then the following statements are

equivalent:

(i) M has the complete max-property;

(ii) M has the strong max-property.

The next example shows that, in general, a good module need not be coatomic.

Example 2.12. (i) Let p be a prime integer and consider the Z-module M =

⊕n≥1Z/pnZ. Since Z/pnZ
Rad(Z/pnZ) is a semisimple module for all n ≥ 1, Z/pnZ is a

good module for all n ≥ 1. Thus M is a good module by [7, 23.4]. However, M is

not coatomic by [8, Lemma 1.2].

(ii) Let M be a module such that Rad(M) = M . Then M is a good module as

M/Rad(M) = 0 is semisimple. On the other hand, M is not coatomic.

In the next example, we exhibit a coatomic module which is not a good module.

Example 2.13. Let R be a ring which is not a right V -ring such that Rad(R) = 0

(e.g., we can take R = Z). Clearly, the R-module M = RR is coatomic, but M is

not a good module.

Note that the class of semilocal modules is a proper subclass of the class of good

modules (see Example 2.9). From [4, 2.8(8)], it follows that any semilocal module

with a small radical is coatomic. This result can be extended to good modules as

shown below.

Proposition 2.14. Let M be a good module with a small radical. Then M is

coatomic.

Proof. Let N be a proper submodule of M . Then N+Rad(M) 6= M as Rad(M)�
M . Since M is a good module, N + Rad(M) is an intersection of maximal sub-

modules of M . The result follows. �

3. Applications to supplement submodules

Our goal in this section is to characterize supplement submodules in a coatomic

module which has the complete max-property. We begin with the following result

on coclosed submodules of a coatomic good module.
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Proposition 3.1. Let M be a coatomic good module and let F be a submodule of

M such that Rad(M) ⊆ F . Then the following assertions are equivalent:

(i) F is coclosed in M ;

(ii) F is coatomic and Rad(F ) = Rad(M).

Proof. (i) ⇒ (ii) From [2, Lemma 4.1], it follows that F is coatomic. Moreover,

we have Rad(F ) = F ∩Rad(M) by [4, 3.7]. As Rad(M) ⊆ F , we obtain Rad(F ) =

Rad(M).

(ii) ⇒ (i) Let L ≤ F such that F/L � M/L. Then F/L ⊆ Rad(M/L). Since

M is a good module, we have

Rad(M/L) = (L+ Rad(M))/L = (L+ Rad(F ))/L.

Therefore Rad(M/L) ⊆ Rad(F/L) by [4, 2.8 (1)]. So F/L ⊆ Rad(F/L). Hence,

F/L = Rad(F/L). As F is coatomic, it follows that F/L = 0; that is, L = F . This

completes the proof. �

It was shown in [5, Theorem 2.1] that if F is a supplement of a submodule K

in a module M , then it is possible to define a bijective map between maximal sub-

modules of F and maximal submodules of M which contain K. In the next result,

we use this fact to characterize supplement submodules in a coatomic module.

Proposition 3.2. Let F and K be submodules of a coatomic module M . Then the

following statements are equivalent:

(i) F is a supplement of K in M ;

(ii) (1) F is coatomic, and

(2) for any submodule N of F , N is a maximal submodule of F if and only

if N = F ∩ L for some maximal submodule L of M with K ⊆ L.

Proof. (i) ⇒ (ii) This follows from [2, Lemma 4.1] and [5, Theorem 2.1].

(ii) ⇒ (i) Suppose that K + F 6= M . Since M is coatomic, there exists a

maximal submodule X of M such that K + F ⊆ X. By (2), F ∩ X = F is a

maximal submodule of F , a contradiction. So K +F = M . Now let H be a proper

submodule of F . Since F is coatomic, H ⊆ Y for some maximal submodule Y of

F . By hypothesis, there exists a maximal submodule Z of M such that K ⊆ Z

and Y = F ∩ Z. Therefore H + K ⊆ Y + K = (F ∩ Z) + K ⊆ Z. It follows that

H +K 6= M . This proves that F is a supplement of K in M . �

Theorem 3.3. Let M be a coatomic module which has the complete max-property.

Then the following statements about a submodule F of M are equivalent:

(i) F is a supplement in M ;
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(ii) F is coatomic and F ∩ Rad(M) = Rad(F );

(iii) F ∩ Rad(M)� F ;

(iv) F is coclosed in M ;

(v) F is a supplement of ∆F (M) in M ;

(vi) F is a supplement of Rad(M) in RadF (M);

(vii) F ∩∆F (M)� F ;

(viii) F is coatomic and F ∩∆F (M) = Rad(F ).

Proof. Note that M is a good module by Proposition 2.10. Applying Theorems

2.3 and 2.8, we conclude that RadN (M) = N + Rad(M) and N + ∆N (M) = M for

every submodule N of M .

(i) ⇒ (v) Assume that F is a supplement of a submodule U in M . Note that

RadM �M as M is coatomic. So F is also a supplement of U + RadM in M by

[4, 20.4 (4)]. Since RadU (M) = U+Rad(M), F is a supplement of RadU (M) in M .

Moreover, we have ∆F (M) ⊆ RadU (M) as F + U = M . Since F + ∆F (M) = M ,

it follows that F is a supplement of ∆F (M) in M by [4, 20.4 (1)].

(v) ⇒ (vii) This is obvious.

(vii) ⇒ (iv) Assume that ∆F (M) ∩ F � F . Since F + ∆F (M) = M , it follows

that F is a supplement of ∆F (M) in M . Hence F is coclosed in M by [4, 20.2].

(iv) ⇒ (ii) From [2, Lemma 4.1], it follows that F is coatomic. Furthermore,

F ∩ Rad(M) = Rad(F ) by [4, 3.7 (3)].

(ii) ⇒ (viii) Note that F ∩∆F (M) = F ∩ RadF (M) ∩∆F (M) = F ∩ Rad(M).

Then F ∩∆F (M) = Rad(F ) by (ii).

(viii)⇒ (iii) Since F is coatomic, we have Rad(F )� F . Thus F ∩∆F (M)� F .

But F ∩ Rad(M) ⊆ F ∩∆F (M). So F ∩ Rad(M)� F .

(iii) ⇒ (vi) This follows from the fact that F + Rad(M) = RadF (M).

(vi) ⇒ (i) Note that F + ∆F (M) = M . In addition, we have F ∩ ∆F (M) ⊆
F ∩RadF (M)∩∆F (M) ⊆ F ∩Rad(M)� F by (vi). Therefore F is a supplement

of ∆F (M) in M . �

The next example shows that the conditions in the hypothesis of Theorem 3.3

are not superfluous.

Example 3.4. (i) Let p be a prime integer and consider the Z-module M = M1⊕M2

where M1 = Z/p2Z⊕0 is a maximal submodule of M and M2 = 0⊕Z/pZ is simple.

It is clear that M is a coatomic module. However, the module M does not have

the complete max-property as M/Rad(M) ∼= Z/pZ ⊕ Z/pZ (see [6, Theorems 2.3

and 6.8] or [6, Corollary 6.11]). Let N = (1̄, 1̃)Z ≤ M . It is easily seen that

N ⊕M2 = M . So N is a maximal submodule of M . Note that M2 is a supplement



SUPPLEMENTS IN COATOMIC MODULES 25

in M . Moreover, M2 *M1 and M2 * N . Hence ∆M2
(M) ⊆M1∩N ⊆ pZ/p2Z⊕0.

Thus M2 + ∆M2
(M) ⊆ (pZ/p2Z ⊕ 0) ⊕M2. It follows that M2 + ∆M2

(M) 6= M .

This implies that M2 is not a supplement of ∆M2
(M) in M .

(ii) Let M be a nonzero module with Rad(M) = M . Then M is a supplement

in M , but M = M ∩ Rad(M) is not small in M . Note that M has the complete

max-property but M is not coatomic.

Following [2], a module M is called an ms-module if every maximal submodule

of M is a supplement in M . As an application of Theorem 3.3, we get the following

corollaries.

Corollary 3.5. Let M be a coatomic module which has the complete max-property.

Then M is an ms-module if and only if Rad(M)� K for every maximal submodule

K of M .

Corollary 3.6. Let M be a coatomic module which has the complete max-property.

Let L and F be submodules of M such that F ⊆ L and F ∩Rad(M) = L∩Rad(M).

If F is a supplement in M , then so is L.

Corollary 3.7. Let M be a coatomic module which has the complete max-property.

Let L and F be submodules of M such that Rad(M) ⊆ F ⊆ L. If F is a supplement

in M , then so is L.

Corollary 3.8. Let M be a coatomic module which has the complete max-property

and let N be a maximal submodule of M . If N and ∆N (M) are supplements in M ,

then M is an ms-module.

Proof. Let K be a maximal submodule of M such that K 6= N . Then Rad(M) ⊆
∆N (M) ⊆ K. By Corollary 3.7, it follows that K is a supplement in M . Since N

is a supplement in M , M is an ms-module. �

Corollary 3.9. Let R be a right noetherian ring and let M be a finitely generated

R-module which has the complete max-property. Then the following statements

about a submodule F of M are equivalent:

(i) F is a supplement in M ;

(ii) F ∩ Rad(M) = Rad(F ).

Proof. Since R is right noetherian and M is finitely generated, every submodule of

M is finitely generated. So every submodule of M is coatomic. The result follows

from Theorem 3.3. �

It is shown in [8, Lemma 1.1] that over a commutative noetherian ring, every

submodule of a coatomic module is coatomic. Combining this fact and Theorem

3.3, we obtain the following result.
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Corollary 3.10. Let R be a commutative noetherian ring and let M be a coatomic

R-module which has the complete max-property. Then the following statements

about a submodule F of M are equivalent:

(i) F is a supplement in M ;

(ii) F ∩ Rad(M) = Rad(F ).

As noted in [6, p. 80], the class of modules which have the complete max-

property is not closed under submodules. For example, the Z-module QZ has the

complete max-property, however the submodule Z does not have the complete max-

property. Next, we will show that for a coatomic module M , if M has the complete

max-property, then any supplement submodule in M inherits the property.

Proposition 3.11. Let M be a coatomic module. If M has the complete max-

property, then every supplement submodule of M has the complete max-property.

Proof. Assume that the module M has the complete max-property. Then M is a

good module by Proposition 2.10. Let F be a supplement submodule in M . Then

M/∆F (M) has the complete max-property by [6, Lemma 3.4]. Moreover, from

Corollary 2.11 and Theorem 3.3, it follows that

F/Rad(F ) = F/F ∩∆F (M) ∼= (F + ∆F (M))/∆F (M) = M/∆F (M).

So F/Rad(F ) has the complete max-property. Using again [6, Lemma 3.4], it

follows that F has the complete max-property. �

Proposition 3.12. Let M be a module. Assume that Rad(M) has a supplement

F in M such that F has the complete max-property. Then M has the complete

max-property.

Proof. By hypothesis, we have Rad(M) + F = M . Then

M/Rad(M) = (Rad(M) + F )/Rad(M) ∼= F/(F ∩ Rad(M)).

Since F has the complete max-property, F/(F ∩ Rad(M)) has also the complete

max-property by [6, Lemma 3.4]. Therefore M/Rad(M) has the complete max-

property. Again by [6, Lemma 3.4], it follows that M has the complete max-

property. �

Proposition 3.13. Let M = M1 +M2 be a good module such that every maximal

submodule of M contains M1 or M2. Assume that M1 and M2 are mutual sup-

plements in M and they both have the complete max-property. Then M has the

complete max-property.
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Proof. Let N be a maximal submodule of M . Without loss of generality we can

assume that M1 ⊆ N . Since M2 is a supplement of M1, the maximal submodules

of M2 are {Ni ∩M2 | i ∈ I} where {Ni | i ∈ I} are the maximal submodules of M

containing M1 by [5, Theorem 2.1]. So N = Ni0 for some i0 ∈ I. Since M2 has the

complete max-property, we have

(Ni0 ∩M2) +
⋂
i 6=i0

(Ni ∩M2) = M2. (∗)

Let {Nj | j ∈ J} be the set of the maximal submodules of M containing M2. Hence

Ni0 + ∆Ni0
(M) = Ni0 +

⋂
i6=i0

Ni

⋂⋂
j∈J

Nj

 .

Since M is a good module, from Theorem 2.3 we have⋂
j∈J

Nj = RadM2
(M) = M2 + Rad(M).

Thus,

Ni0 + ∆Ni0
(M) = Ni0 +

⋂
i 6=i0

Ni

⋂
(M2 + Rad(M)).

By modularity, we get

Ni0 + ∆Ni0
(M) = Ni0 + Rad(M) +

⋂
i 6=i0

Ni

⋂
M2

 .

But Rad(M) ⊆ Ni0 . Then, by using (∗), we have

Ni0 + ∆Ni0
(M) = Ni0 +

⋂
i 6=i0

(Ni ∩M2)

= Ni0 + (Ni0 ∩M2) +
⋂
i 6=i0

(Ni ∩M2)

= Ni0 +M2

= M.

This completes the proof. �

The next example illustrates that the assumption “every maximal submodule of

M contains M1 or M2”in Proposition 3.13 cannot be dropped.

Example 3.14. Let M be as in Example 3.4(i). The module M does not have

the complete max-property. Since M/Rad(M) is semisimple, M is a good module.

Also, M1 and M2 are mutual supplements in M . Let N = (1̄, 1̃)Z ≤ M . It is

easily seen that N is a maximal submodule of M such that neither M1 nor M2 is
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contained in N . Note that both of M1 and M2 have the complete max-property since

each one of them has only one maximal submodule.

Combining Proposition 3.13 and [6, Lemma 3.4], we obtain the following result.

Corollary 3.15. Let M = M1 ⊕M2 be a good module such that every maximal

submodule of M contains M1 or M2. Then M has the complete max-property if

and only if M1 and M2 have the complete max-property.

In the next result, we evaluate ∆F (M) for a supplement submodule F of a

coatomic module M which has the complete max-property.

Theorem 3.16. Let M be a coatomic module which has the complete max-property

and let K be a submodule of M . Let F be a supplement of K in M . Then

∆F (M) = K + Rad(F ) = K + Rad(M).

Proof. Set Γ = {L ≤ M | L is maximal in M and F * L} and Λ = {N ≤ M |
N is maximal in M and K ⊆ N}. Clearly Λ ⊆ Γ. Let us show that Λ = Γ.

Note that F is a supplement of ∆F (M) in M by Theorem 3.3. It follows that

for a maximal submodule X of M , F * X if and only if ∆F (M) ⊆ X. Let

L ∈ Γ. Then ∆F (M) ⊆ L. By [5, Proof of Theorem 2.1], L ∩ F is a maximal

submodule of F and N = (L ∩ F ) + K is a maximal submodule of M . Note that

N ∩ F = ((L ∩ F ) + K) ∩ F = (L ∩ F ) + (K ∩ F ). As F is a supplement of K in

M , we have K ∩ F � F . So K ∩ F ⊆ Rad(M) ⊆ L. Thus K ∩ F ⊆ L ∩ F . Hence

N ∩ F = L ∩ F . Note that F * N . Then ∆F (M) ⊆ N . By modularity, we have

L = L∩(F+∆F (M)) = (L∩F )+∆F (M) = (N∩F )+∆F (M) = N∩(F+∆F (M)) = N.

It follows that L ∈ Λ. So Λ = Γ. Thus ∆F (M) = RadK(M). Since M is good,

∆F (M) = RadK(M) = K + Rad(M) by Theorem 2.3. Moreover, by Theorem 3.3,

we have F ∩ ∆F (M) = Rad(F ). So ∆F (M) = (K + F ) ∩ ∆F (M) = K + (F ∩
∆F (M)) = K + Rad(F ). �

Remark 3.17. Let M be a coatomic module which has the complete max-property

and let F be a supplement in M . From the previous result, it follows that if F is a

supplement of a submodule K in M , then

(i) K ⊆ ∆F (M), and

(ii) every maximal submodule of M contains F or K.

By the following example we see that the condition “M has the complete max-

property”cannot be omitted from the hypothesis of Theorem 3.16.
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Example 3.18. Let M be as in Example 3.4(i). So M2 is a supplement of both

M1 and N in M . Since M1 and N are maximal submodules of M , we have N +

Rad(M) = N and M1 +Rad(M) = M1. Thus N +Rad(M) 6= M1 +Rad(M). Note

that M is a coatomic module which does not have the complete max-property.

As an application of Theorem 3.16, we obtain the following two propositions.

Recall that following [1], two submodules X and Y of a module M are said to be

β∗ equivalent (denoted as Xβ∗Y ) if (X+Y )/X �M/X and (X+Y )/Y �M/Y .

It was shown in [1, Theorem 2.6 (ii)] that if X,Y are submodules of M such that

Xβ∗Y , then X has a supplement C in M if and only if C is a supplement of Y in

M .

Proposition 3.19. Let M be a coatomic module which has the complete max-

property and let H, K and F be submodules of M . Assume that F is a supplement

of both H and K in M . Then Hβ∗K.

Proof. By Theorem 3.16, we have H + Rad(M) = K + Rad(M) = ∆F (M). From

[1, Corollary 2.4], it follows that Hβ∗K. �

Following [1], a module M is called Goldie*-supplemented if for every submodule

X of M , there exists a supplement submodule F in M such that Xβ∗F . It was

shown in [1, Theorem 3.6 and Example 3.9 (iii)] that any Goldie*-supplemented

module is supplemented but the converse is not true, in general. In the next

proposition, we present some sufficient conditions for a supplemented module to

be Goldie*-supplemented.

Proposition 3.20. Let M be a coatomic module which has the complete max-

property. If M is supplemented, then M is Goldie*-supplemented

Proof. Assume that M is a supplemented module. Let X be a submodule of

M . Let F be a supplement of X in M and let T be a supplement of F in M .

Then F is a supplement of T in M by [4, 20.4 (9)]. Using Theorem 3.16, we get

X + Rad(M) = T + Rad(M) = ∆F (M). Note that Rad(M)�M . Therefore M is

Goldie*-supplemented by [1, Corollary 3.4]. �
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laminengo89@hotmail.fr (L. Ngom)

sowdjibab@ucad.sn (D. Sow)

Rachid Tribak (Corresponding Author)

Centre Régional des Métiers de l’Education et de la Formation (CRMEF)-Tanger

Avenue My Abdelaziz, Souani, BP 3117, Tangier, Morocco

e-mail: tribak12@yahoo.com


