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Abstract

Giving up the homogeneity condition of a Lagrange superfunction, we prove that there is a
unique horizontal endomorphism h (nonlinear connection) on a supermanifold M , such that
h is conservative and its torsion vanishes. There are several examples for nonhomogeneous
Lagrangians such that this result is not true.

1. Introduction

The fundamental relation between the horizontal endomorphisms and semisprays was discovered, independently, by M. Crampin [3] and
J. Grifone [6, 7]. The conditions for a system of second order differential equations to be derivable from a Lagrangian are related to
the differential geometry of the tangent bundle of configuration space. These conditions are simply expressed in terms of the horizontal
distribution which is associated with any vector field representing a system of second-order differential equations.
In supergeometry, relationship between nonlinear connections and supersprays structures to be discussed. Also it was shown that there exists
a homogeneous superspray, so called the Euler-Lagrange supervector field, which is induced by a Finsler metric [8, 13]. This superspray can
help us to introduce a horizontal endomorphism which will be used to obtain the main result. So we will show that on a Finsler supermanifold
(M ,F), there is a unique horizontal endomorphism h which is conservative (see theorem 3.6) i.e. dhL = 0. The property dhL = 0 tells us
that the Lagrangian L is constant along the horizontal curves of the nonlinear connection and hence it is constant along the geodesics of
the superspace. This result is not true for an arbitrary Lagrangian L. We will find non homogeneous Lagrangian superfunctions for which
dhL 6= 0.
The paper is organized as follows: Section 2 deals with the vertical and complete lift of supervector fields to the tangent superbundle. It
contains a brief review of the notion of superspray and the relationship between supersprays and nonlinear connections. We also introduce
the notion of Euler-Lagrange supervector field which is an important tool to construct the horizontal endomorphism. In section three, we
introduce a horizontal endomorphism h on a supermanifold M , such that h is conservative and its torsion vanishes. We consider an example
for a nonhomogeneous Lagrangian such that this result is not true.

2. Preliminary

The basic structure for building up supermanifolds is the Grassmann algebra. With BL = (BL)0 +(BL)1 we shall denote a real Grassmann
algebra with L generators. If L = ∞,BL is given a suitable Banach norm, making B∞ a Banach-Grassmann algebra as defined in [9]. Here BL
is a graded commutative algebra, namely ,

ab ∈ (BL)|a|+|b|, ab = (−1)|a||b|ba,

where the element a,b∈BL are the homogeneous. A (m,n)−dimensional supermanifold M is defined on Bm,n
L (see details in [4]). Throughout

this paper, M will denote an (m,n)-dimensional supermanifold.
The concept of nonlinear connection (N-connection) was introduced in component form in a number of works by Cartan [2], Kawaguchi
[10, 11] and Ehresmann [5]. But the first global definition is due to Barthel [1]. The geometry of N-connection in superspaces are considered
in detail in [16], [14].
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Let us consider a vector superbundle E = (E,πE ,M ) whose type fiber is F and πT : TE→TM is the superdifferential of the map πE . The
kernel of this vector superbundle morphism being a subbundle of (T E,τE ,E) is called the vertical subbundle over E and is denoted by
VE = (V E,τV ,E). Its total space is VE =

⋃
u∈E Vu, where Vu = kerπT , u∈E .

A nonlinear connection, N-connection [15, 16], in vector superbundle E is a splitting on the left of the exact sequence

07−→VE
i7−→ TE 7−→TE /VE 7−→0, (2.1)

i.e. a morphism of vector superbundles N : TE →VE such that N◦i is the identity on VE .
The kernel of the morphism N is called the horizontal subbundle and is denoted by (HE,τH ,E). From the exact sequence (2.1) it follows
that N-connection structure can be equivalently defined as a distribution TuE = HuE⊕VuE, u ∈ E on E defining a global decomposition,
as a Whitney sum,

TE = HE ⊕VE . (2.2)

Locally a nonlinear connection in E is given by its coefficients

N j
i (x,y,η ,θ),Nβ

i (x,y,η ,θ),N j
α (x,y,η ,θ),Nβ

α (x,y,η ,θ).

In the tangent superbundle a local basis adapted to the given nonlinear connection N is introduced by

(
δ

δxi
,

δ

δηα

,
∂

∂yi
,

∂

∂θα

),

where

δ

δxi
:=

∂

∂xi
−N j

i
∂

∂y j
−Nα

i
∂

∂θα

(2.3)

and

δ

δηα

:=
∂

∂ηα

−Ni
α

∂

∂yi
−Nβ

α

∂

∂θβ

. (2.4)

Let X = X i ∂

∂xi
+Xα ∂

∂ηα
be a supervector field in a coordinate neighborhood U of M , then the vertical lift Xv and the complete lift Xc of X

have the form

Xv = X i ∂

∂yi
+Xα ∂

∂θα

,

and

Xc =
m

∑
i=1

(
X i ∂

∂xi
+

(
m

∑
j=1

y j
∂X i

∂x j
+

n

∑
γ=1

θγ

∂X i

∂ηγ

)
∂

∂yi

)

+
n

∑
α=1

(
Xα ∂

∂ηα

+

(
m

∑
j=1

y j
∂Xα

∂x j
+

n

∑
γ=1

θγ

∂Xα

∂ηγ

)
∂

∂θγ

)
.

Definition 2.1. A vertical endomorphism on the tangent superbundle TM is a (super) tensor field

J : X (TM ) 7→X (TM )

satisfies in ImJ = KerJ, J2 = 0.

If J is a vertical endomorphism, the vertical differentiation dJ is the mapping dJ = [iJ ,d] = iJod−doiJ . In particular, for any superfunction
f on M , we have dJ f = i jd f .
Let (xi;ηα ) be local coordinates on M and (xi,yi;ηα ,θα ) the corresponding local coordinates on TM . The Liouville supervector field C
on X (TM ) defined by

C = yi
∂

∂yi
+θα

∂

∂θα

. (2.5)

Definition 2.2. A morphism h : X (TM ) 7→X (TM ) is said to be a horizontal endomorphism on M if it satisfies the following conditions:
(i) h2 = h
(ii)Kerh = X v(TM ).

Assume h is a horizontal endomorphism. The supervector 1-form, or simply the vector 1-form, [h,C] is said to be the tension of h. The
vector 2-form [J,h] is said to be the torsion of h.
Let h be a horizontal endomorphism. If X h(TM ) := Imh, then X (TM ) = X h(TM )⊕X v(TM ) and X h(TM ) is called the
supermodule of horizontal supervector fields. v := (id−h) : X (TM ) 7→X (TM ), is the vertical projection on X v(TM ) along X h(TM ).
Also, we have hoJ = 0 and Joh = J.

Definition 2.3. A morphism F : X (TM ) 7→X (TM ) is said to be an almost complex structure on M if F 2 =−1.

Definition 2.4. A supervector field S on TM is a superspray if

J(S) = yi
∂

∂yi
+θα

∂

∂θα

. (2.6)
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When the coefficients of a superspray S are homogeneous of degree 2, we say that S is a homogeneous superspray.
If S is a homogeneous superspray and C the Liouville supervector field, then [C,S] = S. It is not difficult to show that if h is a horizontal
endomorphism on M and S′ an arbitrary superspray then S := hS′ is also a superspray on M . It satisfies the relation h[C,S] = S. So S is
called the superspray associated to h.
A generalized Lagrange superspace is a pair GLm,n = (M ,g(x,y, ;η ,θ)), where g(x,y;η ,θ) is a distinguished tensor field on TM o =
TM −{0}, supersymmetric of superrank (m,n) . A Lagrange superspace is defined as a particular case of generalize Lagrange superspace
when the distinguished tensor field on M can be expressed as

gi j =
1
2

∂ 2L
∂yi∂y j

, giβ =
1
2

∂ 2L
∂yi∂θβ

, gα j =
1
2

∂ 2L
∂θα ∂y j

, gαβ =
1
2

∂ 2L
∂θα ∂θβ

(2.7)

where L : TM 7→ BL, is a superfunction called a Lagrangian on M (see [15]).
Locally, L is regular if and only if the matrix

g =

[
gi j giβ
gα j gαβ

]
is invertible. For example, if L = F2, where F will be defined in the following definition, then L is a regular Lagrangian. In this case L is a
homogeneous superfunction of degree 2.
To define a (super) metric on a supermanifold, We consider the base manifold M of a vector superbundle E = (E,πE ,M ) to be a connected
and paracompact manifold.

Definition 2.5. A metric structure on the total space E of a vector superbundle E is a supersymmetric, second order, covariant supertensor
field g which in every point u ∈ E is given by nondegenerate supermatrix gab = g(∂a,∂b) ( with nonvanishing superdeterminant, detg 6= 0).

Definition 2.6. A function F : TM → BL is called a Finsler metric (see [15]) if the following conditions are satisfied:
(1) The restriction of F to TM o = TM −{0} is of the class G∞ and F is only supersmooth on the image of the null cross–section in the
tangent supermanifold to M.
(2) F(x,λy;η ,λθ) = λF(x,y;η ,θ), where λ is a real positive number.
(3) The restriction of F to the even subspace of TM o is a positive function.
(4) If we put

gi j =
1
2

∂ 2F2

∂yi∂y j
, giβ =

1
2

∂ 2F2

∂yi∂θβ

, gα j =
1
2

∂ 2F2

∂θα ∂y j
, gαβ =

1
2

∂ 2F2

∂θα ∂θβ

(2.8)

then

g =

[
gi j giβ
gα j gαβ

]
is invertible .

A pair (M ,F) is called a Finsler Supermanifold.
It is obvious that Finsler superspaces form a particular class of Lagrange superspaces with Lagrangian L = F2.

Definition 2.7. The dynamics of a system (TM ,ω,L), associated to a Lagrangian L ∈ TM , is given by a supervector field X ∈X (TM )
satisfying the equation

iX ω =−dL (2.9)

where ω = ddJL.

It is shown that the Euler-Lagrange supervector field is a superspray [13].

Theorem 2.8. ([13]) On any Finsler supermanifold (M ,F), there is a homogeneous superspray

S = y j
∂

∂x j
+θβ

∂

∂ηβ

−2G j(x,y;η ,θ)
∂

∂y j
−2Gβ (x,y;η ,θ)

∂

∂θβ

where

G j =
1
4

g jm(yk ∂ 2F2

∂xk∂ym
− ∂ 2F2

∂ηα ∂ym
θα −

∂F2

∂xm
)

−1
4

gmβ (y j ∂ 2F2

∂x j∂θγ

+
∂ 2F2

∂ηµ ∂θγ

θµ −
∂F2

∂ηγ

) (2.10)

and

Gβ =
1
4

gβm(yk ∂ 2F2

∂xk∂ym
− ∂ 2F2

∂ηα ∂ym
θα −

∂F2

∂xm
)

+
1
4

gβγ (y j ∂ 2F2

∂x j∂θγ

+
∂ 2F2

∂ηµ ∂θγ

θµ −
∂F2

∂ηγ

). (2.11)
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We call this superspray the canonical superspray of a Finsler metric.
Let (M ,F) be a Finsler supermanifold and consider TM o = TM −{0} and denote by V TM o the vertical superbundle over TM o. It is
easy to show that a Finsler metric F allows to define a (super) metric g on the vertical superbundle V TM o, by setting L = F2 and

g(JX ,JY ) = ω(JX ,Y ) (2.12)

for X ,Y ∈ T (T M). So the coefficients of this metric are superfunctions defined in (2.8).
If h is a horizontal endomorphism on M and v = id−h, g can be extended to TM by putting

G(X ,Y ) = g(JX ,JY )+g(vX ,vY ),

where J is the vertical endomorphism.

3. A Horizontal endomorphism

We are now in position to define a horizontal endomorphism which is conservative and torsion-free. To do it we need to define a supervector
1-form [J,X ], where J is a vector 1-form and X a supervector field. Since J is a vector form of degree 0, for each supervector field Y on TM
we have

[J,X ]Y = (−1)|X ||Y |
(

Y i[
∂

∂yi
,X ]+Y α [

∂

∂θα

,X ]

)
− (−1)|X ||Y |

(
Y (X i)

∂

∂yi
+Y (Xα )

∂

∂θα

)
.

An easy computation shows that

[J,X ]Y = (−1)|X ||Y |[JY,X ]− (−1)|X ||Y |J[Y,X ]. (3.1)

Theorem 3.1. (1) Any superspray S generates a torsion-free horizontal endomorphism

h =
1
2
(id +[J,S]), (3.2)

where id is the identity map on T (T M). The horizontal lift of a supervector field X on M is

Xh := hXc =
1
2
(Xc +[Xv,S]). (3.3)

(2) A superspray associated to h is

Sh =
1
2
(S+[C,S]). (3.4)

If S is a homogeneous superspray, then Sh = S.
(3) The torsion of h vanishes.

Proof. (1) First, we show that h is a horizontal endomorphism. So let X be a homogeneous supervector field on M . Since S is an even
supervector field, thus

h(Xv) =
1
2

(
Xv− J

{
X i(

∂

∂xi
−2

∂G j

∂yi

∂

∂y j
−2

∂Gβ

∂yi

∂

∂θβ

)

+ Xα (
∂

∂ηα

−2
∂Gi

∂θα

∂

∂yi
−2

∂Gβ

∂θα

∂

∂θβ

)}− y j(
∂X i

∂x j

∂

∂yi
+

∂Xα

∂x j

∂

∂θα

)

− θ
β (

∂X i

∂ηβ

∂

∂yi
+

∂Xα

∂ηβ

∂

∂θβ

)
)
=

1
2
(Xv−X i ∂

∂yi
−Xα ∂

∂θα

) = 0.

This shows that Xv(TM )⊂ kerh.
Now, let Y ∈ kerh, then

0 = 2h(Y ) = Y +[JY,S]− J[Y,S],

so Y =−[JY,S]+ J[Y,S]. If we compute JY , it follows that

JY =−J[JY,S] = 0.

Thus kerh⊂ Xv(TM ) and therefore Xv(TM ) = kerh.
It is clear that for any supervector field Xv ∈X (TM ), we have h2(Xv) = 0. On the other hand

h2(Xc) =
1
2

(
hXc +h[JXc,S]−hoJ[Xc,S]

)
=

1
2

(
hXc +h[Xv,S]

)
= hXc.

This shows that on X (TM ) we have h2 = h.
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(2) If S̃ is an arbitrary superspray on M and h is the horizontal endomorphism defined by (3.2), then Joh(S̃) = C. So Sh = h(S̃) is a
superspray.
Now let S̃ has the local form

S̃ = yi
∂

∂xi
+θα

∂

∂ηα

−2G̃i ∂

∂yi
−2G̃α ∂

∂θα

.

It is not difficult to show that J[S̃,S] =−S+ S̃. If S is a homogeneous superspray, i.e. Gi and Gα are superfunctions of degree two, then
[C,S] = S and

h(S̃) =
1
2
(S̃+[JS̃,S]− J[S̃,S]) = S.

(3) We begin this part of proof with the definition of horizontal endomorphism h, thus we have

[J,h] =
1
2
[J, id]+

1
2
[J, [J,S]].

It is clear that [J, id] = 0, so we show that [J, [J,S]] = 0. Note that in this case J is an even 1-vector valued form and S an even supervector
field. From the Bianchi identities for the lie superalgebra of vector-valued forms, we have

(−1)1.0[J, [J,S]]+ (−1)1.1[J, [S,J]]+ (−1)0.1[S, [J,J]] = 0.

Apply (3.1) to [S,J], we see that [S,J] =−[J,S]. Since [J,J] = 0, therefore [J, [J,S]] = 0 and the torsion of h is zero.

Lemma 3.2. If h is the horizontal endomorphism defined by (3.2), then there is a unique almost complex structure F on TM such that

FoJ = h, Foh =−J.

Proof. If we use the above conditions, it is easy to see that F permutes the vertical and horizontal superspaces if and only if

F (
∂

∂xi
) = − ∂

∂yi
+N j

i
δ

δx j
+Nα

i
δ

δηα

, F (
∂

∂yi
) =

δ

δxi
,

F (
∂

∂ηα

) = − ∂

∂θα

+Ni
α

δ

δxi
+Nβ

α

δ

δηβ

, F (
∂

∂θα

) =
δ

δηα

.

For example FoJ = h implies that FoJ( ∂

∂xi
) = δ

δxi
, so F ( ∂

∂yi
) = δ

δxi
. Similarly, F ( ∂

∂θα
) = δ

δηα
. Also Foh =−J implies that F ( δ

δxi
) =

− ∂

∂yi
, so F ( ∂

∂xi
) =− ∂

∂yi
+N j

i
δ

δx j
+Nα

i
δ

δηα
.

Definition 3.3. With respect to the (super) metric G on TM , we define the Kahler form

K(X ,Y ) = G(X ,JY )−G(JX ,Y ). (3.5)

Theorem 3.4. Let h be a horizontal endomorphism defined by (3.2). So

ivω = K.

Proof. The canonical expression of the vertical projection v = 1−h is

v = (N j
i

∂

∂y j
+Nβ

i
∂

∂θβ

)⊗dxi− (Ni
α

∂

∂yi
+Nβ

α

∂

∂θβ

)⊗dηα +
∂

∂yi
⊗dyi−

∂

∂θα

⊗dθα .

A long but standard computation shows that

ivω =
∂ 2L

∂y j∂yi
N j

k dxk ∧dxi−
∂ 2L

∂y j∂yi
N j

α dηα ∧dxi +
∂ 2L

∂y j∂yi
dy j ∧dxi

− (−1)L
{

∂ 2L
∂θα ∂yi

Nα
k dxk ∧dxi +

∂ 2L
∂θα ∂yi

Nα
α dηβ ∧dxi +

∂ 2L

∂θα ∂yi
dθα ∧dxi

}
− (−1)L

{
∂ 2L

∂yi∂θα

Ni
jdx j ∧dηα −

∂ 2L
∂yi∂θα

Ni
β

dηβ ∧dηα +
∂ 2L

∂yi∂θα

dyi∧dηα

}
−

{
∂ 2L

∂θβ ∂θα

Nβ

i dxi∧dηα +
∂ 2L

∂θβ ∂θα

Nβ
γ dηγ ∧dηα +

∂ 2L

∂θβ ∂θα

dθβ ∧dηα

}
.

Now, it is easy to check that for two supervector fields X ,Y ∈X (TM ), we have

(ivω)(X ,Y ) = ω(vX ,Y )+ω(X ,vY ). (3.6)

Since ω(X ,vY ) =−(−1)XY ω(vX ,Y ) so

(ivω)(X ,Y ) = g(vX ,JY )− (−1)XY g(vY,JX) = {g(JvX ,JJY )}
+ g(vvX ,vJY )− (−1)XY {g(vvY,vJX)+g(JvY,JJX)}
= G(vX ,JY )− (−1)XY G(vY,JX)

But G(vX ,JY ) = G(X ,JY ), thus (ivω)(X ,Y ) = K(X ,Y ).
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Definition 3.5. A nonlinear connection is called Lagrangian if the horizontal superspace is Lagrangian with respect to the 2-form ω = ddJL,
i.e. if ω(hX ,hY ) = 0 for any X ,Y ∈X (TM ).

An easy computation will show that if a nonlinear connection is Lagrangian then ihω = ω. So from the above proposition we have

2ω = iidω = ihω + ivω

therefore K = ω .

Theorem 3.6. Consider a regular homogeneous Lagrangian L and N a Lagrangian connection. There exist a unique horizontal endomor-
phism h on M such that
(i) h is conservative, i.e. dhL = 0,
(ii) h is torsion-free,
(iii) The tension of h is zero, i.e. [h,C] = 0.
Explicitly, h is given by

h =
1
2
(id +[J,S]) (3.7)

where S is the canonical superspray of a Finsler metric.

Proof. Let (xi;ηα ) be local coordinates on M and (xi,yi;ηα ,θα ) the corresponding local coordinates on TM . It should be mentioned that
we assume L is a homogeneous Lagrangian superfunction of degree K > 1 with respect to (y,θ). We proved before that h = 1

2 (id +[J,S]) is
a torsion-free horizontal endomorphism. Given the local forms of h = dxi⊗ δ

δxi
+dηα ⊗ δ

δηα
and C = yi

∂

∂yi
+θα

∂

∂θα
and using the method

used in Lemma 3.5, it is easy to see that [h,C] = 0. To complete the proof, we only need to prove that dhL = 0. Let S be the canonical
superspray introduced in theorem 2.8. As we mentioned earlier, S is even supervector field, so for any supervector field X on TM , we have
(iSω)(X) = ω(S,X). Since K = ω thus

(iSω)(X) = G(S,JX)−G(JS,X) =−g(vC,vX)
= −g(vC,JFX) =−ω(C,FX).

Now, we show that for any homogeneous supervector field X ∈X (TM ), ω(X ,FX) = ivdL(X). So if X has a local form X = X i ∂

∂xi
+

X̄ i ∂

∂yi
+Xα ∂

∂ηα
+ X̄α ∂

∂θα
, then we have

(ivdL)(X) =
∂L
∂yi

(
Ni

kdxk−Ni
α dηα +dyi

)
(X)

−(−1)|L|
∂L

∂θα

(
Nα

i dxi +Nα

β
dηβ +dθα

)
(X)

=
∂L
∂yi

(
Ni

kXk− (−1)|X |Ni
α Xα + X̄ i

)
−(−1)|L|

∂L
∂θα

(
Nα

i X i +(−1)|X |Nα

β
Xβ +(−1)|X |X̄α

)
.

One can easily check that ω(X ,FX) = ivdL(X). Now, iSω = −dL, because S is the canonical superspray and dL = dvL+ dhL then
dhL = 0.

Let h be the horizontal endomorphism (3.2), the horizontal differential operator is defined by

dhL(X) := dL(hX),

where X is a homogeneous supervector field on M .
The horizontal covariant derivatives of a Lagrange superfunction L with respect to even or odd coordinates are denoted respectively by
L|i =

δL
δxi

and L|α = δL
δηα

. In the following theorem, we use the canonical superspray to have a local expression for the horizontal covariant
derivative of a Lagrange superfunction.

Theorem 3.7. Let h be the horizontal endomorphism (3.2). The horizontal covariant derivatives of a Lagrange superfunction L are

L|i =
1
2

∂ (S(L))
∂yi

, (3.8)

L|α =
1
2

∂ (S(L))
∂θα

(3.9)

Proof. First we compute the right hand of the above formulas. Then we have

∂ (S(L))
∂yi

=
∂L
∂xi

+ y j
∂ 2L

∂yi∂x j
+θα

∂ 2L
∂yi∂ηα

−2N j
i

∂L
∂y j

− 4G j ∂ 2L
∂yi∂y j

−2Nα
i

∂L
∂θα

−4Gα ∂ 2L
∂yi∂θα

, (3.10)
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and

∂ (S(L))
∂θα

=
∂L

∂ηα

+ y j
∂ 2L

∂θα ∂x j
−θβ

∂ 2L
∂θα ∂ηβ

−2N j
α

∂L
∂y j

− 4G j ∂ 2L
∂θα ∂y j

−2Nβ
α

∂L
∂θβ

+4Gβ ∂ 2L
∂θα ∂θβ

. (3.11)

If we now replace the superfunctions Gi and Gα with (2.10) and (2.11) respectively, then some terms of (3.10) and (3.11) cancel with some
terms of the replaced sentences and the only terms that survive are L|i = 2 δL

δxi
and L|α = 2 δL

δηα
, and the theorem is proved.

From the above theorem we found a condition under which the horizontal differential of a Lagrangian L is vanishes. In other words we found
that S(L) = 0 implies dhL = 0.
In the previous theorem, we showed that if L is a homogeneous superfunction then there exist a unique horizontal endomorphism h on M
such that dhL = 0. In the following, we will show that this result is not true for an arbitrary Lagrangian L. We will find non homogeneous
Lagrangian superfunctions for which dhL 6= 0.
Let M be a Riemannian supermanifold with a supermetric g̃. In the standard local coordinate system (x,η) in M , g̃ is expressed in the form

g̃ = g̃i jdxi⊗dx j + g̃iα dxi⊗dηα + g̃αidηα ⊗dxi + g̃αβ dηα ⊗dηβ

where g̃i j, g̃iα and g̃αβ are superfunctions on M and g̃i j = g̃ ji, g̃αβ =−g̃βα , g̃iα = g̃αi. The superfunction

L(x,y,η ,θ) = g̃i j(x,η)yiy j + g̃iα yiθα + g̃αβ θα θβ (3.12)

is a regular Lagrangian on TM .
Now we are ready to introduce a Lagrangian superfunction which is not homogeneous and its horizontal differential is not zero. To construct
this superfunction, let L be the superfunction (3.12) and φ an even homogeneous superfunction on the supermanifold M , then

L′ = L(x,y,η ,θ)+
∂φ

∂xi
(x,η)yi +

∂φ

∂ηα

(x,η)θα (3.13)

is a regular Lagrangian on TM . Using (2.9), it is easy to check that the Cartan 2-forms associated to the superfunctions L and L′ are
equal (see [8]), then the canonical superspray associated to these superfunctions are equal (see (2.10) and (2.11)). On the other hand, in
the definition of the endomorphism (3.7) we see that it depends on the canonical superspray, so we conclude that L and L′ have the same
horizontal endomorphism.
In local coordinates, let X = X i ∂

∂xi
+ X̄ i ∂

∂yi
+Xα ∂

∂ηα
+ X̄α ∂

∂θα
be a homogeneous supervector field on TM . We have showed that dhL = 0,

so

dhL′(X) = dh

(
∂φ

∂xi
(x,η)yi +

∂φ

∂ηα

(x,η)θα

)
(X)

= d
(

∂φ

∂xi
yi +

∂φ

∂ηα

θα )

)
(h(X))

=

(
∂ 2φ

∂x j∂xi
yi−

∂φ

∂xk
Nk

j +
∂ 2φ

∂x j∂ηα

θα −
∂φ

∂ηβ

Nβ

j

)
X j

−(−1)|X |
(

∂ 2φ

∂ηβ ∂xi
yi−

∂φ

∂x j
N j

β
+

∂ 2φ

∂ηβ ∂ηα

θα +
∂φ

∂ηγ

Nγ

β

)
Xβ

Now we need to get the coefficients of X j and Xβ in the last equation to be nonzero. We can do this using a linear type of the superfunction
φ in x and η . Then dhL′ 6= 0.
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[6] J. Grifone, Structure presque-tangente et connexions. I. (French)Ann. Inst. Fourier (Grenoble) 22 (1972), no. 1, 287–334.
[7] J. Grifone, Structure presque-tangente et connexions. II. (French)Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 291–338.
[8] L. A. Ibort ; G. Landi; J. Marn-Solano and G. Marmo, On the inverse problem of Lagrangian supermechanics, Internat. J. Modern Phys. A 8 (1993), no.

20, 3565–3576.
[9] A. Jadczyk and K. Pilch, Superspaces and supersymmetries, Comm. Math. Phys. 78 (1980) 373-390.
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