

**Fundamental Journal of Mathematics and Applications** 

Journal Homepage: www.dergipark.gov.tr/fujma



# Characterizations of slant and spherical helices due to pseudo-Sabban frame

Bülent Altunkaya<sup>a\*</sup> and Levent Kula<sup>a</sup>

<sup>a</sup>Department of Mathematics, Faculty of Education, University of Ahi Evran, Kırşehir, Turkey <sup>\*</sup>Corresponding author E-mail: bulent.altunkaya@ahievran.edu.tr

| Article Info                                                                                                                                                                                                                  | Abstract                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords: Geodesic curvature, Pseu-<br>dosphere, Hyperbolic plane, Helix, Sab-<br>ban frame, Minkowski space<br>2010 AMS: 51B20, 53A04<br>Received: 3 April 2018<br>Accepted: 19 April 2018<br>Available online: 30 June 2018 | In this paper, we investigate that under which conditions of the geodesic curvature of unit speed curve $\gamma$ that lies on $S_1^2$ or $H^2$ , the curve $\alpha$ which is obtained by using $\gamma$ , is a spherical helix or slant helix in Minkowski 3-space. |

## 1. Introduction

There are several studies in literature examining methodology to use spherical curves to construct some specialized curves. For example, Izuyama and Takeuchi [7], defined a way to construct Bertrand curves from the spherical curve whose spherical evolute coincides with the spherical Darboux image of the Bertrand curve. In addition to this paper, Encheva and Georgiev [4] showed a way to construct all *Frenet* curves ( $\kappa > 0$ ) by the following formula

$$\alpha(s) = b \int e^{\int k(s)ds} \gamma(s)ds + a$$

where *b* is a constant number, *a* is a constant vector,  $\gamma$  is a unit speed curve on  $S^2$  with the Sabban frame and  $k : I \to R$  is a function of class  $C^1$ . Moreover, they showed that the spherical curve  $\gamma$  is a circle if and only if the corresponding *Frenet curves* are cylindrical helices. Previously, we have found some characterizations to construct spherical helices and slant helices in Euclidean space by using these methods [2].

This paper is organized in the following way. In section 2 basic concepts of Minkowski 3-space  $R_1^3$  are given. In section 3, spherical helices in  $R_1^3$  are discussed by indicating some examples. Similarly, in section 4, slant helices in  $R_1^3$  are examined.

### 2. Basic Concepts

Let us consider the Minkowski 3-space  $R_1^3$  with the Lorentzian inner product

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 - x_3 y_3$$

where  $x = (x_1, x_2, x_3)$  and  $y = (y_1, y_2, y_3) \in R_1^3$ . The pseudo-norm of a vector x is given by  $||x|| = \sqrt{|\langle x, x \rangle|}$ . In the space  $R_1^3$ , the Lorentzian cross-product is defined as follows

$$x \wedge y = \begin{vmatrix} e_1 & e_2 & -e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = (x_2y_3 - x_3y_2, \quad x_3y_1 - x_1y_3, \quad x_2y_1 - x_1y_2).$$

Email addresses: bulent.altunkaya@ahievran.edu.tr (B. Altunkaya) lkula@ahievran.edu.tr (L. Kula)

It's clearly seen that the cross-product has the following properties [3],

(i) 
$$x \wedge y = -(y \wedge x)$$
  
(ii)  $\langle x \wedge y, z \rangle = det(x, y, z)$   
(iii)  $x \wedge (y \wedge z) = \langle x, y \rangle z - \langle x, z \rangle y$   
(iv)  $\langle x \wedge y, x \wedge y \rangle = (\langle x, y \rangle)^2 - \langle x, x \rangle \langle y, y \rangle$   
(v)  $\langle x \wedge y, x \rangle = 0$ ,  $\langle x \wedge y, y \rangle = 0$ 

where  $x, y, z \in R_1^3$ .

A vector  $x \in R_1^3$  is called spacelike if  $\langle x, x \rangle > 0$  or x = 0, timelike if  $\langle x, x \rangle < 0$ , lightlike if  $\langle x, x \rangle = 0$  and  $x \neq 0$  [8]. In [8], the hyperbolic plane (resp. pseudosphere) center  $q \in R_1^3$  and of radius r > 0 are defined by,

$$H^{2}(r;q) = \left\{ x = (x_{1}, x_{2}, x_{3}) \in R_{1}^{3} : \langle x - q, x - q \rangle = -r^{2}, x_{3} - q_{3} > 0 \right\},\$$

$$S_1^2(r;q) = \left\{ (x_1, x_2, x_3) \in R_1^3 : \langle x - q, x - q \rangle = r^2 \right\}.$$

When r = 1 and p is the origin, the hyperbolic plane is denoted by  $H^2$  and the pseudosphere is denoted by  $S_1^2$ .

In this paper, when a helix lies on  $H^2(r;q)$  or  $S_1^2(r;q)$ , we call it spherical curve. Given a regular curve  $\alpha(t): I \subset R \to R_1^3$ . We say that  $\alpha$  is spacelike (resp. timelike, lightlike) at t if  $\alpha'(t)$  is a spacelike (resp. timelike, lightlike) vector. The curve  $\alpha$  is called spacelike (resp. timelike, lightlike) if it is for any  $t \in I[8]$ .

A non-lightlike curve  $\alpha : I \subset R \longrightarrow E_1^3$  is said to be parametrized by the pseudo arclength parameter s, if  $|\langle \alpha'(s), \alpha'(s) \rangle| = 1$ . In this case, we call  $\alpha$  is a unit speed curve.

For a unit speed non-lightlike curve  $\alpha$  with a spacelike or timelike normal vector N(s), the Frenet formulae are given in [8]. It's easy to calculate the formulae for arbitrary speed non-lightlike curves as follows.

If  $\alpha$  is a timelike curve,

$$\begin{bmatrix} T'\\N'\\B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa v & 0\\\kappa v & 0 & \tau v\\0 & -\tau v & 0 \end{bmatrix} \begin{bmatrix} T\\N\\B \end{bmatrix}$$
(2.1)

If  $\alpha$  is a spacelike curve with a spacelike normal vector N(t),

$$\begin{bmatrix} T' \\ N' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa v & 0 \\ -\kappa v & 0 & \tau v \\ 0 & \tau v & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}$$
(2.2)

If  $\alpha$  is a spacelike curve with a timelike normal vector N(t),

$$\begin{bmatrix} T'\\N'\\B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa v & 0\\\kappa v & 0 & \tau v\\0 & \tau v & 0 \end{bmatrix} \begin{bmatrix} T\\N\\B \end{bmatrix}$$
(2.3)

where

$$\kappa = \frac{\|\boldsymbol{\alpha}' \wedge \boldsymbol{\alpha}''\|}{\|\boldsymbol{\alpha}'\|^3}, \tau = \frac{\det\left(\boldsymbol{\alpha}', \boldsymbol{\alpha}'', \boldsymbol{\alpha}'''\right)}{\|\boldsymbol{\alpha}' \wedge \boldsymbol{\alpha}''\|^2}, \nu = \sqrt{|\langle \boldsymbol{\alpha}', \boldsymbol{\alpha}' \rangle|}.$$
(2.4)

In the formulae above, we denote unit tangent vector with T(t), unit binormal vector with B(t), unit normal vector with N(t).

A regular timelike or spacelike curve  $\alpha$  is a helix, if  $\tau/\kappa$  is a constant function.

For a unit speed curve  $\alpha$  in  $R_1^3$ , slant helix characterization is given in [1]. Also, some characterizations of Lorentzian unit speed curves which lies on  $H^2$  or  $S_1^2$  were investigated in [9, 10, 11, 12]. With the help of these papers, we easily have the Lemmas for arbitrary speed curves below.

**Lemma 2.1.** Let  $\alpha$  be a timelike curve in  $R_1^3$ . Then,  $\alpha$  is a slant helix if and only if either one of the next two functions

$$\frac{\kappa^2}{\nu \left(\tau^2 - \kappa^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)' \quad or \quad \frac{\kappa^2}{\nu \left(\kappa^2 - \tau^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)' \tag{2.5}$$

is constant everywhere  $\tau^2 - \kappa^2$  does not vanish.

**Lemma 2.2.** Let  $\alpha$  be a spacelike curve in  $R_1^3$  with a spacelike normal vector. Then,  $\alpha$  is a slant helix if and only if either one of the next two functions

$$\frac{\kappa^2}{\nu\left(\tau^2 - \kappa^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)' \quad or \quad \frac{\kappa^2}{\nu\left(\kappa^2 - \tau^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)' \tag{2.6}$$

is constant everywhere  $\tau^2 - \kappa^2$  does not vanish.

**Lemma 2.3.** Let  $\alpha$  be a spacelike curve in  $R_1^3$  with a timelike normal vector. Then,  $\alpha$  is a slant helix if and only if the function

$$\frac{\kappa^2}{\nu \left(\tau^2 + \kappa^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)' \tag{2.7}$$

is constant.

**Lemma 2.4.** Let  $\alpha$  be a spacelike curve in  $R_1^3$  with a spacelike normal vector. Image of  $\alpha$  lies on the pseudosphere (resp. hyperbolic plane) of radius r and center q if and only if

$$\frac{1}{\kappa^2} - \left(\frac{1}{\nu\tau} \left(\frac{1}{\kappa}\right)'\right)^2 = \pm r^2 (resp.)$$
(2.8)

where  $r > 0 \in R, \kappa \neq 0, \tau \neq 0$ .

**Lemma 2.5.** Let  $\alpha$  be a timelike curve in  $R_1^3$ . Image of  $\alpha$  lies on the pseudosphere of radius r and center q if and only if

$$\frac{1}{\kappa^2} + \left(\frac{1}{\nu\tau} \left(\frac{1}{\kappa}\right)'\right)^2 = r^2 \tag{2.9}$$

where  $r > 0 \in R, \kappa \neq 0, \tau \neq 0$ .

**Lemma 2.6.** Let  $\alpha$  be a spacelike curve in  $R_1^3$  with a timelike normal vector. Image of  $\alpha$  lies on the hyperbolic plane of radius r and center q if and only if

$$\frac{-1}{\kappa^2} + \left(\frac{1}{\nu\tau} \left(\frac{1}{\kappa}\right)'\right)^2 = -r^2 \tag{2.10}$$

where  $r > 0 \in R, \kappa \neq 0, \tau \neq 0$ .

Let  $\gamma$  be a non-lightlike unit speed spherical curve with the arc-length parameter *s* and denote  $\gamma' = t$  where  $\gamma' = d\gamma/ds$ . If we set a vector  $p = \gamma \wedge t$ , by definition we have an orthonormal frame  $\{\gamma, t, p\}$ . This frame is called the pseudo-Sabban frame of  $\gamma$  [5, 6]. Thus, we have the following Lemma .

61()1

**Lemma 2.7.** Let  $\gamma(s)$  be a unit speed spherical curve in  $R_1^3$ , then (*i*) If  $\gamma$  is a timelike curve on  $S_1^2$  then,

$$\begin{array}{l}
\dot{\gamma} = t \\
\dot{t} = k_g p + \gamma \\
p' = k_g t
\end{array}$$
(2.11)

(ii) If  $\gamma$  is a spacelike curve on  $S_1^2$ , then

$$\begin{array}{l}
\dot{\gamma} = t \\
\dot{t}' = -k_g p - \gamma \\
p' = -k_g t
\end{array}$$
(2.12)

(iii) If  $\gamma$  is a spacelike curve on  $H^2$ , then

$$\begin{array}{l}
\gamma' = t \\
t' = k_g p + \gamma \\
p' = -k_g t
\end{array}$$
(2.13)

where  $k_g = det(\gamma, t, t')$  the geodesic curvature of curve  $\gamma$ .

# **3.** Spherical helices on $S_1^2(r; p)$ and $H^2(r; p)$

Let us take the curve

$$\alpha(s) = b \int e^{\int k(s)ds} \gamma(s)ds + a \tag{3.1}$$

at [4]. If we make the neccessary calculations, we have

$$\alpha'(s) = be^{\int k(s)ds} \gamma(s),$$

$$\alpha''(s) = be^{\int k(s)ds} \left(k(s)\gamma(s) + \gamma'(s)\right),$$

$$\alpha'''(s) = be^{\int k(s)ds} \left(\left(k^2(s) + k'(s)\right)\gamma(s) + 2k(s)\gamma'(s) + \gamma''(s)\right).$$
(3.2)

If we calculate  $\kappa$ ,  $\tau$ , and  $\nu$  of the curve  $\alpha$  by using the equations at (2.4) and (3.2), we find

$$\kappa(s) = \frac{1}{be^{j\,k(s)ds}},$$
  

$$\tau(s) = \frac{k_g(s)}{be^{j\,k(s)ds}},$$
  

$$v(s) = be^{j\,k(s)ds}.$$
(3.3)

$$\begin{array}{l} \langle \alpha'(s), \alpha'(s) \rangle = b^2 e^{\int k(s)ds} \left\langle \gamma(s), \gamma(s) \right\rangle, \\ T(s) = \gamma(s), \\ T'(s) = t(s). \end{array}$$

$$(3.4)$$

So, we can say if  $\gamma$  is a unit speed spacelike curve which lies on  $S_1^2$ , then  $\alpha$  is a spacelike curve with a spacelike normal vector N.

If  $\gamma$  is a unit speed spacelike curve which lies on  $H^2$ , then  $\alpha$  is a timelike curve with a spacelike normal vector N.

If  $\gamma$  is a unit speed timelike curve which lies on  $S_1^2$  then  $\alpha$  is a spacelike curve with a timelike normal vector N.

Now, we want to show, under which circumstances the curve  $\alpha$  at equation (3.1) is a spherical helix on  $S_1^2(r; p)$ .

**Theorem 3.1.** If the curve  $\gamma$  is a unit speed spacelike curve with a constant geodesic curvature, which lies on  $S_1^2$ , the curve  $\alpha$  defined by (3.1) is a spherical helix which lies on the pseudosphere of the radius |bd| and of the center origin if and only if the function  $k(s) = k_g \tanh \left[ (k_g) (s-c) \right]$  where  $b, c, d \in \mathbb{R}$ .

*Proof.* From (3.2), (3.3), and (3.4), we know the curve

$$\alpha(s) = b \int e^{\int k(s)ds} \gamma(s)ds + a$$

is a spacelike curve with a spacelike normal vector N(s). So we need to use (2.8). Let's take the derivate of (2.8) with respect to s. Then, we have

$$\left(\frac{1}{\nu}\left[\frac{1}{\nu\tau}\left(\frac{1}{\kappa}\right)'\right]' - \frac{\tau}{\kappa}\right)(s) = 0$$

By putting (3.3) in this equation, we have

$$\left(\frac{1}{be^{\int kds}} \left[\frac{1}{k_g} \left(be^{\int kds}\right)'\right]' - k_g\right)(s) = 0$$
$$k'(s) + k^2(s) = k_g^2.$$

If we solve this differential equation, we have

$$k(s) = k_g tanh\left[\left(k_g\right)(s-c)\right]$$

Conversely, if we take  $k(s) = k_g tanh [(k_g)(s-c)]$  in (14), then

$$\int k(s) ds = \int k_g tanh\left[\left(k_g\right)(s-c)\right] ds.$$

Let  $u = k_g (s - c) = k_g s - k_g c$  then  $k_g ds = du$ , by using these equations

$$\int k(s) ds = \int \tanh u du$$
$$= \ln \cosh u + \ln d$$
$$= \ln \left[ d \cosh \left( k_g \left( s - c \right) \right) \right]$$

we have

$$\alpha(s) = b \int e^{\int k(s)ds} \gamma(s)ds + a$$
$$= b \int e^{\ln[d\cosh(k_g(s-c))]} \gamma(s)ds + a$$
$$= b \int d\cosh(k_g(s-c)) \gamma(s)ds + a$$

where  $c, d \in R$ . Now, we must show that curve  $\alpha$  is spherical. If we use (2.8) to do it, we have

$$r^{2} = \left( \left( \frac{1}{\kappa^{2}} - \left( \frac{1}{\nu \tau} \left( \frac{1}{\kappa} \right)' \right) \right)^{2} \right) (s)$$
$$= \left( b^{2} e^{2 \int k ds} \left( 1 - \frac{k^{2}}{k_{g}^{2}} \right) \right) (s)$$
$$= b^{2} d^{2} \cosh^{2} \left( k_{g} \left( s - c \right) \right) \left( \frac{1}{\cosh^{2} \left( k_{g} \left( s - c \right) \right)} \right)$$
$$- b^{2} d^{2}$$

Therefore, it can be said that the curve  $\alpha$  lies on  $S_1^2$  which has a radius |bd|.

Now, we can give another theorem.

**Theorem 3.2.** If the curve  $\gamma$  is a unit speed spacelike curve with a constant geodesic curvature, which lies on  $H^2$ , the curve  $\alpha$  defined by (3.1) is a spherical helix which lies on the pseudosphere of the radius |bd| and of the center origin if and only if the function  $k(s) = k_g tan [(k_g)(s-c)]$  where  $b, c, d \in R$ .

*Proof.* By using (2.9) instead of (2.8) in Theorem 3.1, the proof is similar.

**Theorem 3.3.** If the curve  $\gamma$  is a unit speed timelike curve with a constant geodesic curvature, which lies on  $S_1^2$ , the curve  $\alpha$  defined by (3.1) is a spherical helix which lies on the hyperbolic plane of the radius |bd| and of the center origin if and only if the function  $k(s) = k_g \tanh[(k_g)(s-c)]$  where  $b, c, d \in \mathbb{R}$ .

*Proof.* By using (2.10) instead of (2.8) in Theorem 3.1, the proof is similar.

**Example 3.4.** Let's take  $\gamma(s) = \left\{\sqrt{2}\cos\left(s/\sqrt{2}\right), \sqrt{2}\sin\left(s/\sqrt{2}\right), 1\right\}$ , we know that  $\gamma$  is a spacelike curve on  $S_1^2$  with the geodesic curvature  $\sqrt{2}$ . Then due to Theorem 3.1,

$$k(s) = k_g tanh\left[\left(k_g\right)(s-c)\right]$$

and

$$\alpha(s) = b \int d\cosh\left(k_g(s-c)\right)\gamma(s)ds + a$$

where  $b, c, d \in R$ . If we take b = 2, c = 0, d = 1; then, we have

$$\alpha_{1}(s) = 2\cosh\left(s/\sqrt{2}\right)\sin\left(s/\sqrt{2}\right) + 2\cos\left(s/\sqrt{2}\right)\sinh\left(s/\sqrt{2}\right)$$
$$\alpha_{2}(s) = -2\cos\left(s/\sqrt{2}\right)\cosh\left(s/\sqrt{2}\right) - 2\sin\left(s/\sqrt{2}\right)\sinh\left(s/\sqrt{2}\right)$$
$$\alpha_{3}(s) = 2\sqrt{2}\sinh\left(s/\sqrt{2}\right)$$

*where*  $\alpha$  (*s*) = ( $\alpha_1$  (*s*),  $\alpha_2$  (*s*),  $\alpha_3$  (*s*)) *and a* = (0,0,0)

**Example 3.5.** Let's take  $\gamma(s) = \{\cos(s), \sin(s), \sqrt{2}\}$ , we know that  $\gamma$  is a spacelike curve on  $H^2$  with the geodesic curvature  $\sqrt{2}$ . Then, due to Theorem 3.2,

$$k(s) = k_g tan\left[\left(k_g\right)(s-c)\right]$$

and

$$\alpha(s) = b \int d\cos\left(k_g(s-c)\right)\gamma(s)ds + a$$

where  $b, c, d \in R$ . If we take b = 2, c = 0, d = 1; then, we have

$$\alpha_{1}(s) = -2\cos\left(\sqrt{2}s\right)\sin(s) + 2\sqrt{2}\cos(s)\sin\left(\sqrt{2}s\right)$$
$$\alpha_{2}(s) = 2\cos(s)\cos\left(\sqrt{2}s\right) + 2\sqrt{2}\sin(s)\sin\left(\sqrt{2}s\right)$$
$$\alpha_{3}(s) = 2\sin\left(\sqrt{2}s\right)$$

where  $\alpha(s) = (\alpha_1(s), \alpha_2(s), \alpha_3(s))$  and a = (0, 0, 0)

**Example 3.6.** Let's take  $\gamma(s) = \left\{ \frac{1}{\sqrt{3}} \cosh\left(\sqrt{3}s\right), \frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}} \sinh\left(\sqrt{3}s\right) \right\}$ , we know that  $\gamma$  is a timelike curve on  $S_1^2$  with the geodesic curvature  $\sqrt{2}$ . Then, due to Theorem 3.3,

$$k(s) = k_g tanh\left[\left(k_g\right)(s-c)\right]$$

and

$$\alpha(s) = b \int d\cosh\left(k_g(s-c)\right)\gamma(s)ds + a$$

where  $b, c, d \in R$ . If we take b = 2, c = 0, d = 1; then, we have

$$\alpha_{1}(s) = -2\sqrt{\frac{2}{3}}\cosh\left(\sqrt{3}s\right)\sinh\left(\sqrt{2}s\right) + 2\cosh\left(\sqrt{2}s\right)\sinh\left(\sqrt{3}s\right)$$
$$\alpha_{2}(s) = \frac{2\sinh\left(\sqrt{2}s\right)}{\sqrt{3}}$$
$$\alpha_{3}(s) = 2\cosh\left(\sqrt{2}s\right)\cosh\left(\sqrt{3}s\right) - 2\sqrt{\frac{2}{3}}\sinh\left(\sqrt{2}s\right)\sinh\left(\sqrt{3}s\right)$$

*where*  $\alpha$  (*s*) = ( $\alpha_1$  (*s*),  $\alpha_2$  (*s*),  $\alpha_3$  (*s*)) *and a* = (0,0,0)

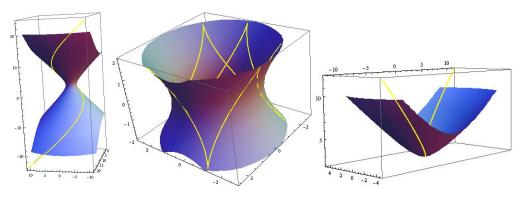


Figure 3.1: Spherical Helices (Resp. Example 1,2, and 3)

## 4. Constructing slant helices from unit speed spherical curves

In this section, we want to give some characterizations about slant helices.

**Theorem 4.1.** Let  $\gamma(s)$  be a unit speed spacelike curve on  $S_1^2$ ; b,m,n be constant numbers; and a be a constant vector. The geodesic curvature of  $\gamma(s)$  satisfies

$$k_{g}^{2}(s) = \frac{(ms+n)^{2}}{1+(ms+n)^{2}}$$

if and only if

$$\alpha(s) = b \int e^{\int k(s)ds} \gamma(s)ds + a$$

is a spacelike slant helix with a spacelike normal vector.

*Proof.* Let, for  $\gamma$ 

$$k_g^2(s) = \frac{(ms+n)^2}{1+(ms+n)^2}.$$
(4.1)

From (3.2), (3.3), and (3.4), we know  $\alpha$  is a spacelike curve with a spacelike normal vector *N*. So; from (2.6), the geodesic curvature of the spherical image of the principal normal indicatrix of  $\alpha$  is as follows

$$\sigma(s) = \left(\frac{\kappa^2}{\nu \left(\kappa^2 - \tau^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)'\right)(s)$$
$$= \left(\frac{\frac{1}{\nu^2}}{\nu \left(\frac{1}{\nu^2} - \frac{k_g^2}{\nu^2}\right)^{3/2}} k_g'\right)(s).$$

So, we have

$$\sigma(s) = \frac{k_{g}'(s)}{\left(1 - k_{g}^{2}(s)\right)^{3/2}}$$
(4.2)

Now, let's take u(s) = ms + n, then we have (4.1)

$$k_g^2(s) = \frac{u^2(s)}{1 + u^2(s)}.$$
(4.3)

If we take the derivates of the both sides of (4.3) with respect to *s*, we have

$$2k_{g}(s)k_{g}'(s) = \left(\frac{2uu'(1+u^{2}) - (2uu')u^{2}}{(1+u^{2})^{2}}\right)(s)$$
$$k_{g}(s)k_{g}'(s) = \left(\frac{uu'}{(1+u^{2})^{2}}\right)(s)$$

$$k_{g}'(s) = \left( \left( \frac{uu'}{\left(1+u^2\right)^2} \right) \left( \varepsilon \sqrt{\frac{1+u^2}{u^2}} \right) \right)(s)$$

$$(4.4)$$

where  $\varepsilon = \pm 1$ . Putting (4.3) and (4.4) in (4.3), we have

$$\sigma(s) = \frac{k_g(s)}{\left(1 - k_g^2(s)\right)^{3/2}}$$
$$= \left(\varepsilon \frac{\sqrt{1 + u^2}uu'}{|u|\left(1 + u^2\right)^2} \left(1 + u^2\right)^{3/2}\right)(s)$$
$$= \varepsilon \frac{ms + n}{|ms + n|}m$$
$$= \varepsilon m$$

which is constant.

Conversely, let  $\alpha(s)$  be a spacelike slant helix, then the geodesic curvature of the spherical image of the principal normal indicatrix of  $\alpha$  is a constant function. So, we can take

$$\sigma(s) = \left(\frac{\kappa^2}{\nu \left(\kappa^2 - \tau^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)'\right)(s) = m$$

where  $m \in R$ . Therefore, from (4.2)

$$m = \left(\frac{\kappa^2}{\nu \left(\kappa^2 - \tau^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)'\right)(s)$$
$$= \frac{k_g'(s)}{\left(1 - k_g^2(s)\right)^{3/2}}$$

If we solve this differential equation, we have

$$\frac{k_{g}\left(s\right)}{\sqrt{1-k_{g}^{2}\left(s\right)}}=ms+n$$

where  $n \in R$ . Then,

**Theorem 4.2.** Let  $\gamma(s)$  be a unit speed spacelike curve on  $H^2$ ; b,m,n be constant numbers; and a be a constant vector. The geodesic curvature of  $\gamma(s)$  satisfies

 $k_g^2(s) = \frac{(ms+n)^2}{1+(ms+n)^2}.$ 

$$k_g^2(s) = \frac{(ms+n)^2}{1+(ms+n)^2}$$

if and only if

$$\alpha(s) = b \int e^{\int k(s)ds} \gamma(s)ds + a$$

is a timelike slant helix with a spacelike normal vector.

*Proof.* By using (2.5) instead of (2.6) in Theorem 4.1, the proof is similar.

**Theorem 4.3.** Let  $\gamma(s)$  be a unit speed timelike curve on  $S_1^2$ ; b,m,n be constant numbers; and a be a constant vector. The geodesic curvature of  $\gamma(s)$  satisfies

$$k_{g}^{2}(s) = \frac{(ms+n)^{2}}{1-(ms+n)^{2}}$$

if and only if

$$\alpha(s) = b \int e^{\int k(s)ds} \gamma(s)ds + a$$

is a spacelike slant helix with a timelike normal vector.

*Proof.* By using (2.7) instead of (2.6) in Theorem 4.1, the proof is similar.

#### References

- [1] Ali Ahmad, T. and Lopez, R., Slant helices in Minkowski space  $E_1^3$ , J. Korean Math. Soc. 48, no. 1, 159–167. 2011.
- [2] Altunkaya, B. and Kula, L., Some characterizations of slant and spherical helices due to sabban frame, Mathematical Sciences and Applications E-Notes, Vol 3, No. 2, 64-73, 2015.
- [3] Babaarslan, M. and Yayli, Y., On spacelike constant slope surfaces and Bertrand curves in Minkowski 3-space, Annals of the Alexandru Ioan Cuza University -Mathematics, 2015. doi:10.1515/aicu-2015-0009.

- [4] Encheva, R. and Georgiev, G., Shapes of space curves, Journal for Geometry and Graphics, Vol 7, No. 2, 145-155, 2003.
  [5] Güner, G. and Ekmekci, N., On the spherical curves and Bertrand curves in Minkowski 3-space, J. Math. Comput. Sci., No. 4, 898-906, 2012.
  [6] Izuyama, S., Pei, D.H., Sano, T., and Torii, E., Evolutes of hyperbolic plane curves, Acta Mathematica Sinica, Vol.20, no.3, pp. 543-550, 2004.
  [7] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turk. J. Math. 28, 153-163, 2004.
  [8] Lopez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, arXiv:0810.3351v1 [math.DG], 2008.
- [9] Pekmen, Ü. and Paşalı, S., Some characterizations of Lorentzian spherical spacelike curves, Mathematica Moravica 3, 31-37, 1999.
- [10] Petrović-Torgašev, M. and Šućurović, E., Some characterizations of Lorentzian spherical spacelike curves with the timelike and the null principal normal, Math. Moravica, 4, 83-92, 2000.
- [11] Petrović-Torgašev, M. and Šućurović, E., Some characterizations of Lorentzian spherical timelike and null curves, Matematički Vesnik, 53, 21-27, 2001.
- [12] Petrović-Torgašev, M. and Šućurović, E., Some characterizations of the spacelike, the timelike and the on the pseudohyperbolic space  $H_0^2$  in  $E_1^3$ , Krugajevac J. Math., 22, 71-82, 2000.