
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 1, Pages 98—110 (2019)
DOI: 10.31801/cfsuasmas.443648
ISSN 1303—5991 E-ISSN 2618-6470

Available online: February 17, 2018

http://communications.science.ankara.edu.tr/index.php?series=A1

A GENERALIZED VERSION OF FOSTER AND STUART’S
d-STATISTIC

HALIL TANIL

Abstract. Assume that only the lists of upper k-records and lower k-records
of a finite sequence are available and the existence of a monotonic trend in
location is interested in. In this study, a distribution-free test based on the
difference between the numbers of upper and lower k-records is proposed for
this situation. The exact and asymptotic distributions of the proposed test
statistic are obtained for a random continuous sequence which is independent
and identically distributed (i.i.d.). Also, a comparison between the proposed
test and some well-known distribution-free tests is made in terms of empirical
powers.

1. Introduction

Statistical detection of a monotonic upward or downward trend in location over
time is a crucial subject in many applications. For example, in meteorology, relating
to global warming, it is inevitable and important to ask whether the mean annual
temperatures have been rising over a long-time period. Similar questions related
to the monotonic changes can also be found in many other fields. Considering
the problems of a monotonic trend detection; in general, two groups of methods,
i.e., parametric and nonparametric, are discussed in the literature. Parametric
methods are more powerful in detecting trends compare to nonparametric methods
if observations come from a normal distribution. However, when the distributional
assumption of normality fails to be the case, it is statistically appropriate to use
a nonparametric method. For this reason, various distribution-free tests related to
this issue were proposed by many authors such as Wallis and Moore [24], Moore and
Wallis [16], Wald and Wolfowitz [23], Mann [15], Daniels [6], Foster and Stuart [9],
Cox and Stuart [5], Aiyer et. al. [2], Diersen and Trenkler [7], and Hofmann and
Balakrishnan [10]. If each observation is recorded one by one in time, one of the
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rank-correlation tests like Mann-Kendall [15], Spearman’s rho [6], and Hofmann-
Balakrishnan [10] can be used for the trend detection due to their high power under
variety of distributions (see [10], [21], and [22]). On the other hand, sometimes, only
extreme values, i.e., record values (see [4]), are sequentially recorded and taken into
consideration in many areas like hydrology, meteorology, epidemiology, and sports
(see for details; [1], [3], [12], [17], [18], and [20]). In the case of such data, the
record based distribution-free tests are uniquely appropriate in order to detect a
monotonic trend in location. First examples of this kind of tests were proposed
by Foster and Stuart [9]. In the more recent literature, Diersen and Trenkler [7]
proposed more powerful versions of these tests.
In some applications like insurance claims in non-life insurance, kth-records (kth

largest or smallest values) rather than records among a sequence may be considered
(see [11] and [19]). The distributional theory of kth-records was first introduced by
Dziubdziela and Kopocinski [8]. There are many papers on the kth-records in the
literature but it appears that none of them has been related to the nonparametric
trend detection. For this reason, in this study, a nonparametric test based on the
difference between the numbers of upper and lower kth-records in a finite continuous
sequence will be proposed as a generalized version of the d-test in Foster and Stuart
[9]. This generalized version can be thought to be suitable in some situations. For
example, in sports, generally, only the k best and the k worst scores among all the
performances are instantly reported at the time when one of the k lists is updated.
Note that such k lists are called "bottom-k-list" and "top-k-list" (see [13] and
[14]). Sometimes, the changing numbers of both lists and the total number of the
performances from the beginning may be accessible even if all of the performances
are not available. Such situations also exist in some other fields like meteorology
and hydrology. In this context, the proposed distribution-free test will be uniquely
appropriate for detecting a monotonic increasing or decreasing trend in location.
The paper is organized as follows: The proposed test statistic is defined and its

exact distribution is derived for i.i.d. case in Section 2. In the following section,
the asymptotic distribution of the test statistic is also obtained. An illustrative
example is given in Section 4. In the last section, the comparative results of the
proposed test against Mann-Kendall’s and Foster and Stuart’s tests are presented
via Monte-Carlo simulations.

2. The Proposed Test Statistic and Its Exact Distribution

Let X1, X2, ..., Xn be independent continuous random variables with distribution
functions F1, F2, ..., Fn, respectively. The proposed test statistic is defined as

Tk,m =
k∑
r=1

ξk,r +
m∑

r=k+1

ηk,r



100 HALIL TANIL

where
∑

∅ = 0, 1 ≤ k < n, m = n− k,

ξk,r =



−1 if the (k + r)th observation changes only current lower kth-record,
i.e., Xk+r< Xr:k+r−1

1 if the (k + r)th observation changes only current upper kth-record,
i.e., Xk+r> Xk:k+r−1

0 if the (k + r)th observation changes both of current upper kth-record
and current lower kth-record, i.e., Xr:k+r−1< Xk+r< Xk:k+r−1,

and

ηk,r =



−1 if the (k + r)th observation changes only current lower kth-record,
i.e., Xk+r< Xk:k+r−1

1 if the (k + r)th observation changes only current upper kth-record,
i.e., Xk+r> Xr:k+r−1

0 if the (k + r)th observation changes neither current upper kth-record
nor current lower kth-record, i.e., Xk:k+r−1< Xk+r< Xr:k+r−1.

It is clear from the definition that the statistic of Tk,m indicates the difference
between the numbers of upper kth-records and lower kth-records in the sequence
X1, X2, ..., Xn. Note that, for k = 1, this definition reduces to the definition of the
d-statistic in [9].
In i.i.d. case, since every arrangement of independent observations has an equal

probability, the probability generating functions of ξk,r and ηk,r are obtained as
follows:

E
(
sξk,r

)
=

1∑
i=−1

P
(
ξk,r = i

)
si

=
r

k + r
s−1 +

(k − r)
k + r

+
r

k + r
s (2.1)

for 1 ≤ r ≤ k and

E (sηk,r ) =
1∑

i=−1
P
(
ηk,r = i

)
si

=
k

k + r
s−1 +

r − k
k + r

+
k

k + r
s (2.2)

for k < r ≤ m. Under the null hypothesis H0 : F1 = F2 = ... = Fn, since the
event that the rth observation of the sequence is an upper or lower kth-record is
independent of the order among themselves of the preceding observations, one can
write the probability mass function of Tk,m as
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P (Tk,m = t) =



P (Tk,m−1 = t− 1)P
(
ξk,m = 1

)
+P (Tk,m−1 = t)P

(
ξk,m = 0

)
+P (Tk,m−1 = t+ 1)P

(
ξk,m = −1

)
, 1 ≤ m ≤ k

P (Tk,m−1 = t− 1)P
(
ηk,m = 1

)
+P (Tk,m−1 = t)P

(
ηk,m = 0

)
+P (Tk,m−1 = t+ 1)P

(
ηk,m = −1

)
, 1 ≤ k < m

=


P (Tk,m−1=t−1)

k+m
m

+
P (Tk,m−1=t)

k+m
k−m

+
P (Tk,m−1=t+1)

k+m
m

, 1 ≤ m ≤ k
P (Tk,m−1=t−1)

k+m
k

+
P (Tk,m−1=t)

k+m
m−k

+
P (Tk,m−1=t+1)

k+m
k

, 1 ≤ k < m

where t ∈ {−m,−m+ 1, ...,m} and P (Tk,0 = 0) = 1. In addition, the probability
generating function of Tk,m can be obtained using (2.1) and (2.2) as follows:

E
(
sTk,m

)
=


k!

m∏
r=1

(rs−1+k−r+rs)

(k+m)! , for 1 ≤ m ≤ k

k!

k∏
r=1

(rs−1+k−r+rs)
m∏

r=k+1

(ks−1+r−k+ks)

(k+m)! , for 1 ≤ k < m.

(2.3)

Note that the probability of {Tk,m = t} is the coeffi cient of st+m in smE
(
sTk,m

)
.

Furthermore, substituting s = eiu in (2.3), the following characteristic function of
Tk,m is obtained as

ϕTk,m (u) =


k!

m∏
r=1

(k−r+2r cosu)

(k+m)! , for 1 ≤ m ≤ k

k!

k∏
r=1

(k−r+2r cosu)
m∏

r=k+1

(r−k+2k cosu)

(k+m)! , for 1 ≤ k < m.

(2.4)

Thanks to the characteristic function in (2.4), the following first three cumulants
are derived:

µ = E (Tk,m) =

[
∂ logϕTk,m (u)

∂ (iu)

]
u=0

= 0,

σ2k,m = E
(
T 2k,m

)
=

[
∂2 logϕTk,m (u)

∂ (iu)
2

]
u=0

=


2k

(
m
k −

k+m∑
r=k+1

1
r

)
, for 1 ≤ m ≤ k

2k

(
2−2k
3k+1.5 +

k+m∑
r=2

1
r −

k∑
r=2

1
r+0.5

)
, for 1 ≤ k < m
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where
∑

∅ = 0, and

E
(
T 3k,m

)
=

[
∂3 logϕTk,m (u)

∂ (iu)
3

]
u=0

= 0.

Finally, if there is an increasing trend in X1, X2, ..., Xn, it is expected that the
upper kth-records will be observed more than the lower kth-records. In other
words, in such trends, it is expected that the proposed test statistic Tk,m will be
large enough. Thus, for testing against the existence of a monotonic increasing
trend in location, the critical value at α level of significance can be defined as

Tαk,m = min {j ∈ {−m,−m+ 1, ...,m} : P (Tk,m ≥ j) ≤ α} .
If there is no such j that P (Tk,m ≥ j) ≤ α, it can not be tested at α level of
significance. For m ≤ 5, k ≤ 20, and α = 0.05, the critical values which are derived
using (2.3) can be given as in Table 1. Note that this table can also be used for
left-tailed and two-tailed trend tests since Tk,m is symmetrically distributed.

3. Asymptotic Distribution

One can see that it is diffi cult to obtain the critical values for large m by using
the probability generating function of Tk,m in (2.3). For that reason, the asymptotic
distribution of Tk,m is derived in this section. Let T ′k,m = Tk,m/σk,m. Considering
(2.4), the characteristic function of T ′k,m for 1 ≤ k < m can be obtained as

ϕT ′k,m
(u) = ϕTk,m

(
u

σk,m

)
=

k∏
r=1

k − r + 2r cos u
σk,m

k + r

×
m∏

r=k+1

r − k + 2k cos u
σk,m

k + r
. (3.1)

Furthermore, using (3.1), the cumulative function can be derived as

ΨT
′
k,m

(u) = logϕT ′k,m
(u) =

k∑
r=1

log
k − r + 2r cos u

σk,m

k + r
+

m∑
r=k+1

log
r − k + 2k cos u

σk,m

k + r
.

It is clear that since σ2k,m →∞ while m→∞,
k∑
r=1

log
k−r+2r cos u

σk,m

k+r convergences

zero. Therefore, one can write

lim
m→∞

ΨT
′
k,m

(u) = lim
m→∞

m∑
r=k+1

log
r − k + 2k cos u

σk,m

k + r
. (3.2)

Also, (3.2) can be rewritten as
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lim
m→∞

ΨT
′
k,m

(u) = lim
m→∞

m∑
r=k+1

log

(
1 +

2k

k + r
vk,m (u)

)
where vk,m (u) = cos u

σk,m
− 1 = u2i2

σ2k,m2!
+ u4i4

σ4k,m4!
+ u6i6

σ6k,m6!
+ .... In addition, using

the Taylor expansion, one can write

log

(
1 +

2k

k + r
vk,m (u)

)
=

2k

k + r
vk,m (u) +

∞∑
j=2

(
2k
k+rvk,m (u)

)j
j

. (3.3)

Considering (3.3), one has

lim
m→∞

ΨT
′
k,m

(u) = lim
m→∞

m∑
r=k+1

2k

k + r
vk,m (u) +

m∑
r=k+1

∞∑
j=2

(
2k
k+rvk,m (u)

)j
j

. (3.4)

Since
m∑

r=k+1

∞∑
j=2

( 2k
k+r vk,m(u))

j

j → 0 while m→∞, (3.4) can be rewritten as

lim
m→∞

ΨT
′
k,m

(u) = lim
m→∞

ρk,mvk,m (u)

= lim
m→∞

ρk,m

(
u2i2

σ2k,m2!
+

u4i4

σ4k,m4!
+

u6i6

σ6k,m6!
+ ...

)

where ρk,m =
m∑

r=k+1

2k
k+r . While m → ∞, ρk,m/σ

2
k,m → 1 and ρk,m/σ

j
k,m → 0 for

j > 2. Thus, the following result is obtained as

lim
m→∞

ΨT
′
k,m

(u) =
−u2

2
which indicates that T ′k,m = Tk,m/σk,m asymptotically follows the standard normal
distribution under the null hypothesis. In a similar way, while m → ∞, one can
deduce that the asymptotic distribution of T ′k,m for 1 ≤ m ≤ k is also standard
normal. In practice, the following standardized test statistic with a continuity
correction can be used for large m:

Zk,m =


Tk,m−0.5
σk,m

, for Tk,m > 0

0 , for Tk,m = 0
Tk,m+0.5
σk,m

, for Tk,m < 0.
(3.5)

In order to see the practical usage of this result, the exact and the asymptotic
cumulative distribution functions of Tk,m are given in Table 2 for m = 6, k =
1, 5, 10, 15, 20, and nonnegative values of Tk,m. In this table, some numerical values
of the exact and the asymptotic cumulative distributions are derived by using (2.3)
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and (3.5), respectively. It will be seen that the approximation to the distribution
of Tk,m is remarkably good at m = 6. Therefore, the asymptotic distribution can
be used instead of the exact distribution for m ≥ 6.

4. Illustrative Example

Let the data which represent the amount of annual rainfall in inches at the
Los Angeles Civic Center during the 100-year period from 1890 until 1989 (see
[3], p.180) be considered. For k = 1, 2, and 3, the upper kth-records and lower
kth-records extracted from these data can be tabulated as in Table 3. Also, the
summary statistics of the monotonic increasing trend tests based on 1th-, 2nd-,
and 3rd-records have been presented as in Table 4. From this table, for each one
of the tests, it can be statistically said that there is no monotonic increasing trend
in location at α = 0.05 level of significance.

5. Empirical Power

This section has been motivated by two different ways: (i) to compare empirical
powers of the Tk,m statistic and some well-known statistics (Mann-Kendall’s Q
statistic [15] and Foster and Stuart’s d and D statistics [9]) if all of the observations
are available, and (ii) to give empirical powers of the Tk,m statistic for some fixed
values of k in the case that only the lists of upper kth-records and lower kth-records
of a finite sequence are available.
Let X1, X2, ..., Xn be independent continuous random variables with distribution

functions F1, F2, ..., Fn, respectively. Recall that the Mann-Kendall’s test statistic
is

Q =
n−1∑
i=1

n∑
j=i+1

Ii,j

where

Ii,j =

 −1 , for Xi > Xj

1 , for Xi < Xj

0 , otherwise.

and the statistics of d and D can also be defined as

d =
n∑
i=2

Ii

and

D = d−
n∑
j=2

Jj

where
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Ii =

 −1 , for Xi < X1:i−1
1 , for Xi > Xi−1:i−1
0 , otherwise

Jj =

 −1 , for Yi < Y1:i−1
1 , for Yi > Yi−1:i−1
0 , otherwise,

and Yi = Xn+1−i for i = 1, 2, ..., n.
In this empirical study, we have restricted the alternative hypothesis to H1 :

F1 > F2 > ... > Fn. Also, we have selected the increasing trend model as

Xi = Ui + θt (i) , i = 1, 2, 3, ..., n

where θ > 0, U1, U2, ..., Un are i.i.d. random variables, and t (i) is a strictly increas-
ing trend function. In addition, the trend function has been determined as t (i) = i

for linear trend, t (i) =
√

2ni for concave trend, and t (i) = i2

2n for convex trend.
Furthermore, standard normal, standard logistic, and standard exponential distri-
butions have been used as underlying models for Ui’s. Here, n = 10, 50, α = 0.05
level of significance, and some selected k values among {2, 3, ..., n− 1} have been
considered. Moreover, 100, 000 simulations for n = 50 and 300, 000 simulations for
n = 10 have been carried out in Matlab to obtain empirical powers of the selected
tests.
The simulation results are summarized in Table 5 and 6. In the tables, the values

shown as bold represent the largest two empirical powers in each row. It can be
said that simulated α’s are suffi ciently closest to the true α’s and the Q-test seems
to be the most powerful. In general, the proposed test is clearly better than the
d-test. For n = 50, the Tk,m test is observed to be more powerful than the D-test
for almost every selected k. On the other hand, for n = 10, it can be generally said
that it is less powerful than the D-test. The reason for this result may be the fact
that the true α’s of the Tk,m tests are considerably smaller than 0.05.
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6. Appendix

TABLE 1. Positive critical values for Tk,m derived from (2) for m ≤ 5 and k ≤ 20

k α Tαk,1 Tαk,2 Tαk,3 Tαk,4 Tαk,5 k α Tαk,1 Tαk,2 Tαk,3 Tαk,4 Tαk,5
1 .100 − − 3 3 3 6 .100 − 2 3 3 3

.050 − − 3 4 4 .050 − 2 3 3 4

.025 − − − 4 4 .025 − − 3 4 4

.010 − − − 4 5 .010 − − − 4 5

.005 − − − − 5 .005 − − − 4 5
2 .100 − − 3 3 3 7 .100 − 2 2 3 3

.050 − − − 4 4 .050 − 2 3 3 4

.025 − − − 4 5 .025 − − 3 4 4

.010 − − − − 5 .010 − − 3 4 5

.005 − − − − − .005 − − − 4 5
3 .100 − − − 3 4 8 .100 − 2 2 3 3

.050 − − − 4 4 .050 − 2 3 3 4

.025 − − − 4 5 .025 − 2 3 4 4

.010 − − − − 5 .010 − − 3 4 5

.005 − − − − − .005 − − − 4 5
4 .100 − 2 3 3 4 9 .100 1 2 2 3 3

.050 − − 3 4 4 .050 − 2 3 3 4

.025 − − − 4 5 .025 − 2 3 3 4

.010 − − − − − .010 − − 3 4 4

.005 − − − − − .005 − − 3 4 5
5 .100 − 2 3 3 3 10 .100 1 2 2 3 3

.050 − 2 3 4 4 .050 − 2 3 3 3

.025 − − 3 4 5 .025 − 2 3 3 4

.010 − − − 4 5 .010 − − 3 4 4

.005 − − − − 5 .005 − − 3 4 5
11 .100 1 2 2 3 3 16 .100 1 2 2 2 3

.050 − 2 2 3 3 .050 − 2 2 3 3

.025 − 2 3 3 4 .025 − 2 3 3 3
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TABLE 1. (Continued) Positive critical values for Tk,m derived from (2) for
m ≤ 5 and k ≤ 20

k α Tαk,1 Tαk,2 Tαk,3 Tαk,4 Tαk,5 k α Tαk,1 Tαk,2 Tαk,3 Tαk,4 Tαk,5
.010 − − 3 4 4 .010 − 2 3 3 4
.005 − − 3 4 4 .005 − − 3 4 4

12 .100 1 2 2 2 3 17 .100 1 2 2 2 3
.050 − 2 2 3 3 .050 − 2 2 3 3
.025 − 2 3 3 4 .025 − 2 3 3 3
.010 − − 3 4 4 .010 − 2 3 3 4
.005 − − 3 4 4 .005 − − 3 4 4

13 .100 1 2 2 2 3 18 .100 1 2 2 2 2
.050 − 2 2 3 3 .050 − 2 2 3 3
.025 − 2 3 3 4 .025 − 2 2 3 3
.010 − 2 3 4 4 .010 − 2 3 3 4
.005 − − 3 4 4 .005 − − 3 3 4

14 .100 1 2 2 2 3 19 .100 − 2 2 2 2
.050 − 2 2 3 3 .050 − 2 2 3 3
.025 − 2 3 3 3 .025 − 2 2 3 3
.010 − 2 3 3 4 .010 − 2 3 3 4
.005 − − 3 4 4 .005 − 2 3 3 4

15 .100 1 2 2 2 3 20 .100 1 2 2 2 2
.050 − 2 2 3 3 .050 1 2 2 2 3
.025 − 2 3 3 3 .025 − 2 2 3 3
.010 − 2 3 3 4 .010 − 2 3 3 4
.005 − − 3 4 4 .005 − 2 3 3 4
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TABLE 2. Exact and asymptotic probabilities of the event {Tk,6 ≤ t} for
k = 1, 5, 10, 15, 20 and nonnegative integer t.

k : σk,6
t 1 : 1.7849 5 : 2.1102 10 : 1.7219 15 : 1.4785 20 : 1.3164

0
0.5∗∗

.6069

.6103∗
.5898
.5937∗

.6121

.6142∗
.6325
.6324∗

.6517

.6480∗

1
1.5∗∗

.7944

.7997∗
.7563
.7614∗

.8054

.8082∗
.8466
.8448∗

.8784

.8728∗

2
2.5∗∗

.9192

.9193∗
.8776
.8819∗

.9276

.9267∗
.9577
.9546∗

.9741

.9712∗

3
3.5∗∗

.9788

.9751∗
.9529
.9514∗

.9821

.9790∗
.9931
.9910∗

.9969

.9961∗

4
4.5∗∗

.9968

.9942∗
.9863
.9835∗

.9976

.9955∗
.9994
.9998∗

.9998

.9997∗

5
5.5∗∗

.9998

.9990∗
.9982
.9954∗

.9998

.9993∗
.9999
.9999∗

.9999

.9999∗

6
6.5∗∗

1.0000
.9999∗

1.0000
.9990∗

1.0000
.9999∗

1.0000
.9999∗

1.0000
.9999∗

∗ Normal approximation for selected k. ∗∗ Corrected t for continuity.

TABLE 3. Upper and lower k-records extracted from the data set in Arnold et
al. (1998, p.180)

k = 1 k = 2 k = 3
Number Upper Lower Upper Lower Upper Lower

1 12.69 12.69 12.69 12.84 12.69 18.72
2 12.84 7.51 12.84 12.69 12.84 12.84
3 18.72 4.83 18.72 12.55 14.28 12.69
4 21.96 4.13 19.19 11.80 14.77 12.55
5 23.92 4.08 21.46 7.51 18.72 11.80
6 27.16 − 21.96 4.89 19.19 8.69
7 31.28 − 23.21 4.83 21.46 7.51
8 34.04 − 23.29 4.13 21.96 6.25
9 − − 23.92 − 23.21 4.89
10 − − 27.16 − 23.29 4.83
11 − − 30.57 − 23.92 4.56
12 − − 31.28 − 24.95 −
13 − − − − 26.81 −
14 − − − − 27.16 −
15 − − − − 30.57 −
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Table 4. Summary statistics
k,m Tk,m σk,m Zk,m a s ym p t o t i c p- va lu e

1, 99 3 2.894 .8638 .1938
2, 98 4 3.753 .9326 .1755
3, 97 4 4.327 .8089 .2093

Table 5. Empirical power comparison for n = 50.
Te s t S t a t i s t i c s

Tr e n d D is t r ib u t io n∗ θ Q
.050∗∗

D
.033∗∗

d
.043∗∗

T5,45
.043∗∗

T10,40
.043∗∗

T15,35
.044∗∗

T20,30
.033∗∗

T30,20
.038∗∗

N o n e A ny D is t . 0 .049 .032 .043 .043 .042 .044 .032 .039

L in e a r N o rm a l .010 .248 .081 .086 .148 .177 .188 .153 .157
.019 .578 .155 .143 .318 .411 .439 .383 .373
.025 .781 .226 .195 .469 .593 .628 .568 .542

L o g i s t i c .018 .267 .071 .079 .148 .192 .208 .172 .168
.031 .548 .117 .114 .284 .396 .434 .378 .350
.041 .754 .164 .149 .417 .576 .626 .565 .516

E x p o n e n t ia l .006 .247 .189 .110 .184 .178 .169 .136 .154
.012 .570 .368 .144 .343 .416 .417 .360 .387
.016 .759 .484 .169 .446 .577 .605 .555 .569

C o n c av e N o rm a l .009 .247 .084 .100 .169 .189 .190 .146 .141
.017 .569 .169 .182 .380 .442 .438 .359 .319
.022 .760 .240 .245 .538 .621 .616 .525 .457

L o g i s t i c .016 .261 .076 .091 .169 .203 .206 .161 .148
.028 .547 .129 .145 .344 .431 .439 .360 .305
.037 .752 .183 .196 .502 .622 .631 .537 .450

E x p o n e n t ia l .005 .225 .194 .129 .196 .171 .157 .122 .126
.011 .575 .412 .192 .430 .460 .421 .346 .333
.015 .768 .542 .230 .556 .642 .621 .533 .502

C o nv e x N o rm a l .020 .254 .083 .075 .125 .161 .183 .159 .186
.035 .532 .146 .110 .231 .322 .377 .352 .402
.047 .746 .212 .145 .341 .481 .558 .542 .603

L o g i s t i c .034 .253 .068 .068 .117 .161 .188 .168 .187
.062 .560 .120 .094 .225 .345 .418 .397 .432
.081 .757 .166 .117 .320 .498 .593 .580 .618

E x p o n e n t ia l .013 .269 .182 .087 .153 .173 .180 .156 .203
.024 .578 .329 .107 .249 .353 .408 .392 .503
.031 .747 .426 .119 .305 .463 .565 .577 .689

A l l s e l e c t e d d i s t r ib u t io n s a r e in s t a n d a rd fo rm s . ∗∗ Tru e α’s .

Table 6. Empirical power comparison for n = 10.
Te s t S t a t i s t i c s

Tr e n d D is t r ib u t io n∗ θ Q
.036∗∗

D
.043∗∗

d
.035∗∗

T2,8
.021∗∗

T3,7
.022∗∗

T4,6
.015∗∗

T5,5
.029∗∗

T6,4
.045∗∗

N o n e A ny D is t . 0 .036 .042 .035 .020 .022 .015 .029 .044

L in e a r N o rm a l .148 .257 .216 .150 .132 .147 .113 .173 .222
.254 .556 .424 .292 .304 .341 .278 .370 .430
.327 .750 .575 .406 .448 .497 .419 .519 .572

L o g i s t i c .248 .254 .203 .142 .129 .148 .114 .174 .222
.442 .565 .417 .291 .316 .357 .289 .378 .436
.578 .758 .573 .412 .471 .521 .436 .527 .580

E x p o n e n t ia l .100 .265 .246 .142 .149 .188 .153 .193 .197
.185 .546 .453 .249 .323 .428 .377 .410 .394
.265 .755 .624 .362 .500 .637 .574 .587 .567

C o n c av e N o rm a l .139 .246 .213 .163 .137 .145 .106 .158 .196
.248 .558 .444 .342 .338 .357 .275 .349 .386
.319 .747 .595 .473 .496 .519 .413 .485 .510

L o g i s t i c .238 .249 .205 .158 .138 .150 .111 .163 .200
.425 .555 .426 .332 .342 .363 .278 .348 .386
.561 .752 .591 .474 .514 .537 .425 .493 .518

E x p o n e n t ia l .091 .250 .249 .160 .157 .182 .135 .166 .169
.181 .549 .479 .297 .362 .440 .367 .387 .353
.258 .748 .647 .419 .537 .642 .562 .560 .510

C o nv e x N o rm a l .264 .247 .209 .124 .110 .131 .106 .175 .243
.469 .553 .424 .241 .253 .303 .265 .386 .497
.615 .752 .581 .339 .378 .444 .401 .545 .665

L o g i s t i c .452 .251 .202 .119 .111 .137 .112 .180 .249
.805 .551 .410 .234 .258 .311 .269 .387 .493
1.095 .763 .585 .347 .403 .471 .420 .557 .670

E x p o n e n t ia l .185 .256 .225 .110 .117 .167 .152 .209 .230
.357 .561 .443 .200 .277 .408 .383 .446 .479
.498 .757 .607 .290 .428 .591 .547 .603 .648

∗A l l s e l e c t e d d i s t r ib u t io n s a r e in s t a n d a rd fo rm s . ∗∗ Tru e α’s .
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