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Abstract

This paper describes a numerical solution for tllwextion-diffusion equation. The

proposed method is based on the operator splittmgghod which helps to obtain

accurate solutions. That is, instead of sum, therators are considered separately for
the physical compatibility. In the process, metlmbdcharacteristics combined with

cubic spline interpolation and Saulyev method aseduin sub-operators, respectively.
After guaranteeing the convergence of the metheckfficiency is also tested on one-
dimensional advection-diffusion problem for a wrdage of Courant numbers which

plays a crucial role on the convergence of the smfu The obtained results are

compared with the analytical solution of the prablend other solutions which are

available in the literature. It is revealed thatet proposed method produces good
approach not only for small Caurant numbers butoalsg ones even though it is

explicit method.
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Yari-Lagrangian bisema yaklaimina dayali adveksiyon-
difizyon denkleminin bir sayisal ¢6zum

Ozet

Bu calsmada, adveksiyon-difiizyon denklemi icin sayisal dhiziim tanitiimaktadir.
Onerilen yontem, dgou cozimler elde edilmesine yardimci olan operaa§rrma
metoduna dayanmaktadir. Yani, toplam yerine, oyeler fiziksel uyumluluk icin ayri
olarak ele alinmaktadir. Bu sirecte, alt operagdricin karakteristikler yontemi ile bir
araya getirilmi kubik spline interpolasyonu ve Saulyev metodwssila kullaniimstir.
Yontemin yakinsamasini garanti altina aldiktan sonwerimlilik de ¢6zimun
yakinsamasi Uzerinde 6nemli bir rol oynayan fafkturant sayilari icin tek boyutlu
adveksiyon-difiizyon problemi tzerinde test egilmi Elde edilen sonugclar, problemin
analitik ¢6zimiU ve literatirde mevcut olangaeh cozimlerle Kkatlastiriimigtir.
Onerilen yontemin, acik bir yontem olmasingmen sadece kiicik Caurant sayilari
icin degil, buyldk olanlar icin de iyi bir yaklam oluturdugu ortaya ¢ikmytir.

Anahtar kelimeler: Adveksiyon-difiizyon denklemi, karakteristikler datidGaulyev
semasil.

1. Introduction

Since the early days of civilization natural wateave been used as disposal places for
human waste. At the beginning, there was no prolilecause the amount of the waste
was not at a significant level and the content tté tvaste was simple. As the
civilization progress and human population increabe amount of the waste rises
rapidly and the content of the waste is getting glem The behavior of the pollutants
in the water has been modeled by the advectiongidgh equation, see [1]. Developing
a solution becomes important to interpret how tm®went changes. The mathematical
expression of three-dimensional advection-diffustgmation without the source term is
given as follows:

€., W azc+D azc+D o°C
. ox oy oz ‘o Yoy o

1)

wheret is time,C is the concentration of the pollution or substanxce andz are the
spatial directions in cartesian coordinates, V and W represent the velocity
components of the water in each direction dhgd D, and D, are the diffusivity
coefficients in each direction.

In this paper, for the sake of clarity, one-dimensi advection-diffusion equation,
which is defined in Eq. (2), is studied.

o, o o°C @
ot ox X ox
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whereU andD, are constant. The spatial and temporal step aimedenoted bxx and
At, respectively. Moreover, Courant number, is computed abllAt/Ax and the Peclet
numberPeg, is obtained allAX/D,.

In order to reduce the amount of existing wastasaitural waters and to manage wastes
which are disposed, properly, Eg. (2) must be sblaecurately. However, Eq. (2)
consists of two different types of processes whach advection (hyperbolic) and
diffusion (parabolic). Even if these processesuocsimultaneously, they refer
extremely different events. Advection process leagpin flow direction while
diffusion process happens in both directions. TBliigation creates challenging problem
for solving such equations. For this reason, measearchers developed different
methods to solve Eq. (2) accurately. Some of thes¢hods are classical finite
difference method [2], high-order finite elementtheal [3], high-order finite difference
methods [4, 5], green element method [6], cubic erténded B-spline collocation
methods [7-9], cubic, quartic and quintic B-spluliferential quadrature methods [10,
11], method of characteristics unified with splif&2-14], cubic trigopnometric B-spline
approach [15], Taylor collocation and Taylor-Galerknethods [16], Lattice Boltzmann
method [17]. Moreover, non-linear advection-diftusequation is studied in [18].

The outline of the present paper is as followsctiSe 2 is dedicated to derivation and
the convergence analysis of the proposed methaal.obfain the solution of Eq. (2)
method of characteristics with cubic spline intégtion (MOC-CS) and Saulyev
method are used for advection and diffusion paespectively. Section 3 presents the
results of the proposed method on one-dimensiodetaion-diffusion problems by
taking different diffusion constants. The effeetmness of the proposed method is tested
for several Caurant numbers. Obtained results@rgared with the analytical solution
and also the available results of the other rebeasadn the literature.

2. Derivation of the proposed method

The purpose of this section is to introduce theppsed method in details. The method
is mainly based on Lie-Trotter splitting method, sequentially spilitting, which is a
kind of operator splitting method. By the helptbé Lie-Trotter splitting method Eq.
(2) is divided into the two sub-problems. In orderobtain the solution of each sub-
problems MOC-CS and Saulyev method are used, riégplgc The convergence of the
method is analyzed as well as the derivation.

2.1. Lie-Trotter operator splitting method

This method is a first-order splitting method armlves the problem sequentially.
When its applied to Eq. (2), the problem will bditsimto two sub-problems such as
advection and diffusion problems. The mathematregresentation of it as follows
[19]:

oC,  aCy

- Y W:O’ Gt 0=C(t1,%), teltn,this] 3)
aC,  C, ~
= Dx 7+ Coltn0=Caltra ), teftnton] (4)
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where Eq. (3) and Eq. (4) represents advectiondiffigsion processes, respectively.
These processes are solved sequentially. At thmtiag of the solution of advection-
diffusion problem, Eq. (3) is solved first by usiffDC-CS with the initial condition of
the general advection-diffusion problem for the penal step size oft. The obtained
result is used as the initial condition of the E).and this equation is solved by using
Saulyev method. The result of the Eq. (4) defittes solution of the advection-
diffusion equation at [20].

2.2. MOC-CS for advection process

MOC-CS is a method which uses Lagrangian point iefvy For this reason, the
trajectory line of the concentration should be dateed. Multiplying both sides of Eq.
(3) by dt the partial differential equation is turned intbet following ordinary
differential equations.

dC,

Y ©
dx_U 5
e (6)

where Eq. (6) represents the characteristics firtha planex;t). Eg. (5) shows that the
concentration value of the advection process ischanged, see Figure 1. Also, the
solution of the advection process with MOC-CS gejpendent of time. Thus, the exact
solution of Eg. (3) can be written as follows:

the1
C1 %+ 1,4+ 1)=C1 (X ,t)=C; (Xi+ 1- f Udt,tn) (7)
t

n

tA

n+1

x>

i—-2 i-1 I i+1 i+2

Figure 1: Finite difference grid and trajectoryeliaf concentration in one-dimension.

To obtain the concentration value on the next tstep in Eq. (7) the concentration
value at the poing; which is located between the nodal points shoeldoond. To do

so, interpolation method is used. As mentionedvapthe solution of the advection
process with the method of characteristics is iedépnt of time. Therefore, there is no
time discretization error, only an interpolatiomagrin the solution. The magnitude of
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this error depends on the order of the interpatatieethod. Taking into account this
fact cubic spline polynomials method which has mg#gle interpolation error is used.
Cubic spline polynomials can be written as follows:

COO=Ci+ai (x-%)+,(x-%)%+7,(x-%)3, %<X<Xi11 (8)

whereC; is the concentration value at the nodal pgjrEinda;, £, y; are the polynomial
coefficients which have to determined by using knowsoncentration values at time
leveln. The detailed discussion about construction efdhbic spline polynomials and
calculation of coefficients in the polynomials isen [21].

After the polynomials are constructed in Eqg. (8 toncentration values at the time
leveln+1 can be calculated by equation as follows:

C1 %+ 1:tne ) =C1 (0 t) + 05 (R 8. (%-%) 2+, (%) (9)
The result of Eq. (9) gives the solution of theextion process.

2.3. Saulyev method for diffusion process

Even though Saulyev method is an explicit onea# an the advantage of using a value
at the next time level which improves the qualifyttte solution. Also, there are two
ways of conducting Saulyev method such as fromtéefight and from right to left. In
this study from left to right version is used. @ttization of the diffusion process
given in Eq. (4) with the Saulyev method as follows

i<,
oX

i 5_@|
iw1zn X lion (10)
AX

0°C,
OX2

i,n

Due to the usage of the Saulyev method, the leftttsade derivative at time levalis
replaced with the derivative at time levetl. A similar procedure can be applied for
from right to left version of the Saulyev method.

oC, oC,
o 0%z 0%
TG OX i 1on Xliapnn (11)
OX? AX

i,n

The approximations used for the spatial discrabmatof the derivatives in Eq. (11) and
time discretization of the time derivative in E4) és follows:

—~ —~

6_62 zC2|i+1,n-C2|i,n (12)
OX i+1/2n AX

5_62 :C2|i,n+1-C2|i-1,n+1 (13)
OX i-1/2,n+1 AX
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aa2 - azli,n+l-az|i,n

~ 14
ot ; At (14)

n

By putting these equations together the solutiorthef Eq. (4) is attained, diffusion
process, with the Saulyev method as follows:

—~

_Hazli-l,nﬂ+(1-9)62|i,n+662|i+1,n (15)

Cal,yi= (1+6)

whereg=At/Ax’.

The term at time levek+1 at i=1 in the right-hand side of Eq. (15) is unknown.

However, the first term@2|0n+1, is known by the boundary condition of the problem

Then fori>1 the unknown ternﬁA?2|l__1 - is calculated from Eq. (15), hence this method
is an explicit method.

2.4. Convergence analysis of the method

To prove the convergence of the operator splittmegthod we have to show that the
sequence which is obtained by the given methodosgpes to zero. By this sense, the
notation ofAr represents a proportional value throughout thdyasisa However, in the
computational part for, andz,,; any value can be chosen any value. It meandrthat
computational partAr is taken from|s, t,,,] whereas in the analysis part it is
considered iff0, 1].

Due to the process of the Lie-Trotter splitting huet the error obtained by solvidg

is effecting the error of the solution 6%. The error obtained in one-step solution is
effecting the solution obtained from the next st@us, it is expected that the error for
operator splitting methods cause a cummulativer erahe end of the procedure. For
this purpose, we shall give the error bound of hethniques defined in Section 2.2 and
2.3.

Lemma 1. The error bound for one-step method of charactesigfiven in Section 2.2
is

0~y (.00 axt
=S At ]

Proof.
Using Eq. (7) and the relatiadn=UA¢

At a@lwa@l »
At\ ot ox |

: Ataal +UAtaal
At ot Ox
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| A=t eax—= | =0 (16)

Due to the availability the nature of the advect®nuation, the former equation is
solved by the method of characteristics. That is,

1
ZJC— 17
—dCi=0, (17)

SN Ax*
O~y (60 +0 <A—xt> | (18)

Lemma 2. The error bound for one-step method of Saulyev otetised for diffusion
part of the Eqg. (2) in Section 2.3 is

||@§d|| <0 <At2,Ax2, %)’

Where@; represents th# iteration.
Proof. The proof can be found in [22]. We note that andAx? can be neglected by

consideringi—’j because of the following assumption. Thus, thnowd the analysis the
truncation error of Saulyev method is consideretbbews:

ekl <o (3%

Proposition 1. LetAr approach to zero faster tham The Lie Trotter splitting method
is convergent if the conditio|m| <1 is hold with the global error

e

n+l

-C,||1<p(Ax) +KAt,

Ax® At
where f(Ax)=max {0 (F) , O(Ax)} andp=D;, =
Proof:

To show the convergence of the Lie-Trotter operapitting method we will use the
induction technique. For the sake of brevity, welged on[0, Af].approp

1 - Ax*
CIEC(I)(x,t)JrO(A—xt), for  t€0,Af] (29)

1

a1 _ _ AP
szm((l-p)C}ﬂ)(VV—l—C}))+O<E> for  1€l0,Ad) (20)

Substituting the Eqg. (19) into Eq. (20) yields
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o At?
(E) ' (21)

After taking the one-step solutiow, as the initial condition of the second-step, ihat
on [At,2At], we have

ol 1o, p~+1OAX4 .
W —
2" 1+p ot 1+p 1+p At
say v

2 1 1 [(AX 1 [Af? AX!
= +—0|— |+ —O|—|+0(— 22
= G 1+pO<At2> AtO(Ax> O(At (e2)
2 1 o p _ At?
==—C;, +—W+O | —
C 1+pC12 Tpl O(Ax (23)
say W

2o, 1 g AX* A AP\ 1 1 (& AX* 0 At o4
2720 ()2 T\A2) T 1+pAt T\ AX 1+ At AX (24)

To get a general expression we use induction tgadenvhich leads to

n 4 n-1 2
Cn+1~6n+ Z 1 o (AX > N Z 1 o (At > (25)
s k=1 (1+p)k Atk k=0 (1+p)kAtk AX l

The convergence result of the Lie-Trotter methodnlomed with method of
characteristics and Saulyev method arises fronstdredard technique, that is

n+1

et C”—Z ! o(Ax4>+Zn: ! o(At2> 26
T G At Gaepat ) (20

Taking appropriate norm of both sides and usingdaechy-Schwartz inequality

n+l

~n+1 An 1 4 Atz
[t Z ~O(ax)+ Z o =— (27)
4 (1+p )¥At l+p)kAt AX
n+1 n 2
An+1 An 1 At
” ” Z(1+ NS o(ax’ 2 (1+ )kAtk <Ax> ‘ (28)
k=1 P k=0 P

1

Using the condition| |§1 which also holddjxéo These inequalities

(L+p)At
guaranteed that
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il A 1 AP 1
2273 || so(ax®) | ——— |0 <) — (29)
NGEDNY LY
AX’At+D AP AP\ [ AXPAt+D AP
ﬁ+l-€ﬁ <0 A 4 ( x >+ (_>( x )’ 30
& <o) AtAX* + DAL -Ax? Ax ) \AIAX* +AP-Ax? .
Ax? AP Ax?
o <o(axt (1+—> +0 (—) <1+—>. 31
” 2 2”— (ax") AIAX* +3D AP Ax AIAX+3D AP (1)

Due to the conditior0<Ar<Ax<1, which has to be satisfied for the stability of the
Saulyev method, we have

Ax? Ax?
I+ ————— A1+ M—
AIAX* +3D AP AtAx

By takingC,m.:E‘"z+1 the proof is concluded with the following relation

Ax* At
-Cll<ol— | +o|—). 32
ic, cn||_0(m) o(%) (32)

3. Numerical applications

In this section, the proposed method is appliedne-dimensional advection-diffusion
problems which have the different types of chargties such as sharp gradient and
smooth behavior. For the sake of clarity we nbt the values oft in this section are
different from those in analysis part. Also, tHéceency of the MOC-CS-Saulyev is
tested for different Courant numbers. Comparisohsobtained results with the
analytical solution and other solutions which arailable in the literature are discussed.
In these comparisons computed concentration vauadserror norms are used which
are defined as follows:

Loo: m?x|clgxact_c;1umerica/| (33)
M
L2 _ Z | C?xact_C?umerical | 2 (34)

i=1

Example 1. In this example, flow in a channel with the vetgct/=0.01 m/s and
diffusion coefficientD=0.002 m*/s are considered. The length of the charnrel00 m
Is taken. Analytical solution of this problem isen as follows [23]:

44



GURARSLAN et al.

C(x,0)= % erfc (%) + %exp (%) erfc (T/Z_ZD (35)

Boundary conditions of the problem are taken dsvid

C(0,)=1 (36)

D (Z—S) (L)=0 (37)

The initial condition of the problem can be obtainktom Eq. (35) by using=0.
Comparison of obtained result with MOC-CS-Saulyed analytical solution of the
problem can be seen from Figure 2. Also, the sbhalmvior of the problem is clearly
shown.

—6— MOC-CS-Saulyev
Exact solution —

Figure 2: Comparison of the exact solution andnin@erical solution obtained with
MOC-CS-Saulyev method faxx=1 m andAr=10 s.

The spatial step sizex=1 m is taken for all the calculations conducted fas {hroblem
throughout the study. Also, maximum calculatiandiis picked as8000 s. As it can
be seen from Figure 2 the coordinates of the atitoncentration values of the problem
are betweenl8 m to 42 m. This makes sense when we consider the fact theat
maximum computational time 300 s.

For the obtained results in Table 1 temporal siep is taken aar=1 s because of the
advection dominance of the problem whéee=5. Even though MOC-CS-Saulyev has
a lower order of accuracy than the sixth order cachfinite difference methods, the
results are so close to each other.
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Table 2 shows the results for temporal step aizel0s. With this relatively small
change in the temporal step size is enough to givéne solutions of the numerical
methods from the analytical solution. MOC-CS-Saulproduced the best results in
the comparison. Also, this can be seen by checttiegerror norm values in which
MOC-CS-Saulyev has the smallest.

Table 3, the temporal step size is taken60s. Table 3 indicates that the proposed
method is in a perfect agreement with the analysicbution.

Table 1: Comparison of numerical solutions and egalution(Cr=0.01).

X (m) [5] [4] [15] MOC-CS Analytical
MC-CD6 RK4-CD6 CuTBSM Saulyev  Solution

0 1.000 1.000 1.000 1.000 1.000

18 1.000 1.000 1.000 1.000 1.000

19 0.999 0.999 0.999 0.999 0.999
20 0.998 0.998 0.998 0.998 0.998
21 0.996 0.996 0.996 0.996 0.996
22 0.991 0.991 0.991 0.991 0.991
23 0.982 0.982 0.982 0.981 0.982
24 0.964 0.964 0.964 0.963 0.964
25 0.935 0.934 0.934 0.933 0.934
26 0.889 0.889 0.888 0.888 0.889
27 0.824 0.823 0.822 0.823 0.823
28 0.739 0.738 0.736 0.738 0.738
29 0.637 0.636 0.635 0.635 0.636
30 0.523 0.523 0.522 0.522 0.523

31 0.408 0.408 0.408 0.408 0.408
32 0.301 0.301 0.301 0.301 0.301
33 0.208 0.208 0.208 0.209 0.208
34 0.135 0.135 0.136 0.137 0.135
35 0.082 0.082 0.082 0.084 0.082
36 0.047 0.046 0.046 0.048 0.046
37 0.025 0.024 0.024 0.026 0.024
38 0.012 0.012 0.012 0.013 0.012
39 0.005 0.005 0.005 0.006 0.005
40 0.002 0.002 0.002 0.003 0.002
41 0.001 0.001 0.001 0.001 0.001
42 0.000 0.000 0.000 0.000 0.000
L, 0.0017 0.0017 - 0.0047 -

L, 0.0008 0.0008 - 0.0019 -
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Table 2: Comparison of numerical solutions and egalution(Cr=0.10).

x (m) [5] [4] [15] MOC-CS Analyt_ical
MC-CD6 RK4-CD6 CuTBSM Saulyev  Solution
0 1.000 1.000 1.000 1.000 1.000
18 1.000 1.000 1.000 1.000 1.000
19 0.999 0.999 0.999 0.999 0.999
20 0.998 0.998 0.998 0.998 0.998
21 0.996 0.996 0.996 0.996 0.996
22 0.991 0.992 0.991 0.991 0.991
23 0.982 0.982 0.982 0.981 0.982
24 0.965 0.965 0.963 0.964 0.964
25 0.936 0.936 0.933 0.934 0.934
26 0.891 0.891 0.885 0.889 0.889
27 0.827 0.827 0.818 0.824 0.823
28 0.743 0.743 0.732 0.739 0.738
29 0.642 0.641 0.631 0.636 0.636
30 0.529 0.528 0.517 0.524 0.523
31 0.414 0.413 0.404 0.409 0.408
32 0.306 0.306 0.298 0.302 0.301
33 0.213 0.212 0.207 0.211 0.208
34 0.138 0.138 0.134 0.138 0.135
35 0.084 0.084 0.081 0.085 0.082
36 0.048 0.048 0.045 0.049 0.046
37 0.025 0.025 0.023 0.027 0.024
38 0.012 0.012 0.011 0.014 0.012
39 0.006 0.006 0.005 0.006 0.005
40 0.002 0.002 0.002 0.003 0.002
41 0.001 0.001 0.001 0.001 0.001
42 0.000 0.000 0.000 0.000 0.000
L, 0.0148 0.0142 - 0.0071 -
L, 0.0060 0.0055 - 0.0031 -
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Table 3: Comparison of numerical solutions and egakution(Cr=0.60)

[12] [23] [25] [26] [26] [16] [16] MOC-CS Analytical
MOCS MOCG CBSG FEMLSF FEMQSF TC TG Saulyev Solution

0 1.000 1.000 1.000 1.000  1.000 1.00000 1.000 1.000
18 1.000 1.000 1.000 1.000  1.000 1.00@00 1.000 1.000
19 1.000 0.999 1.000 1.000  1.000 0.99999 1.000 0.999
20 1.000 0.998 0.999 00999  1.000 0.99998 0.999 0.998
21 1.000 0.996 0.996 0997  0.999 0.99®96 0.997 0.996
22 1.000 0.990 0.991 00993  0.996 0.99®91 0.993 0.991
23 1000 0.978 0981 00985  0.989 0.99480 0.985 0.982
24 1000 0.957 0.961 0970  0.974 0.98P60 0.969 0.964
25 1.000 0.922 0.927 00943  0.946 0.90226 0.942 0.934
26 0.996 0.870 0.874 00902  0.900 0.983B74 0.898 0.889
27 1013 0799 0.800 0.842  0.832 0.90800 0.834 0.823
28 1.047 0708 0.706 0.763  0.743 0.88F05 0.750 0.738
29 0.897 0.602 0596 0.666  0.638 0.78595 0.648 0.636
30 0457 0.488 0479 0556 0524 0.66379 0.535 0.523
31 0.067 0.375 0.366 0442 0411 0.58B66 0.420 0.408
32 -0.036 0272 0.265 0.332  0.306 0.427264 0.313 0.301
33 -0.010 0.185 0.181 0.235 0.218 0.32D181 0.220 0.208
34 0.002 0.118 0.118 0.156  0.147 0.22217 0.146 0.135
35 0.000 0.070 0.072 0.096  0.095 0.16D72 0.092 0.082
36 0.000 0.038 0.042 0055 0.058 0.00®41 0.055 0.046
37 0.000 0.020 0.023 0030 0.034 0.08023 0.031 0.024
38 0.000 0.009 0.012 0015 0.019 0.08D12 0.016 0.012
39 0.000 0.004 0.006 0.007 0.010 0.00006 0.008 0.005
40 0.000 0.002 0.003 0.003  0.005 0.00902 0.004 0.002
41 0.000 0.001 0.001 0.001  0.003 0.00001 0.002 0.001
42 0.000 0.000 0.001 0.000  0.001 0.00D00 0.001 0.000
L, - - - - - - - 0.039% -

L, - - - - - - - 0.0123 -

x (m)

Example2. In this problem flow velocity and diffusion coefient picked at)=0.8 m/s
and D=0.005n7/s, respectively. Also length of the channel takesLa® m. Exact
solution of this problem given by [24]

(x-1-Ut)?

1
CO0=7 ex"[’ D4+ 1)

(38)

subject to the following boundary conditions
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1 [ (-1-Up)?]

Cc0,n= mexp _-D(4t+1)_ , (39)
1 [ (8-UD? |
C(LH= mexp _- D@D (40)

The concentration values at the boundaries shaulgpldated in each temporal step size
in the solution algorithm. Initial condition ofdéhproblem can be calculated by taking
=0 s in Eq. (38).

MOC-CS-Saulyev, cubic B-spline collocation methauld sextended cubic B-spline
collocation method are compared for different terapstep sizes id.,-norm. And,
Table 4 emphasizes that MOC-CS-Saulyev has prodbe#igr concentration value
results compare to other methods as the value ibicreases.

Table 4: Comparison df,, error normsAx=1 m).

N (] 9] MOC-CS
() BSCM ECUBSCM Saulyev

60 0.04330 0.04250 0.01235
30 0.01962 0.01961  0.00635
20 0.01270 0.01260 0.00471
10 0.00685 0.00608  0.00314
5 0.00409 0.00307 0.00243
1 0.00224 0.00127 0.00193

—O&— MOC-CS-Saulyev
Initial condition

1
\ﬁ — — — Exact solution

Figure 3: Comparison of the exact solution andiin@erical solution obtained with
MOC-CS-Saulyev method farx=0.025 m andAr=0.005 s.
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The exhibited figure, Figure 3, shows the smoothaber of the exact equation and
harmony of MOC-CS-Saulyev. While the advection psst moves the peak
concentration along the channel, the diffusion psscspreads the concentration around.

In Table 5, absolute peak error values for a widege of Courant numbers are
compared with RK4-CD6 method. RK4-CD6 has smadlbsolute peak errors for
Cr<1. This is expected because RK4-CD6 has sixth-ardspace and fourth-order in
time discretizations with a stability condition.hdrefore, it can not produce results for
Cr>1. Although MOC-CS-Saulyev has bigger absolute peatkors, it is
unconditionally stable. Thanks to that it can proe solutions even whety is really
big. When the results are examined it is seen M@C-CS-Saulyev method has
provided comparable low errors and acceptable teeud all Courant numbers.

Table 5 Comparison of absolute peak errass=0.025 m).

4 MOC-CS

Cr AL(s) RKL-]CDG Saulyev

0.016 0.00055.64E-09 3.01E-04
0.032 0.001 5.64E-09 2.92E-04
0.064 0.002 5.78E-09 2.75E-04

0.08 0.00255.99E-09 2.68E-04
0.16 0.005 1.10E-08 2.38E-04
0.32 0.01 8.18E-08 2.12E-04
0.64 0.02 9.02E-07 2.41E-04
0.8 0.025 1.79E-06 2.63E-04

1.6 0.05 - 1.77E-04
3.2 0.1 - 1.46E-04
6.4 0.2 - 1.53E-03
8 0.25 - 2.59E-03

4. Conclusions

This paper deals with a numerical solution of tkeeztion-diffusion problem which
contains two different type of processes such ascibn and diffusion. Advection and
diffusion processes are sequentially solved by owethf characteristics with cubic-
spline interpolation (MOC-CS) and Saulyev meth@&spectively. These two methods
are combined with the help of Lie-Trotter operaplitting method. The convergence
analysis of the proposed method is studied as agtiomputational results. After the
convergence issue is guaranteed the effectiverfetbe @roposed method is tested on
two different types of one-dimensional advectiofitdion problems. The first problem
has sharp gradient which makes it quite hard teesakcurately whereas the second
problem has smooth behavior. Obtained results thithMOC-CS-Saulyev method are
compared with the analytical solutions of the peotd and the results of other
researchers available in the literature. It imstbat MOC-CS-Saulyev method, which
is explicit one, has low error norm values and pom$ acceptable results even when
the Cr is really big. As a conclusion, MOC-CS-Saulyevtimoel can be adapted in a
simple way to solve different types of advectioffediion problems efficiently.
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