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Atanassov’s intuitionistic fuzzy grade of complete
hypergroups of order less than or equal to 6
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Abstract
The length of the sequence of join spaces and Atanassov’s intuitionistic
fuzzy sets associated with a hypergroupoid H is called the intuitionistic
fuzzy grade of H. In this paper, we consider the class of the complete
hypergroups of order less than or equal to 6, determining their intu-
itionistic fuzzy grade.
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1. Introduction
The study of the connections between hyperstructures and fuzzy sets [31] (or Atanassov’s

intuitionistic fuzzy sets [1, 2]) opens a new field of research in fuzzy algebraic structures
theory, theory initiated by Rosenfeld [28]: he showed that many results concerning groups
may be extended in a natural way to fuzzy groups. The notion of fuzzy group has been
generalized by Davvaz [19], introducing the concept of fuzzy subhypergroup of a hyper-
group. Later on, this subject has been studied in depth also in connection with other
structures, like rings [22], modules [20], n-ary hypergroups [21], complete hypergroups,
etc. For example, Cristea and Darafsheh [16, 17], investigating a particular fuzzy subhy-
pergroup of a complete hypergroup, have found a new decomposition of the group Zn,
when n ∈ {p, p2, pq}, for p and q prime numbers. The books [3, 10, 23, 30] are surveys
of the theory of algebraic hyperstructures and their applications.
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Two fundamental relations between hyperstructures and fuzzy sets were considered
by P.Corsini; he associated a join space with a fuzzy set [4], and then a fuzzy set with
a hypergroupoid H [5]. These connections lead to a sequence of fuzzy sets and join
spaces, which ends if two consecutive join spaces are isomorphic. The length of this
sequence is called the fuzzy grade of the hypergroupoid H. Till now, one determined
the fuzzy grade of the i.p.s. hypergroups of order less than or equal to 7 [6, 7], of the
complete hypergroups or 1-hypergroups which are not complete [8, 14]. Moreover, several
properties of the above sequence has been determined in the general case [29], and also for
the direct product of two hypergroupoids [15]. Corsini et al. studied the same sequence
associated with a hypergraph [11, 12], and with multivalued functions [13]. Cristea and
Davvaz [18] extended the notion of fuzzy grade of a hypergroupoid to that of intuitionistic
fuzzy grade.

The study of the fuzzy grade and intuitionistic fuzzy grade of remarkable classes
of finite hypergroups helps us to identify some important properties which could be
generalized for any finite hypergroup. For example, calculating intuitionistic fuzzy grade
of the i.p.s. hypergroups of order 7, we noticed that, some times, the sequence of join
spaces associated with an i.p.s. hypergroup is cyclic (see [24, 25]).

The study conducted in this note shows that the intuitionistic fuzzy grade of a com-
plete hypergroup H of cardinality n depends, not only on the decomposition of n, as in
the case of the fuzzy grade of a complete hypergroup, but also on the group used in the
construction of H. We believe that the aspects treated in this particular case serve as
a foundation, starting point for further research on the intuitionistic fuzzy grade of an
arbitrary finite complete hypergroup.

Inspired and motivated by the above achievements, in this paper, we will construct
the sequences of join spaces and Atanassov’s intuitionistic fuzzy sets associated with
the complete hypergroups of order less than or equal to 6. Our aim is to determine
their intuitionistic fuzzy grades in order to make a comparison with their fuzzy grades
determined by Cristea [14].

To do so, the paper is organized in the following way. In Section 2 we present some
basic notions concerning hypergroups and a short description of the complete hyper-
groups. In Section 3 we present a brief introduction about the sequence of join spaces
and Atanassov’s intuitionistic fuzzy sets associated with a hypergroupoid. Section 4 in-
cludes the sequences of the intuitionistic fuzzy grades of the complete hypergroups of
order less than or equal to 6. Finally, Section 5 concludes the paper, giving also some
future lines of our research.

2. Preliminaries
In this paper, we adopt the terminology and notation used in [4, 5, 14, 18, 24, 25]. We

consider 〈H, ◦〉 to be a hypergroupoid, where H denotes a non-empty set, P∗(H) stands
for the set of all non-empty subsets of H and ◦ : H2 → P∗(H) is a hyperoperation. The
image of the pair (x, y) ∈ H ×H is denoted by x ◦ y. If A and B are nonempty subsets
of H, then A ◦B =

⋃
a∈A
b∈B

a ◦ b.

For the sake of convenience and completeness of our presentation, we recall some basic
definitions and properties concerning hypergroups. More details on this argument can
be found in the books [3, 10].

2.1. Definition. A hypergroup is a hypergroupoid 〈H, ◦〉 which satisfies the following
conditions:

(i) For any (a, b, c) ∈ H3, (a ◦ b) ◦ c = a ◦ (b ◦ c) (the associativity),



(ii) For any a ∈ H,H ◦ a = a ◦H = H (the reproducibility).
If, for any (x, y) ∈ H2, x ◦ y = H, then the hypergroup H is called total hypergroup.

For each pair (a, b) ∈ H2, we denote: a/b = {x ∈ H | a ∈ x ◦ b} and b\a = {y ∈ H |
a ∈ b ◦ y}.

2.2. Definition. A commutative hypergroup 〈H, ◦〉 is called a join space if, for any four
elements a, b, c, d ∈ H, such that a/b ∩ c/d 6= ∅, it follows that a ◦ d ∩ b ◦ c 6= ∅.

The notion of join space, introduced by Prenowitz, was used by Prenowitz and Jan-
tosciak [27] for the reconstruction, from an algebraic point of view, of several branches
of geometry: the projective, the descriptive and the spherical geometry.

2.3. Definition. Let 〈H, ◦〉 and 〈H ′, ◦′〉 be two hypergroups and f : H → H ′ an
application from H in H ′. We say that

(i) f is a homomorphism if, for all (x, y) ∈ H2, f(x ◦ y) ⊆ f(x) ◦′ f(y).
(ii) f is a good homomorphism if, for all (x, y) ∈ H2, f(x ◦ y) = f(x) ◦′ f(y).

We say that the two hypergroups are isomorphic, and we write H ' H ′, if there is a
good homomorphism between them which is also a bijection.

The relation β on a hypergroupoid 〈H, ◦〉 is defined as follows:

aβb⇐⇒ ∃n ∈ N∗, ∃(x1, x2, . . . , xn) ∈ Hn : a ∈
n∏
i=1

xi 3 b.

Notice that β is a reflexive and a symmetric relation on H, but generally, not a
transitive one. Let us denote by β∗ the transitive closure of β. It is well known that, if
H is a hypergroup, then β∗ = β and H/β is a group[3].

One of the most important notions in hypergroup theory is that of the heart of a
hypergroup H. Studying its properties one determines completely the structure of the
hypergroup H.

2.4. Definition. The heart of a hypergroup H is ωH = {x ∈ H | ϕH(x) = 1}, where
ϕH : H −→ H/β is the canonical projection and 1 is the identity of the group H/β.

2.5. Definition. A hypergroup H is called 1-hypergroup if the cardinality of its heart
equals 1.

2.6. Definition. Let 〈H, ◦〉 be a hypergroup and A be a non-empty subset of H. We
say that A is a complete part of H if the following implication holds:

∀n ∈ N∗,∀(x1, x2, . . . , xn) ∈ Hn,

n∏
i=1

xi ∩A 6= ∅ =⇒
n∏
i=1

xi ⊂ A.

The complete closure of A in H is the intersection of all the complete parts of H, con-
taining A; it is denoted by C(A).

2.7. Definition. A hypergroup 〈H, ◦〉 is called complete if, for any (x, y) ∈ H2, C(x◦y) =
x ◦ y.

The following result concerning the complete hypergroups will be used in the sequel.

2.8. Theorem. Any complete hypergroup may be constructed as the union H =
⋃
g∈G

Ag,

where:
(i) G is a group.

(ii) The family {Ag | g ∈ G} is a partition of G.
(iii) If (a, b) ∈ Ag1 ×Ag2 , then a ◦ b = Ag1g2 .



For a complete hypergroup H, it is known that ωH = Ae, where e is the identity of
the group G, and it coincides with the set of identities of H. Therefore, by the above
representation, we say that any complete hypergroup of order n is characterized by an
m-tuple denoted [k1, k2, . . . , km], where m = |G|, 2 ≤ m ≤ n − 1, G = {g1, g2, . . . , gm}
and, for any i ∈ {1, 2, . . . ,m}, ki = |Agi |. With other words, for determining all the
non-isomorphic complete hypergroups of order n, it is enough to know the structure of
the non-isomorphic groups of order m, 2 ≤ m ≤ n − 1, and all the m-decompositions
of n, i.e. all the ordered systems of natural numbers [k1, k2, . . . , km] such that ki ≥ 1,
k1 + k2 + . . .+ km = n and k2 ≤ k3 ≤ . . . ≤ km, for 1 ≤ i ≤ m.( see [14])

3. Intuitionistic fuzzy grade of hypergroups
In this section, first we recall the construction of the sequence of join spaces and

Atanassov’s intuitionistic fuzzy sets associated with a hypergroupoid H, and then the
formulas for the membership functions associated with a complete hypergroup. In this
paper H denotes a finite hypergroupoid.

For simplicity, we denote an Atanassov’s intuitionistic fuzzy set (by short intuition-
istic fuzzy set) A = {(x, µA(x), λA(x)) | x ∈ X}, where, for any x ∈ X, the degree of
membership of x (namely µA(x)) and the degree of non-membership of x (namely λA(x))
verify the relation 0 ≤ µA(x) + λA(x) ≤ 1, by A = (µ, λ).

For any hypergroupoid 〈H, ◦〉, Cristea and Davvaz [18] defined an intuitionistic fuzzy
set A = (µ̄, λ̄) in the following way: for any u ∈ H, one considers:

(3.1) µ̄(u) =

∑
(x,y)∈Q(u)

1

|x ◦ y|

n2
, λ̄(u) =

∑
(x,y)∈Q̄(u)

1

|x ◦ y|

n2
,

where Q(u) = {(a, b) ∈ H2 | u ∈ a ◦ b}, Q̄(u) = {(a, b) ∈ H2 | u /∈ a ◦ b}. If Q(u) = ∅, we
set µ̄(u) = 0 and similarly, if Q̄(u) = ∅ we set λ̄(u) = 0. It is clear that, for any u ∈ H,
0 ≤ µ̄(u) + λ̄(u) ≤ 1.

Now, let A = (µ̄, λ̄) be an intuitionistic fuzzy set on H. One may associate with H two
join spaces 〈0H, ◦µ̄∧λ̄〉 and 〈0H, ◦µ̄∨λ̄〉, where, for any fuzzy set α on H, the hyperproduct
“ ◦α ”, introduced by Corsini [4], is defined as

(3.2) x ◦α y = {u ∈ H |α(x) ∧ α(y) ≤ α(u) ≤ α(x) ∨ α(y)}.

Using repeatedly the formulas (3.1) and (3.2), one obtains two sequences of join spaces
and intuitionistic fuzzy sets associated with H, denoted by (iH = 〈iH, ◦µ̄i∧λ̄i

〉; Āi =

(µ̄i, λ̄i))i≥0 and (iH = 〈iH, ◦µ̄i∨λ̄i
〉; Āi = (µ̄i, λ̄i))i≥0.

The lengths of these sequences are called the lower, and respectively, the upper intu-
itionistic fuzzy grade of H, more exactly:

3.1. Definition. (see [18]) A set H endowed with an intuitionistic fuzzy set A = (µ, λ)
has the lower (upper) intuitionistic fuzzy grade m, m ∈ N∗, and we write l.i.f.g.(H) = m
(resp. u.i.f.g.(H) = m) if, for any i, 0 ≤ i < m − 1, the join spaces 〈iH, ◦µ̄i∧λ̄i

〉 and
〈i+1H, ◦µ̄i+1∧λ̄i+1

〉 (resp. 〈iH, ◦µ̄i∨λ̄i
〉 and 〈i+1H, ◦µ̄i+1∨λ̄i+1

〉) associated with H are not
isomorphic (where 0H = 〈0H, ◦µ̄∧λ̄〉 and 0H = 〈0H, ◦µ̄∨λ̄〉) and for any s, s ≥ m, sH is
isomorphic with m−1H (resp. sH is isomorphic with m−1H).

It is important to know that, if we start the construction of the above sequences with
a hypergroupoid 〈H, ◦〉, and not with a set H endowed with an intuitionistic fuzzy set,
then we obtain only one sequence of join spaces because, in this case, the join spaces
〈0H, ◦µ̄∧λ̄〉 and 〈0H, ◦µ̄∨λ̄〉 are isomorphic (see [18]). In order to explain this situation,
one introduces a new concept.



3.2. Definition. (see [18]) We say that a hypergroupoid H has the intuitionistic fuzzy
grade m,m ∈ N∗, and we write i.f.g.(H) = m, if l.i.f.g.(H) = m.

A natural question appears: When are these join spaces non-isomorphic? It is clear
that it has to be answered for two consecutive join spaces in the built sequence, since in
the case of isomorphism, the sequence ends. In order to solve this problem one introduces
some notations. Let (iH = 〈iH, ◦µ̄i∧λ̄i

〉; Āi = (µ̄i, λ̄i))i≥0 be the sequence of join spaces
and intuitionistic fuzzy sets associated with a hypergroupoid H. Then, for any i, there
are r, namely r = ri, and a partition Π = {iCj}rj=1 of iH such that, for any j ≥ 1, x, y ∈
iCj ⇐⇒ µ̄i(x) ∧ λ̄i(x) = µ̄i(y) ∧ λ̄i(y). For x ∈ H, we denote λ(x) = ij , when x ∈ iCj .
On the set of the classes {iCj}rj=1 we define the following ordering relation:
ij < ik if, for elements x ∈ iCj and y ∈ iCk,

µ̄i(x) ∧ λ̄i(x) < µ̄i(y) ∧ λ̄i(y) (therefore λ(x) < λ(y)).
With any ordered chain (iCj1 ,

i Cj2 , . . . ,
i Cjr ) one associates an ordered r-tuple of the

type (kj1 , kj2 , . . . , kjr ), where kjl = |iCjl |, for all l, 1 ≤ l ≤ r.

3.3. Theorem. (see [9]) Let iH and i+1H be the join spaces associated with H deter-

mined by the membership functions µ̄i ∧ λ̄i and µ̄i+1 ∧ λ̄i+1, where iH =

r1⋃
l=1

Cl, i+1H =

r2⋃
l=1

C′l and (k1, k2, . . . , kr1) is the r1-tuple associated with iH, (k′1, k
′
2, . . . , k

′
r2) is the r2-

tuple associated with i+1H. The join spaces iH and i+1H are isomorphic if and only if
r1 = r2 and (k1, k2, . . . , kr1) = (k′1, k

′
2, . . . , k

′
r1) or (k1, k2, . . . , kr1) = (k′r1 , k

′
r1−1, . . . , k

′
1).

Now we recall the formulas for the membership functions µ̄ and λ̄ associated with a
complete hypergroup.

Let H =
⋃
g∈G

Ag be a complete hypergroup of cardinality n. By Theorem 2.8, it is

obvious that, for any u ∈ H, there exists a unique gu ∈ G such that u ∈ Agu . Moreover,
we define on H the following equivalence u ∼ v ⇐⇒ ∃g ∈ G : u, v ∈ Ag. Thereby one
obtains that

(3.3) µ̄(u) =
|Q(u)|
|Agu |

· 1

n2
, λ̄(u) =

(∑
v/∈û

|Q(v)|
|Agv |

)
· 1

n2
.

We end this section with a useful result concerning the complete hypergroups gener-
ated by a group G isomorphic with the additive group Z2.

3.4. Proposition. (see [18]) H =
⋃
g∈G

Ag be a complete hypergroup of cardinality n. If

the group G is isomorphic with the additive group Z2, then i.f.g.(H) = 1.

4. Intuitionistic fuzzy grade of the complete hypergroups of order
less than or equal to 6

Cristea [14] listed all the forty complete hypergroups of order less than or equal to 6,
calculating their fuzzy grade. In this section we determine the intuitionistic fuzzy grade
of them. When the group which generates the complete hypergroup is isomorphic with
the additive group Z2, by Proposition 3.4 it follows that i.f.g.(H) = 1 and in this case
we do not list the table of the complete hypergroups (the reader may see it in [14]).

4.1. Theorem. Let H be a complete hypergroup of order n ≤ 6.



(i) There are two non-isomorphic complete hypergroups of order 3 having i.f.g.(H) =
1.

(ii) There are five non-isomorphic complete hypergroups of order 4: for three of them,
one finds that i.f.g.(H) = 1, and for other two that i.f.g.(H) = 2.

(iii) There are twelve non-isomorphic complete hypergroups of order 5: nine of them
have i.f.g.(H) = 1, and three of them have i.f.g.(H) = 3.

(iv) There are twenty one non-isomorphic complete hypergroups of order 6: sixteen
of them with i.f.g.(H) = 1, three of them with i.f.g.(H) = 2 and for two of them
one finds that i.f.g.(H) = 3.

Proof. We will denote, in the following tables, for any s ∈ {1, 2, . . . , 5}, Bs = H \ {as}
and B0 = H \ {e}. Let H be a complete hypergroup of order n ≤ 6, denoted by
H = {e, a1, . . . , an}, with 3 ≤ n ≤ 5, that is H =

⋃
g∈G

Ag.

(i) If the hypergroup H is of order 3, then it is obvious that G ' (Z2,+), so there
are only two complete hypergroups with the associated 2-tuple of the form [1, 2] or [2, 1].
Thus, by Proposition 3.4, it follows that i.f.g.(Hi) = 1, for i ∈ {1, 2}.

(ii) Let us suppose H of order 4.
(a) Setting G ' (Z2,+), we obtain three complete hypergroups H3, H4, H5, and by

Proposition 3.4, it follows that i.f.g.(Hi) = 1, for i ∈ {3, 4, 5}.
(b) Setting G ' (Z3,+), we distinguish two hypergroups, denoted by H6, H7.
(b1) For H6 represented here bellow

◦ e a1 a2 a3

e e a1 A2 A2

a1 A2 e e

a2 a1 a1

a3 a1

where A0 = {e}, A1 = {a1}, A2 = {a2, a3}, we calculate that

µ̄(e) = 10/32, µ̄(a1) = 12/32, µ̄(a2) = µ̄(a3) = 5/32,
λ̄(e) = 17/32, λ̄(a1) = 15/32, λ̄(a2) = λ̄(a3) = 22/32.

Therefore the associated join space 0(H6) is as follows:

◦µ̄∧λ̄ e a1 a2 a3

e e {e, a1} B1 B1

a1 a1 H H

a2 A2 A2

a3 A2

and thus we obtain that
µ̄1(e) = µ̄1(a2) = µ̄1(a3) = 13/48, µ̄1(a1) = 9/48,
λ̄1(e) = λ̄1(a2) = λ̄1(a3) = 9/48, λ̄1(a1) = 13/48.

Therefore the associated join space 1(H6) is the total hypergroup. Then, for any r ≥ 2,
r(H6) ' 1(H6) and thereby i.f.g.(H6) = 2.

(b2) Taking the complete hypergroup H7

◦ e a1 a2 a3

e A0 A0 a2 a3

a1 A0 a2 a3

a2 a3 A0

a3 a2



with A0 = {e, a1}, A1 = {a2}, A2 = {a3}, one gets that

µ̄(e) = µ̄(a1) = 3/16, µ̄(a2) = µ̄(a3) = 5/16,
λ̄(e) = λ̄(a1) = 10/16, λ̄(a2) = λ̄(a3) = 8/16.

Therefore the associated join space 0(H7) is as follows:

◦µ̄∧λ̄ e a1 a2 a3

e A0 A0 H H

a1 A0 H H

a2 {a2, a3} {a2, a3}
a3 {a2, a3}

and
µ̄1(e) = µ̄1(a1) = µ̄1(a2) = µ̄1(a3) = 4/16,
λ̄1(e) = λ̄1(a1) = λ̄1(a2) = λ̄1(a3) = 2/16.

Therefore the associated join space 1(H7) is the total hypergroup and, for any r ≥ 2,
r(H7) ' 1(H7), so i.f.g.(H7) = 2.

(iii) We consider now the complete hypergroups of order 5.
(a) There are five complete 1-hypergroups of order 5, denoted here by H8, . . . , H12.
(a1) For the first one H8 generated by the group G ' (Z2,+), by Proposition 3.4, it

follows that i.f.g.(H8) = 1.
(a2) For H9 represented by the table

◦ e a1 a2 a3 a4

e e a1 A2 A2 A2

a1 A2 e e e

a2 a1 a1 a1

a3 a1 a1

a4 a1

with A0 = {e}, A1 = {a1}, A2 = {a2, a3, a4}, we find that

µ̄(e) = 21/75, µ̄(a1) = 33/75, µ̄(a2) = µ̄(a3) = µ̄(a4) = 7/75,
λ̄(e) = 40/75, λ̄(a1) = 28/75, λ̄(a2) = λ̄(a3) = λ̄(a4) = 54/75.

Therefore the associated join space 0(H9) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4

e e {e, a1} B1 B1 B1

a1 a1 H H H

a2 A2 A2 A2

a3 A2 A2

a4 A2

then
µ̄1(e) = 47/250, µ̄1(a1) = 32/250, µ̄1(a2) = µ̄1(a3) = µ̄1(a4) = 57/250,
λ̄1(e) = 40/250, λ̄1(a1) = 55/250, λ̄1(a2) = λ̄1(a3) = λ̄1(a4) = 30/250.

Then, for any r ≥ 1, r(H9) ' 0(H9) and therefore i.f.g.(H9) = 1.
(a3) Set the complete hypergroup H10 as

◦ e a1 a2 a3 a4

e e A1 A1 A2 A2

a1 A2 A2 e e

a2 A2 e e

a3 A1 A1

a4 A1



where A0 = {e}, A1 = {a1, a2}, A2 = {a3, a4}. Then, for any i ∈ {1, 2, 3, 4}, we calculate
that µ̄(e) = 9/25, µ̄(ai) = 4/25, λ̄(e) = 8/25, λ̄(ai) = 13/25.

It result the following join space 0(H10)

◦µ̄∧λ̄ e a1 a2 a3 a4

e e H H H H

a1 B0 B0 B0 B0

a2 B0 B0 B0

a3 B0 B0

a4 B0

and, for any i ∈ {1, 2, 3, 4}, µ̄1(e) = 13/125, µ̄1(ai) = 28/125, λ̄1(e) = 20/125, λ̄1(ai) =
5/125. Therefore, we have, for any r ≥ 1, r(H10) ' 0(H10) and i.f.g.(H10) = 1.

(a4) Let us consider H11 as

◦ e a1 a2 a3 a4

e e a1 a2 A3 A3

a1 a2 A3 e e

a2 e a1 a1

a3 a2 a2

a4 a2

where A0 = {e}, A1 = {a1}, A2 = {a2}, A3 = {a3, a4} (i.e. the 4-tuple associated with
H is [1, 1, 1, 2]) and G ' (Z4,+), for which we calculate

µ̄(e) = µ̄(a1) = 6/25, µ̄(a2) = 7/25, µ̄(a3) = µ̄(a4) = 3/25,
λ̄(e) = λ̄(a1) = 16/25, λ̄(a2) = 15/25, λ̄(a3) = λ̄(a4) = 19/25.

Therefore the associated join space 0(H11) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4

e {e, a1} {e, a1} {e, a1, a2} B2 B2

a1 {e, a1} {e, a1, a2} B2 B2

a2 a2 H H

a3 A3 A3

a4 A3

then

µ̄1(e) = µ̄1(a1) = 92/375, µ̄1(a2) = 47/375, µ̄1(a3) = µ̄1(a4) = 72/375,
λ̄1(e) = λ̄1(a1) = 45/375, λ̄1(a2) = 90/375, λ̄1(a3) = λ̄1(a4) = 65/375.

Therefore the associated join space 1(H11) is as follows:

◦µ̄1∧λ̄1
e a1 a2 a3 a4

e {e, a1} {e, a1} {e, a1, a2} H H

a1 {e, a1} {e, a1, a2} H H

a2 a2 {a2, a3, a4} {a2, a3, a4}
a3 A3 A3

a4 A3

for which we find that

µ̄2(e) = µ̄2(a1) = µ̄2(a3) = µ̄2(a4) = 74/375, µ̄2(a2) = 79/375,
λ̄2(e) = λ̄2(a1) = λ̄2(a3) = λ̄2(a4) = 65/375, λ̄2(a2) = 60/375.



Therefore the associated join space 2(H11) is as follows:

◦µ̄2∧λ̄2
e a1 a2 a3 a4

e B2 B2 H B2 B2

a1 B2 H B2 B2

a2 a2 H H

a3 B2 B2

a4 B2

then
µ̄3(e) = µ̄3(a1) = µ̄3(a3) = µ̄3(a4) 6= µ̄3(a2),
λ̄3(e) = λ̄3(a1) = λ̄3(a3) = λ̄3(a4) 6= λ̄3(a2).

Then, for any r ≥ 3, r(H11) ' 2(H11) and therefore i.f.g.(H11) = 3.
(a5) For the same 4-tuple [1, 1, 1, 2] associated with H, i.e. A0 = {e}, A1 = {a1}, A2 =

{a2}, A3 = {a3, a4}, but with G ' (K, ·) the Klein four-group, it results the following
complete hypergroup H12

◦ e a1 a2 a3 a4

e e a1 a2 A3 A3

a1 e A3 a2 a2

a2 e a1 a1

a3 e e

a4 e

with
µ̄(e) = 7/25, µ̄(a1) = µ̄(a2) = 6/25, µ̄(a3) = µ̄(a4) = 3/25,
λ̄(e) = 15/25, λ̄(a1) = λ̄(a2) = 16/25, λ̄(a3) = λ̄(a4) = 19/25.

Therefore the associated join space 0(H12) is isomorphic with 0(H11) and thereby we
have that i.f.g.(H12) = 3.

(b)The following complete hypergroups, denoted byH13, . . . , H19, are not 1-hypergroups.
(b1) There exist three complete hypergroups of order 5 (which are not 1-hypergroups)

such that G ' (Z2,+), (corresponding to the 2-tuples [2, 3], [3, 2], and [4, 1]); for each of
them we obtain, by Proposition 3.4, that i.f.g.(Hi) = 1, with i ∈ {13, 14, 15}.

(b2) Let us consider H16 as the following complete hypergroup

◦ e a1 a2 a3 a4

e A0 A0 A0 a3 a4

a1 A0 A0 a3 a4

a2 A0 a3 a4

a3 a4 A0

a4 a3

where A0 = {e, a1, a2}, A1 = {a3}, A2 = {a4}, for which we find that

µ̄(e) = µ̄(a1) = µ̄(a2) = 11/75, µ̄(a3) = µ̄(a4) = 21/75,
λ̄(e) = λ̄(a1) = λ̄(a2) = 42/75, λ̄(a3) = λ̄(a4) = 32/75.

Therefore the associated join space 0(H16) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4

e A0 A0 A0 H H

a1 A0 A0 H H

a2 A0 H H

a3 {a3, a4} {a3, a4}
a4 {a3, a4}



and
µ̄1(e) = µ̄1(a1) = µ̄1(a2) 6= µ̄1(a3) = µ̄1(a4),
λ̄1(e) = λ̄1(a1) = λ̄1(a2) 6= λ̄1(a3) = λ̄1(a4).

Then, for any r ≥ 1, r(H16) ' 0(H16) and therefore i.f.g.(H16) = 1.
(b3) There exist two complete hypergroups H17 and H18 of order 5 generated by a

group of order 4 and characterized by the 4-tuple [2, 1, 1, 1]. Setting A0 = {e, a1}, A1 =
{a2}, A2 = {a3}, A3 = {a4}, if G ' (Z4,+), then the hypergroup H17 is the following
one

◦ e a1 a2 a3 a4

e A0 A0 a2 a3 a4

a1 A0 a2 a3 a4

a2 a3 a4 A0

a3 A0 a2

a4 a3

and if G ' (K, ·) the Klein four-group, then the hypergroup H18 is represented by the
table

◦ e a1 a2 a3 a4

e A0 A0 a2 a3 a4

a1 A0 a2 a3 a4

a2 A0 a4 a3

a3 A0 a2

a4 A0

In both cases one finds that
µ̄(e) = µ̄(a1) = 7/50, µ̄(a2) = µ̄(a3) = µ̄(a4) = 12/50,
λ̄(e) = λ̄(a1) = 36/50, λ̄(a2) = λ̄(a3) = λ̄(a4) = 31/50.

Therefore the associated join space 0(H17) =0 (H18) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4

e A0 A0 H H H

a1 A0 H H H

a2 {a2, a3, a4} {a2, a3, a4} {a2, a3, a4}
a3 {a2, a3, a4} {a2, a3, a4}
a4 {a2, a3, a4}

and then
µ̄1(e) = µ̄1(a1) 6= µ̄1(a2) = µ̄1(a3) = µ̄1(a4),
λ̄1(e) = λ̄1(a1) 6= λ̄1(a2) = λ̄1(a3) = λ̄1(a4).

It follows that, for any r ≥ 1, r(Hi) ' 0(Hi), with i ∈ {17, 18}, and therefore i.f.g.(H17) =
i.f.g.(H18) = 1.

(b4) For H19

◦ e a1 a2 a3 a4

e A0 A0 a2 A2 A2

a1 A0 a2 A2 A2

a2 A2 A0 A0

a3 a2 a2

a4 a2

where A0 = {e, a1}, A1 = {a2}, A2 = {a3, a4}, one finds the following membership func-
tions

µ̄(e) = µ̄(a1) = 8/50, µ̄(a2) = 16/50, µ̄(a3) = µ̄(a4) = 9/50,
λ̄(e) = λ̄(a1) = 25/50, λ̄(a2) = 17/50, λ̄(a3) = λ̄(a4) = 24/50.



Therefore the associated join space 0(H19) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4

e A0 A0 H B2 B2

a1 A0 H B2 B2

a2 a2 {a2, a3, a4} {a2, a3, a4}
a3 A2 A2

a4 A2

and

µ̄1(e) = µ̄1(a1) = 72/375, µ̄1(a2) = 47/375, µ̄1(a3) = µ̄1(a4) = 92/375,
λ̄1(e) = λ̄1(a1) = 65/375, λ̄1(a2) = 90/375, λ̄1(a3) = λ̄1(a4) = 45/375.

It is clear that the associated join space 1(H19) is isomorphic with 1(H11) and thus we
obtain that i.f.g.(H19) = 3.

(iv) Now we study the complete hypergroups of order 6. We denote the twenty one
non-isomorphic complete hypergroups of order 6 by H20, H21, . . . , H40.

There are sixteen complete hypergroups of order 6 with the intuitionistic fuzzy grade
equal to 1, listed in the sequel.

(a1) Let us consider the complete hypergroup H20

◦ e a1 a2 a3 a4 a5

e e a1 a2 A3 A3 A3

a1 a2 A3 e e e

a2 e a1 a1 a1

a3 a2 a2 a2

a4 a2 a2

a5 a2

where A0 = {e}, A1 = {a1}, A2 = {a2}, A3 = {a3, a4, a5} and G ' (Z4,+). In particular,
H20 is an 1-hypergroup. Then

µ̄(e) = µ̄(a1) = 24/108, µ̄(a2) = 36/108, µ̄(a3) = µ̄(a4) = µ̄(a5) = 8/108,
λ̄(e) = λ̄(a1) = 68/108, λ̄(a2) = 56/108, λ̄(a3) = λ̄(a4) = λ̄(a5) = 84/108.

Therefore the associated join space 0(H20) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e {e, a1} {e, a1} {e, a1, a2} B2 B2 B2

a1 {e, a1} {e, a1, a2} B2 B2 B2

a2 a2 H H H

a3 A3 A3 A3

a4 A3 A3

a5 A3

We obtain that

µ̄1(e) = µ̄1(a1) = 101/540, µ̄1(a2) = 50/540, µ̄1(a3) = µ̄1(a4) = µ̄1(a5) = 96/540,
λ̄1(e) = λ̄1(a1) = 60/540, λ̄1(a2) = 111/540, λ̄1(a3) = λ̄1(a4) = λ̄1(a5) = 65/540.

Then, for any r ≥ 1, r(H20) ' 0(H20) and therefore i.f.g.(H20) = 1.



(a2) Let us see the complete hypergroup H21

◦ e a1 a2 a3 a4 a5

e e a1 a2 A3 A3 A3

a1 e A3 a2 a2 a2

a2 e a1 a1 a1

a3 e e e

a4 e e

a5 e

with G ' (K, ·) the Klein four-group, A0 = {e}, A1 = {a1}, A2 = {a2}, A3 = {a3, a4, a5}.
H21 is an 1-hypergroup, too. Then

µ̄(e) = 36/108, µ̄(a1) = µ̄(a2) = 24/108, µ̄(a3) = µ̄(a4) = µ̄(a5) = 8/108,
λ̄(e) = 56/108, λ̄(a1) = λ̄(a2) = 68/108, λ̄(a3) = λ̄(a4) = λ̄(a5) = 84/108.

It follows that the associated join space 0(H21) is isomorphic to 0(H20) and thereby we
have that i.f.g.(H21) = 1.

(a3) Setting now G ' (Z2,+), it results five non-isomorphic complete hypergroups
H22, . . . , H26 corresponding to the 2-tuples [1, 5], [2, 4], [3, 3], [4, 2], [5, 1]. By Proposition
3.4, it follows immediately that i.f.g.(Hi) = 1, for i ∈ {22, . . . , 26}.

(a4) For the complete hypergroup H27, which is also an 1-hypergroup,

◦ e a1 a2 a3 a4 a5

e e a5 A1 A1 A1 A1

a1 A1 e e e e

a2 a5 a5 a5 a5

a3 a5 a5 a5

a4 a5 a5

a5 a5

where A0 = {e}, A1 = {a1, a2, a3, a4}, A2 = {a5}, we calculate that

µ̄(e) = 36/144, µ̄(a1) = µ̄(a2) = µ̄(a3) = µ̄(a4) = 9/144, µ̄(a5) = 72/144,
λ̄(e) = 81/144, λ̄(a1) = λ̄(a2) = λ̄(a3) = λ̄(a4) = 108/144, λ̄(a5) = 45/144.

Therefore the associated join space 0(H27) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e e B5 B5 B5 B5 {e, a5}
a1 A1 A1 A1 A1 H

a2 A1 A1 A1 H

a3 A1 A1 H

a4 A1 H

a5 a5

We find

µ̄1(e) = 74/540, µ̄1(a1) = µ̄1(a2) = µ̄1(a3) = µ̄1(a4) = 104/540, µ̄1(a5) = 50/540,
λ̄1(e) = 75/540, λ̄1(a1) = λ̄1(a2) = λ̄1(a3) = λ̄1(a4) = 45/540, λ̄1(a5) = 99/540.

Then, for any r ≥ 1, r(H27) ' 0(H27) and therefore i.f.g.(H27) = 1.



(a5) For the complete hypergroup H28 represented here bellow

◦ e a1 a2 a3 a4 a5

e e A1 A1 A2 A2 A2

a1 A2 A2 e e e

a2 A2 e e e

a3 A1 A1 A1

a4 A1 A1

a5 A1

with A0 = {e}, A1 = {a1, a2}, A2 = {a3, a4, a5} (in particular, H28 is an 1-hypergroup),
we obtain that

µ̄(e) = 78/216, µ̄(a1) = µ̄(a2) = 39/216, µ̄(a3) = µ̄(a4) = µ̄(a5) = 20/216,
λ̄(e) = 59/216, λ̄(a1) = λ̄(a2) = 98/216, λ̄(a3) = λ̄(a4) = λ̄(a5) = 117/216.

Therefore the associated join space 0(H28) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e e {e, a1, a2} {e, a1, a2} H H H

a1 A1 A1 B0 B0 B0

a2 A1 B0 B0 B0

a3 A2 A2 A2

a4 A2 A2

a5 A2

and

µ̄1(e) = 50/540, µ̄1(a1) = µ̄1(a2) = 101/540, µ̄1(a3) = µ̄1(a4) = µ̄1(a5) = 96/540,
λ̄1(e) = 111/540, λ̄1(a1) = λ̄1(a2) = 60/540, λ̄1(a3) = λ̄1(a4) = λ̄1(a5) = 65/540.

Then, for any r ≥ 1, r(H28) ' 0(H28) and therefore i.f.g.(H28) = 1.
(a6) Taking the complete hypergroup H29

◦ e a1 a2 a3 a4 a5

e A0 A0 a2 A2 A2 A2

a1 A0 a2 A2 A2 A2

a2 A2 A0 A0 A0

a3 a2 a2 a2

a4 a2 a2

a5 a2

with A0 = {e, a1}, A1 = {a2}, A2 = {a3, a4, a5}, we calculate that

µ̄(e) = µ̄(a1) = 15/108, µ̄(a2) = 39/108, µ̄(a3) = µ̄(a4) = µ̄(a5) = 13/108,
λ̄(e) = λ̄(a1) = 52/108, λ̄(a2) = 28/108, λ̄(a3) = λ̄(a4) = λ̄(a5) = 54/108.

Therefore the associated join space 0(H29) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e A0 A0 {e, a1, a2} B2 B2 B2

a1 A0 {e, a1, a2} B2 B2 B2

a2 a2 H H H

a3 A2 A2 A2

a4 A2 A2

a5 A2



We obtain that

µ̄1(e) = µ̄1(a1) = 101/540, µ̄1(a2) = 50/540, µ̄1(a3) = µ̄1(a4) = µ̄1(a5) = 96/540,
λ̄1(e) = λ̄1(a1) = 60/540, λ̄1(a2) = 111/540, λ̄1(a3) = λ̄1(a4) = λ̄1(a5) = 65/540.

Then, for any r ≥ 1, r(H29) ' 0(H29) and therefore i.f.g.(H29) = 1.
(a7) If we take the complete hypergroup H30 as

◦ e a1 a2 a3 a4 a5

e A0 A0 A1 A1 A2 A2

a1 A0 A1 A1 A2 A2

a2 A2 A2 A0 A0

a3 A2 A0 A0

a4 A1 A1

a5 A1

with A0 = {e, a1}, A1 = {a2, a3}, A2 = {a4, a5}, then it results that

µ̄(e) = µ̄(a1) = µ̄(a2) = µ̄(a3) = µ̄(a4) = µ̄(a5) = 6/36,
λ̄(e) = λ̄(a1) = λ̄(a2) = λ̄(a3) = λ̄(a4) = λ̄(a5) = 12/36.

Therefore 0(H30) is a total hypergroup. Then, for any r ≥ 1, r(H30) ' 0(H30) and
therefore i.f.g.(H30) = 1.

(a8) Let us consider H31 given by the following table

◦ e a1 a2 a3 a4 a5

e A0 A0 A0 a3 A2 A2

a1 A0 A0 a3 A2 A2

a2 A0 a3 A2 A2

a3 A2 A0 A0

a4 a3 a3

a5 a3

with A0 = {e, a1, a2}, A1 = {a3}, A2 = {a4, a5}. We calculate that

µ̄(e) = µ̄(a1) = µ̄(a2) = 26/216, µ̄(a3) = 60/216, µ̄(a4) = µ̄(a5) = 39/216,
λ̄(e) = λ̄(a1) = λ̄(a2) = 99/216, λ̄(a3) = 65/216, λ̄(a4) = λ̄(a5) = 86/216.

Therefore the associated join space 0(H31) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e A0 A0 A0 H B3 B3

a1 A0 A0 H B3 B3

a2 A0 H B3 B3

a3 a3 {a3, a4, a5} {a3, a4, a5}
a4 A2 A2

a5 A2

Then

µ̄1(e) = µ̄1(a1) = µ̄1(a2) = 96/540, µ̄1(a3) = 50/540, µ̄1(a4) = µ̄1(a5) = 101/540,
λ̄1(e) = λ̄1(a1) = λ̄1(a2) = 65/540, λ̄1(a3) = 111/540, λ̄1(a4) = λ̄1(a5) = 60/540.

Then, for any r ≥ 1, r(H31) ' 0(H31) and therefore i.f.g.(H31) = 1.



(a9) Let us consider the following complete hypergroup H32

◦ e a1 a2 a3 a4 a5

e A0 A0 A0 A0 a4 a5

a1 A0 A0 A0 a4 a5

a2 A0 A0 a4 a5

a3 A0 a4 a5

a4 a5 A0

a5 a4

with A0 = {e, a1, a2, a3}, A1 = {a4}, A2 = {a5}. One gets that

µ̄(e) = µ̄(a1) = µ̄(a2) = µ̄(a3) = 9/72, µ̄(a4) = µ̄(a5) = 18/72,
λ̄(e) = λ̄(a1) = λ̄(a2) = λ̄(a3) = 36/72, λ̄(a4) = λ̄(a5) = 27/72.

Therefore the associated join space 0(H32) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e A0 A0 A0 A0 H H

a1 A0 A0 A0 H H

a2 A0 A0 H H

a3 A0 H H

a4 {a4, a5} {a4, a5}
a5 {a4, a5}

with
µ̄1(e) = µ̄1(a1) = µ̄1(a2) = µ̄1(a3) 6= µ̄1(a4) = µ̄1(a5),
λ̄1(e) = λ̄1(a1) = λ̄1(a2) = λ̄1(a3) 6= λ̄1(a4) = λ̄1(a5).

Then, for any r ≥ 1, r(H32) ' 0(H32) and therefore i.f.g.(H32) = 1.
(a10) Let us consider H33 given by the following table

◦ e a1 a2 a3 a4 a5

e e a1 A2 A2 A3 A3

a1 e A3 A3 A2 A2

a2 e e a1 a1

a3 e a1 a1

a4 e e

a5 e

with A0 = {e}, A1 = {a1}, A2 = {a2, a3}, A3 = {a4, a5} and G ' (K, ·) the Klein
four-group. It is obvious that H33 is an 1-hypergroup. It results that

µ̄(e) = µ̄(a1) = 10/36, µ̄(a2) = µ̄(a3) = µ̄(a4) = µ̄(a5) = 4/36,
λ̄(e) = λ̄(a1) = 18/36, λ̄(a2) = λ̄(a3) = λ̄(a4) = λ̄(a5) = 24/36.

Therefore the associated join space 0(H33) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e {e, a1} {e, a1} H H H H

a1 {e, a1} H H H H

a2 {a2, a3, a4, a5} {a2, a3, a4, a5} {a2, a3, a4, a5} {a2, a3, a4, a5}
a3 {a2, a3, a4, a5} {a2, a3, a4, a5} {a2, a3, a4, a5}
a4 {a2, a3, a4, a5} {a2, a3, a4, a5}
a5 {a2, a3, a4, a5}

and
µ̄1(e) = µ̄1(a1) 6= µ̄1(a2) = µ̄1(a3) = µ̄1(a4) = µ̄1(a5),
λ̄1(e) = λ̄1(a1) 6= λ̄1(a2) = λ̄1(a3) = λ̄1(a4) = λ̄1(a5).



Then, for any r ≥ 1, r(H33) ' 0(H33) and therefore i.f.g.(H33) = 1.
(a11) Let us consider the following complete hypergroup H34

◦ e a1 a2 a3 a4 a5

e A0 A0 a2 a3 A3 A3

a1 A0 a2 a3 A3 A3

a2 A0 A3 a3 a3

a3 A0 a2 a2

a4 A0 A0

a5 A0

with A0 = {e, a1}, A1 = {a2}, A2 = {a3}, A3 = {a4, a5} and G ' (K, ·) the Klein
four-group. We calculate that

µ̄(e) = µ̄(a1) = µ̄(a4) = µ̄(a5) = 5/36, µ̄(a2) = µ̄(a3) = 8/36,
λ̄(e) = λ̄(a1) = λ̄(a4) = λ̄(a5) = 21/36, λ̄(a2) = λ̄(a3) = 18/36.

Therefore the associated join space 0(H34) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e {e, a1, a4, a5} {e, a1, a4, a5} H H {e, a1, a4, a5} {e, a1, a4, a5}
a1 {e, a1, a4, a5} H H {e, a1, a4, a5} {e, a1, a4, a5}
a2 {a2, a3} {a2, a3} H H

a3 {a2, a3} H H

a4 {e, a1, a4, a5} {e, a1, a4, a5}
a5 {e, a1, a4, a5}

then
µ̄1(e) = µ̄1(a1) = µ̄1(a4) = µ̄1(a5) 6= µ̄1(a2) = µ̄1(a3),
λ̄1(e) = λ̄1(a1) = λ̄1(a4) = λ̄1(a5) 6= λ̄1(a2) = λ̄1(a3).

Then, for any r ≥ 1, r(H34) ' 0(H34) and therefore i.f.g.(H34) = 1.
(a12) For the complete hypergroup H35

◦ e a1 a2 a3 a4 a5

e A0 A0 a2 a3 a4 a5

a1 A0 a2 a3 a4 a5

a2 a3 a4 a5 A0

a3 a5 A0 a2

a4 a2 a3

a5 a4

with A0 = {e, a1}, A1 = {a2}, A2 = {a3}, A3 = {a4}, A4 = {a5}, we calculate that

µ̄(e) = µ̄(a1) = 4/36, µ̄(a2) = µ̄(a3) = µ̄(a4) = µ̄(a5) = 7/36,
λ̄(e) = λ̄(a1) = 28/36, λ̄(a2) = λ̄(a3) = λ̄(a4) = λ̄(a5) = 25/36.

We notice that 0(H35) is isomorphic to 0(H33) and therefore, for any r ≥ 1, r(H35) '
0(H35) and so i.f.g.(H35) = 1.

Now we present the complete hypergroups of order 6 which have the intuitionistic
fuzzy grade equal to 2.



(b1) The complete hypergroup H36 is the following one

◦ e a1 a2 a3 a4 a5

e A0 A0 A0 a3 a4 a5

a1 A0 A0 a3 a4 a5

a2 A0 a3 a4 a5

a3 a4 a5 A0

a4 A0 a3

a5 a4

where A0 = {e, a1, a2}, A1 = {a3}, A2 = {a4}, A3 = {a5}, and G ' (Z4,+). Then

µ̄(e) = µ̄(a1) = µ̄(a2) = 4/36, µ̄(a3) = µ̄(a4) = µ̄(a5) = 8/36,
λ̄(e) = λ̄(a1) = λ̄(a2) = 24/36, λ̄(a3) = λ̄(a4) = λ̄(a5) = 20/36.

Therefore the associated join space 0(H36) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e A0 A0 A0 H H H

a1 A0 A0 H H H

a2 A0 H H H

a3 {a3, a4, a5} {a3, a4, a5} {a3, a4, a5}
a4 {a3, a4, a5} {a3, a4, a5}
a5 {a3, a4, a5}

We find that
µ̄1(e) = µ̄1(a1) = µ̄1(a2) = µ̄1(a3) = µ̄1(a4) = µ̄1(a5) = 6/36,
λ̄1(e) = λ̄1(a1) = λ̄1(a2) = λ̄1(a3) = λ̄1(a4) = λ̄1(a5) = 3/36.

It follows that 1(H36) is a total hypergroup. Then, for any r ≥ 2, r(H36) = 1(H36) and
therefore i.f.g.(H36) = 2.

(b2) The complete hypergroup H37 has the following table

◦ e a1 a2 a3 a4 a5

e A0 A0 A0 a3 a4 a5

a1 A0 A0 a3 a4 a5

a2 A0 a3 a4 a5

a3 A0 a5 a4

a4 A0 a3

a5 A0

with G ' (K, .) the Klein four-group, A0 = {e, a1, a2}, A1 = {a3}, A2 = {a4}, A3 = {a5}.
We obtain the same membership functions as in the previous case. So, i.f.g.(H37) = 2.

(b3) Taking the complete hypergroup H38 as the following 1-hypergroup

◦ e a1 a2 a3 a4 a5

e e a1 a2 a3 A4 A4

a1 a2 a3 A4 e e

a2 A4 e a1 a1

a3 a1 a2 a2

a4 a3 a3

a5 a3

where A0 = {e}, A1 = {a1}, A2 = {a2}, A3 = {a3}, A4 = {a4, a5}, then

µ̄(e) = µ̄(a1) = µ̄(a2) = 14/72, µ̄(a3) = 16/72, µ̄(a4) = µ̄(a5) = 7/72,
λ̄(e) = λ̄(a1) = λ̄(a2) = 51/72, λ̄(a3) = 49/72, λ̄(a4) = λ̄(a5) = 58/72.



Therefore the associated join space 0(H38) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e {e, a1, a2} {e, a1, a2} {e, a1, a2} {e, a1, a2, a3} B3 B3

a1 {e, a1, a2} {e, a1, a2} {e, a1, a2, a3} B3 B3

a2 {e, a1, a2} {e, a1, a2, a3} B3 B3

a3 a3 H H

a4 A4 A4

a5 A4

and we obtain that
µ̄1(e) = µ̄1(a1) = µ̄1(a2) = 227/1080, µ̄1(a3) = 95/1080, µ̄1(a4) = µ̄1(a5) = 152/1080,
λ̄1(e) = λ̄1(a1) = λ̄1(a2) = 90/1080, λ̄1(a3) = 222/1080, λ̄1(a4) = λ̄1(a5) = 165/1080.

Therefore the associated join space 1(H38) is as follows:

◦µ̄1∧λ̄1
e a1 a2 a3 a4 a5

e {e, a1, a2} {e, a1, a2} {e, a1, a2} {e, a1, a2, a3} H H

a1 {e, a1, a2} {e, a1, a2} {e, a1, a2, a3} H H

a2 {e, a1, a2} {e, a1, a2, a3} H H

a3 a3 {a3, a4, a5} {a3, a4, a5}
a4 A4 A4

a5 A4

for which we find
µ̄2(e) = µ̄2(a1) = µ̄2(a2) = 39/216, µ̄2(a3) = 35/216, µ̄2(a4) = µ̄2(a5) = 32/216,
λ̄2(e) = λ̄2(a1) = λ̄2(a2) = 26/216, λ̄2(a3) = 30/216, λ̄2(a4) = λ̄2(a5) = 33/216.

Then, for any r ≥ 2, r(H38) ' 1(H38) and therefore i.f.g.(H38) = 2.

The last two complete hypergroups of order 6 have the intuitionistic fuzzy grade equal
to 3.

(c1) For the 1-hypergroup H39

◦ e a1 a2 a3 a4 a5

e e a1 A2 A2 A3 A3

a1 A2 A3 A3 e e

a2 e e a1 a1

a3 e a1 a1

a4 A2 A2

a5 A2

where A0 = {e}, A1 = {a1}, A2 = {a2, a3}, A3 = {a4, a5}, and G ' (Z4,+), we find that

µ̄(e) = 18/72, µ̄(a1) = 20/72, µ̄(a2) = µ̄(a3) = 9/72, µ̄(a4) = µ̄(a5) = 8/72,
λ̄(e) = 37/72, λ̄(a1) = 35/72, λ̄(a2) = λ̄(a3) = 46/72, λ̄(a4) = λ̄(a5) = 47/72.

Therefore the associated join space 0(H39) is as follows:

◦µ̄∧λ̄ e a1 a2 a3 a4 a5

e e {e, a1} {e, a2, a3} {e, a2, a3} B1 B1

a1 a1 {e, a1, a2, a3} {e, a1, a2, a3} H H

a2 A2 A2 {a2, a3, a4, a5} {a2, a3, a4, a5}
a3 A2 {a2, a3, a4, a5} {a2, a3, a4, a5}
a4 A3 A3

a5 A3



and
µ̄1(e) = 87/540, µ̄1(a1) = 55/540, µ̄1(a2) = µ̄1(a3) = 117/540,
λ̄1(e) = 105/540, λ̄1(a1) = 137/540, λ̄1(a2) = λ̄1(a3) = 75/540,
µ̄1(a4) = µ̄1(a5) = 82/540, λ̄1(a4) = λ̄1(a5) = 110/540.

Therefore the associated join space 1(H39) is as follows:

◦µ̄1∧λ̄1
e a1 a2 a3 a4 a5

e e H B1 B1 {e, a4, a5} {e, a4, a5}
a1 a1 {a1, a2, a3} {a1, a2, a3} B0 B0

a2 A2 A2 {a2, a3, a4, a5} {a2, a3, a4, a5}
a3 A2 {a2, a3, a4, a5} {a2, a3, a4, a5}
a4 A3 A3

a5 A3

and

µ̄2(e) = µ̄2(a1) = 52/540, µ̄2(a2) = µ̄2(a3) = µ̄2(a4) = µ̄2(a5) = 109/540,
λ̄2(e) = λ̄2(a1) = 137/540, λ̄2(a2) = λ̄2(a3) = λ̄2(a4) = λ̄2(a5) = 80/540.

Therefore the associated join space 2(H39) is as follows:

◦µ̄2∧λ̄2
e a1 a2 a3 a4 a5

e {e, a1} {e, a1} H H H H

a1 {e, a1} H H H H

a2 {a2, a3, a4, a5} {a2, a3, a4, a5} {a2, a3, a4, a5} {a2, a3, a4, a5}
a3 {a2, a3, a4, a5} {a2, a3, a4, a5} {a2, a3, a4, a5}
a4 {a2, a3, a4, a5} {a2, a3, a4, a5}
a5 {a2, a3, a4, a5}

for which we calculate

µ̄3(e) = µ̄3(a1) 6= µ̄3(a3) = µ̄3(a4) = µ̄3(a4) = µ̄3(a5),
λ̄3(e) = λ̄3(a1) 6= λ̄3(a2) = λ̄3(a3) = λ̄3(a4) = λ̄3(a5).

Then, for any r ≥ 3, r(H39) ' 2(H39) and therefore i.f.g.(H39) = 3.
(c2) Let us consider H40 as the following complete hypergroup

◦ e a1 a2 a3 a4 a5

e A0 A0 a2 a3 A3 A3

a1 A0 a2 a3 A3 A3

a2 a3 A3 A0 A0

a3 A0 a2 a2

a4 a3 a3

a5 a3

with A0 = {e, a1}, A1 = {a2}, A2 = {a3}, A3 = {a4, a5}, and G ' (Z4,+) (the 4-tuple
associated with H40 is [2, 1, 1, 2]). Then, we obtain the following membership functions

µ̄(e) = µ̄(a1) = 9/72, µ̄(a2) = 16/72, µ̄(a3) = 18/72,
λ̄(e) = λ̄(a1) = 44/72, λ̄(a2) = 37/72, λ̄(a3) = 35/72,
µ̄(a4) = µ̄(a5) = 10/72, λ̄(a4) = λ̄(a5) = 43/72.

It is clear that the associated join space 0(H40) is isomorphic to the join space 0(H39)
and therefore i.f.g.(H40) = 3.

�



Making a short comparison with the fuzzy grade of the same hypergroups, we notice
that there are no complete hypergroups of order less than or equal to 6 with the fuzzy
grade equal to 3, instead there are 5 such hypergroups with the intuitionistic fuzzy grade
equal to 3. Moreover, for the complete hypergroups of order 3 or 4, the fuzzy grade
coincides with the intuitionistic fuzzy grade.

5. Conclusions and future work
In this paper, we have presented the join spaces and the membership functions of the

intuitionistic fuzzy sets associated with all forty non-isomorphic complete hypergroups
of order less than or equal to 6, determining their intuitionistic fuzzy grades. A similar
work has been done by Cristea [14], regarding the fuzzy grades of the same hypergroups.

The fuzzy grade of a complete hypergroup H constructed from a group G does not
depend on the group G, but only on the m-decomposition of n = |H|. More exactly,
if G1 and G2 are non-isomorphic groups of the same order m, and H1 and H2 are
the correspondent complete hypergroups of order n, then f.g.(H1) = f.g.(H2). This
is an immediate consequence of Theorem 2.3 [14]. In this paper, we noticed that the
intuitionistic fuzzy grade of a complete hypergroup does not have the same property. For
example, let H be a complete hypergroup of order 6 such that [1, 1, 2, 2] is the 4-tuple
associated with it. Therefore, there exist two non-isomorphic hypergroups of such type:
the hypergroup denoted in this article with H39 (obtained with the group G ' (Z4,+))
and the hypergroup H33 (obtained with the group G ' (K, ·) the Klein four group). We
have obtained that i.f.g.(H39) = 3 and i.f.g.(H33) = 1. Thereby the intuitionistic fuzzy
grade of a complete hypergroup depends also on the group G. It seems interesting to
find conditions connected with the group G ( with |G| = m) such that i.f.g.(H) depends
only on the m-decomposition of n = |H|. This theme will be discussed in a future work.
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