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Abstract. In this paper, we study the existence and multiplicity of positive
radial solutions for a class of local elliptic boundary value problem defined on

bounded annular domains. The existence and multiplicity of positive radial

solutions are obtained by means of fixed point index theory. We include an
example to illustrate our results.

1. Introduction

In this paper, we are interested in the existence of radial positive solutions to
the following boundary value problem (BVP){

−4u (x) = f (|x| , u (x)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

(1.1)

where Ω =
{
x ∈ RN : R0 < |x| < R1, N ≥ 3

}
with 0 < R0 < R1 is an annulus in

RN and f ∈ C ([0, 1]× [0,∞) , [0,∞)).
The study of such problems is motivated by a lot of physical applications start-

ing from the well-known Poisson-Boltzmann equation (see [2, 26, 34]), also they
serve as models for some phenomena which arise in fluid mechanics, such as the
exothermic chemical reactions or autocatalytic reactions (see [31], Section 5.11.1).
The nonlinearity f in applications always has a special form and here we assume
only the continuity of f and some inequalities at some points for the values of this
function. However, we know that in the integrand should stay a superposition of u
with a given function (usually the exponent of u in applications) instead of u alone,
but we treat this paper as the first step in this direction. The method we use is
typical for local BVP. We shall formulate an equivalent fixed point problem and
look for its solution in the cone of nonnegative function in an appropriate Banach
space. The most popular fixed point theorem in a cone is the cone-compression
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and cone-expansion theorem due to M. Krasnosel’skii [25] which we use in the form
taken from [12], [19]. We also point out the fact that problems of type (1.1) when
equation does not contain parameter λ, are connected with the classical boundary
value theory of Bernstein [1] (see also the studies of Granas, Gunther and Lee [17]
for some extensions to nonlinear problems).

The existence and uniqueness of positive radial solutions for equations of type
(1.1) when equation does not contain parameter λ, were obtained in [5], [27], [36].

Wang [36] proved that if f : (0,∞)→ (0,∞) satisfies lim
z→0

f(z)
z =∞ and lim

z→∞
f(z)
z =

0 then problem (1.1) when equation does not contain parameter λ, has a positive
radial solution in Ω =

{
x ∈ RN , N > 2

}
. That result was extended for the systems

of elliptic equations by Ma [24]. We quote also the research of Ovono el al. [32]
where the diffusion at each point depends on all the values of the solutions in a
neighborhood of this point and Chipot et al. [13] considred the solvability of a
class of nonlocal problems which admit a formulation in term of quasi-variational
inequalities. There is a wide literature that deals with existence multiplicity results
for various second-order, fourth-order and higher-order boundary value problems
by different approaches, see [8, 9, 10, 11, 12, 14, 29, 30].
In 2011, Bohneure et al. [6] studied the existence of positive increasing radial
solutions for superlinear Neumann problem in the unit ball B in RN , N ≥ 2,

−∆u+ u = a (|x|) f (u) , in B,

u > 0, inB,

∂tu = 0, on ∂B,

where a ∈ C1 ([0, 1] ,R) , a (0) > 0 is nondecreasing, f ∈ C1 ([0, 1] ,R) , f (0) =

0, lim
s→0+

f(s)
s = 0 and lim

s→+∞
f(s)
s > 1

a(0) .

In 2011, Hakimi and Zertiti [22] studied the nonexistence of radial positive solutions
for a nonpositone problem when the nonliearity is superlinear and has more than
one zero, {

−4u (x) = λf (u (x)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

where f ∈ C ([0,+∞) ,R).
In 2014, Sfecci [35] obtained the existence result by introduced the lim sup type
of nonresonance condition with respect to the first positive eigenvalue λ1 pro-

vided lim
|u|→∞

sup 2F (u)
u2 < λ1 with a double lim inf condition like the following one

lim
u→−∞

sup 2F (u)
u2 < π2

4ρ2 and lim
u→+∞

inf 2F (u)
u2 < π2

4ρ2 for the following Neumann prob-

lems defined on the ball BR =
{
x ∈ RN , |x| < R

}
,{

−4u (x) = f (u (x)) + e (|x|) , in BR,
u (x) = 0, on ∂BR,

where f ∈ C (R,R), e ∈ C ([0, R] ,R), F is a primitive of f and Ω = (−2ρ, 2ρ) ⊂ R.
In 2014, Butler et. al, [7] studied the positive radial solutions to the BVP

−∆u+ u = λa (|x|) f (u) , x ∈ Ω,
∂u
∂η + c (u)u = 0, |x| = r0,

u (x)→ 0, |x| → ∞,
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where f ∈ C ([0,∞) ,R) , Ω =
{
x ∈ RN : N > 2, |x| > r0 with r0 > 0

}
, λ is a pos-

itive parameter, a ∈ C ([r0,∞) ,R+) such that lim
r→∞

a (r) = 0, ∂
∂u is the outward

normal derivative and c ∈ C ([0,∞) , (0,∞)).

In 2003, Stanzy [34], by using the norm-type cone expansion and compression
theorem proved that problem (1.1) has at least one positive radial solution under
the following conditions
(B1) for any M > 0 there exist a function pM ∈ C ((1,+∞) ,R+) with

∞∫
1

s
(
1− s2n

)
pM (s) ds <∞,

such that

0 ≤ f (s, u) ≤ pM (s) , for any (s, u) ∈ (1,∞)× [0,M ] ,

(B2) there exist a set B ∈ ((1,+∞) ,R+) of positive measure such that

lim
u→+∞

f (s, u)

u
= +∞, uniformly with respect to s ∈ B,

(B3) there exist a function p ∈ C ((1,+∞) ,R+) with
∫∞
1
s
(
1− s2n

)
p (s) ds < ∞

such that

lim
u→0+

f (s, u)

up (s)
= 0, uniformly with respect to s ∈ B.

In 2006, Han [21], replacing the conditions listed above (B1) , (B2) and (B3) by the
weaker ones

lim
u→0+

inf min
s∈[c,d]

f (s, u)

u
> ξ, lim

u→0+
sup

f (s, u)

up (s)
< η,

uniformly with respect to s ∈ (1,+∞) for suitable positive numbers ξ and η, the
authors proved that problem (1.1) still has at least one positive radial solution.

In 2014, Wu [37], studied problem (1.1) under some conditions concerning the first
eigenvalues corresponding to the relevant linear operators, they obtained several ex-
istence theorems on multiple positive radial solutions of (1.1) in an exterior domain.

Inspired and motivated by the works mentioned above, we deal with existence
and multiplicity of radial positive solutions to the BVP (1.1), our approach is based
on fixed point index theory. The paper is organized as follows. In Section 2, we
changes problem (1.1) into a sigular two-point boundary value problem and we
will state all the lemmas which will be used to prove our main results in the later
section. Setion 3 is devoted to the existence and multiplicity of positive solutions
and positive radial solutions for BVP (1.1) and we give an example to illustrate our
results.

2. Preliminaries

We shall consider the Banach space E = C [0, 1] equipped with sup norm ‖u‖ =
max
0≤t≤1

|u (t)| and C+ [0, 1] is the cone of nonnegative functions in C [0, 1].
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Definition 2.1. Anonempty closed and convex set P ⊂ E is called a cone of E if
it satisfies

(i) u ∈ P, r > 0 implies ru ∈ P,
(ii) u ∈ P, −u ∈ P implies u = θ, where θ denotes the zero element of E.

Definition 2.2. A cone P is said to be normal if there exists a positive number N
called the normal constant of P , such that θ ≤ u ≤ v implies ‖u‖ ≤ N ‖v‖.

We are interested in finding radial solutions for problem (1.1). We proceed
as in introduction. Since we are looking for the existence of nonnegative radial
solutions u (x) = z (|x|) of the problem (1.1), where z : R+ → R, one can substitute

v (t) = z
(

A
B−t

) 1
n−2

for t ∈ [0, 1] , n ≥ 3, thus reducing the BVP (1.1) to the

following singular two-point BVP{
−v′′ (t) = g (t, v (t)) , t ∈ (0, 1) ,

v (0) = v (1) = 0,
(2.1)

where

g (t, v) = φ (t) f

((
A

B − t

) 1
n−2

, v

)
, (2.2)

A =
(R0R1)

n−2

Rn−21 −Rn−20

and B =
Rn−21

Rn−21 −Rn−20

, (2.3)

and

φ (t) =

(
R
−(n−2)
1 −R−(n−2)0

n− 2

)2 (
R
−(n−2)
1 −

(
R
−(n−2)
1 −R−(n−2)0

)
t
)
, n ≥ 3.

(2.4)
we can reformulate g as

g (t, v) = φ (t) f

((
A

B − t

) 1
n−2

, v

)
,

where

φ (t) =

(
R
−(n−2)
1 −R−(n−2)0

n− 2

)2
 1

A
2n−2
n−2

(
Rn−21 −Rn−20

) 2n−2
n−2

[ A

B − t

] 2(n−1)
n−2

We observe that the existence of radial positive solutions of (1.1) is equivalent
to the existence of positive solutions of the problem (2.1).

In arriving our results, we need the following six preliminary lemmas. The first
one is well known.

Lemma 2.1. Let y (·) ∈ C [0, 1]. If u ∈ C2 [0, 1], then the BVP (2.1) has a unique
solution

v (t) =

1∫
0

G (t, s) y (s) ds, (2.5)
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where

G (t, s) =

{
s (1− t) , 0 ≤ t ≤ s ≤ 1,

t (1− s) , 0 ≤ s ≤ t ≤ 1.
(2.6)

Lemma 2.2. For any (t, s) ∈ [0, 1]× [0, 1], we have

0 < G (t, s) ≤ G (s, s) = s (1− s) .

Proof. The proof is evident, we omit it. �

Lemma 2.3. (see [23]) For y (t) ∈ C+ [0, 1]. Then the unique solution u (t) of
BVP (2.1) is nonnegative and satisfies

min
R0≤t≤R1

v (t) ≥ c ‖v‖ ,

where c = min {R0, 1−R1} and [R0, R1] ⊂ (0, 1).

If we let

P =
{
v ∈ C+ [0, 1] : v (t) ≥ 0, for t ∈ [0, 1]

}
,

and

Q =

{
v ∈ C+ [0, 1] : min

R0≤t≤R1

v (t) ≥ c ‖v‖
}
,

then it is easy see that P and Q are cones in E = C [0, 1].
Let Ωr = {u ∈ E : ‖u‖ < r} be the open ball of radius r in E and the operator
A : E → E define by

(Av) (t) =

1∫
0

G (t, s) g (s, v (s)) ds, t ∈ [0, 1] . (2.7)

Define a set H by

H =

h ∈ C ((0, 1) ,R+
)

: h 6= 0,

1∫
0

t (1− t)h (t) dt < +∞

 . (2.8)

Now, we define an integral operators Th : E → E for h ∈ H by

(Thv) (t) =

1∫
0

G (t, s)h (s) v (s) ds, for v ∈ E. (2.9)

We have the following lemma.

Lemma 2.4. For any h ∈ H we have
(i) Th is a completely continuous linear operator and the specteral radius r (Th) 6= 0
and Th has a positive eigenfunction ϕ1h corresponding to its first eigenvalue λ1h =
(r (Th))

−1
,

(ii) Th (P ) ⊂ Q,
(iii) there exist δ1, δ2 > 0, such that

δ1G (t, s) ≤ ϕ1h (s) ≤ δ2G (s, s) , t, s ∈ [0, 1] , (2.10)

(iv) define a functional Jh by Jh (v) =
∫ 1

0
h (t)ϕ1h (t) v (t) dt for v ∈ E. Then

Jh (Thv) = λ−11h Jh (v) for v ∈ E,



ELLIPTIC EQUATIONS 35

(v) let
P0 =

{
v ∈ P : Jh (v) ≥ λ−11h δ1 ‖v‖

}
, (2.11)

then P0 is a cone in E and Th (P ) ⊂ P0 where δ1 is defined by (2.10).

To prove Lemma 2.4, we need the following lemmas.

Lemma 2.5. (see [24]) Suppose that E is a Banach space, Tn : E → E, n ∈ N∗
are completely continuous operators, T : E → E and

lim
n→+∞

max
‖u‖<r

‖Tnu− Tu‖ = 0, ∀r > 0, (2.12)

then T is completely continuous operator.

Lemma 2.6. (see [25]) Suppose that E is a Banach space, T : E → E is completely
continuous linear operators and T (P ) ⊂ P . If there exist ψ ∈ E \ (−P ) and a
constant µ > 0 such that µTψ ≥ ψ, then the spectral radius r (T ) 6= 0 and T has a

positive eigenfunction corresponding to its first eigenvalue λ1 (r (T ))
−1

.

Proof. Proof of Lemma 2.4. It follows from the definition of H that for any v ∈ E

|(Thv) (t)| ≤
1∫

0

G (t, s)h (s) |v (s)| ds,

≤ ‖v‖
1∫

0

G (t, s)h (s) ds < +∞. (2.13)

Obviously, Th (P ) ⊂ P and Th : E → E is a positive linear operators.
We will show tha Th : E → E is completely continuous. For any natural number
n ≥ 2, let

hn (t) =


inf

t≤s≤ 1
n

h (s) , 0 ≤ t ≤ 1
n ,

h (t) , 1
n ≤ t ≤

n−1
n ,

inf
n−1
n ≤s≤1

h (s) , n−1
n ≤ t ≤ 1.

(2.14)

Then hn : [0, 1]→ [0,∞) is continuous and hn (t) ≤ h (t) for all t ∈ (0, 1).
Let

(Thn
v) (t) =

1∫
0

G (t, s)hn (s) v (s) ds. (2.15)

Now, we show that Thn
: E → E is completely continuous. For any r > 0 and

v ∈ Ωr, according to (2.14) , (2.15) and the absolute continuity of integral, we have

lim
n→+∞

‖Thn
v − Tv‖ = lim

n→+∞
max
t∈[0,1]

∣∣∣∣∣∣
1∫

0

G (t, s) (hn (s)− h (s)) v (s) ds

∣∣∣∣∣∣
≤ ‖v‖ lim

n→+∞

∣∣∣∣∣∣
1∫

0

G (s, s) (hn (s)− h (s)) ds

∣∣∣∣∣∣
≤ ‖v‖ lim

n→+∞

∫
e(n)

G (s, s) (h (s)− hn (s)) ds
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≤ ‖v‖ lim
n→+∞

∫
e(n)

G (s, s)h (s) ds = 0, (2.16)

where e (n) =
[
0, 1

n

]
∪
[
n−1
n , 1

]
.

Therefore, by Lemma 2.5, Thn
: E → E is a completely continuous operator. It

is obvious that there exists t1 ∈ (0, 1) such that G (t1, t1)h (t1) > 0. Thus there is
[a1, b1] ⊂ (0, 1) such that t1 ∈ (a1, b1) and G (t, s)h (s) > 0 for all t, s ∈ [a1, b1].
Take ζ ∈ P such that ζ (t1) > 0 and ζ (t) = 0 for all t /∈ [a1, b1]. Then, for t ∈ [a1, b1]

(Thζ) (t) =

1∫
0

G (t, s)h (s) ζ (s) ds

≥
b1∫
a1

G (t, s)h (s) ζ (s) ds > 0. (2.17)

So, there exist a constant µ > 0 such that µ (Thζ) (t) ≥ ζ (t) for all t ∈ [0, 1]. From
Lemma 2.6, we have that the spectral radius r (Th) 6= 0 and Th has a positive

eigenfunction corresponding to its first eigenvalue λ1h (r (Th))
−1

.
(ii) To prove Th (P ) ⊂ Q, we only need to show

min
t∈[R0,R1]

(Thv) (t) ≥ min {R0, 1−R1} ‖Thv‖ for v ∈ P. (2.18)

In fact, for every v ∈ P , from 0 < G (t, s) ≤ G (s, s) = s (1− s) for t, s ∈ [0, 1], we
have

(Thv) (t) =

1∫
0

G (t, s)h (s) v (s) ds

≤
1∫

0

s (1− s)h (s) v (s) ds,

so, for any v ∈ P , we have

‖Thv‖ ≤
1∫

0

s (1− s)h (s) v (s) ds. (2.19)

Notice that, for t ∈ [R0, R1],

G (t, s) =

{
s (1− t) ≥ s (1−R1) , s ≤ t,
t (1− s) ≥ R0 (1− s) , t ≤ s.

(2.20)

Thus, for (t, s) ∈ [R0, R1]× [0, 1], we have

G (t, s) ≥ min {R0, 1−R1} s (1− s) . (2.21)

It follows, from (2.19) and (2.21) that for all v ∈ P

(Thv) (t) =

1∫
0

G (t, s)h (s) v (s) ds
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≥ min {R0, 1−R1}
1∫

0

s (1− s)h (s) v (s) ds

≥ min {R0, 1−R1} ‖Thv‖ , t ∈ [R0, R1] . (2.22)

So, (2.18) holds. Thus, Th maps P into Q.
(iii) Since ϕ1h is a positive eigenfunction of Th, we know from the maximum prin-
ciple (see [18]) that ϕ1h (t) > 0 for all t ∈ (0, 1).
Note that G (0, s) = G (1, s) = 0 for s ∈ (0, 1), we have ϕ1h (0) = ϕ1h (1) = 0.
This impleis that ϕ′1h (0) > 0 and ϕ′1h (1) < 0 (see [18]).
Define a function Φh on [0, 1] by

Φh (s) =


ϕ′1h (0) , s = 0,
ϕ1h(s)
s(1−s) , s ∈ (0, 1) ,

−ϕ′1h (1) , s = 1.

(2.23)

Then, it is easy to see that Φh continuous on [0, 1] and Φh (s) > 0 for all s ∈ [0, 1].
So, there exist δ1, δ2 > 0, such that

δ1G (t, s) ≤ δ1s (1− s) ≤ ϕ1h (s) ≤ δ2s (1− s) ≤ δ2G (s, s) , (2.24)

for all t, s ∈ [0, 1].
(iv) From (2.10), for all v ∈ E, we have

Jh (v) =

1∫
0

h (t)ϕ1h (t) v (t) dt

≤ δ2

1∫
0

t (1− t)h (t) v (t) dt < +∞.

So, J : E → R is well defined.
For all v ∈ E, we have

Jh (Thv) =

1∫
0

h (t)ϕ1h (t)

 1∫
0

G (t, s)h (s) v (s) ds

 dt

=

1∫
0

h (s) v (s)

 1∫
0

G (s, t)h (t)ϕ1h (t) dt

 ds

=

1∫
0

h (s) v (s) (r1hϕ1h (s)) ds

= λ−11h Jh (v) , (2.25)

for v ∈ E. Then Jh (Thv) = λ−1Jh (v) for v ∈ E.
(v) It is easy to verify that P0 is a cone in E. It follows from (2.10) and (2.25) that

Jh (Thv) = λ−11h

1∫
0

h (s)ϕ1h (s) v (s) ds
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≥ δ1λ−11h

1∫
0

h (s)G (t, s) v (s) ds

= δ1λ
−1
1h (Thv) (t) , for v ∈ P. (2.26)

The proof is completed. �

3. Existence results

3.1. Positive solutions of singular two-point boundary value problems.
The following Lemma is a well-known result of the fixed point index theory, which
will play an important role in the proof of our main results.

Lemma 3.1. (see [18])Let Ω be a bounded open set in E with θ ∈ Ω,A : P∩Ω → P
a completely continuous operator, where θ denotes the null element of E. Assume
that A has no fixed point on P ∩ ∂Ω.

(i) (Homotopy invariance) If u 6= µAu for all µ ∈ [0, 1] and u ∈ P ∩ ∂Ω, then the
fixed point index i (A,P ∩Ω,P ) = 1,

(ii) (omitting a direction) if there exists an element ψ0 ∈ P \ {θ} such that u 6=
Au+ µψ0 for all u ∈ P ∩ ∂Ω and µ ≥ 0, then i (A,P ∩Ω,P ) = 0,

(iii) (cone expansion) if ‖Au‖ ≥ ‖u‖ for all u ∈ P ∩ ∂Ω, then i (A,P ∩Ω,P ) = 0,

(iv) (additivity) suppose Ω1 is an open subset of Ω with θ ∈ Ω1 and u 6= Au for
u ∈ P ∩ ∂Ω1, then

i (A,P ∩Ω,P ) = i (A,P ∩Ω1, P ) + i
(
A,P ∩

(
Ω \Ω

)
, P
)
,

(v) i (A,P ∩Ω,P ) 6= 0, then A has at least one fixed point in P ∩Ω.

Denote

M1 =

 min
t∈[R0,R1]

R1∫
R0

G (t, s) ds

−1 , η =

max
t∈[0,1]

R1∫
R0

G (t, s) ds

−1 . (3.1)

The following conditions holds.
(H1) g ∈ C ((0, 1)× R+,R+) and for any M > 0 there exists a function hM ∈ H
such that

g (t, v) ≤ hM (t) , ∀ (t, v) ∈ (0, 1)× [0,M ] , (3.2)

(H2) there exists a function h ∈ H such that

lim
v→0+

sup
g (t, v)

h (t) v
< λ1h, uniformly with respect to t ∈ (0, 1) , (3.3)

(H3) there exists a function h ∈ H such that

lim
v→+∞

sup
g (t, v)

h (t) v
< λ1h, uniformly with respect to t ∈ (0, 1) , (3.4)

(H4) lim
v→0+

inf min
t∈[R0,R1]

g(t,v)
v > M1,

(H5) lim
v→+∞

inf min
t∈[R0,R1]

g(t,v)
v > M1,
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(H6) there exists a number l > 0 such that

g (t, v) > ηl, for (t, v) ∈ [R0, R1]× [min {R0, 1−R1} l, l] , (3.5)

where η defined in (3.1),
(H7) there exists a function h ∈ H such that

lim
v→0+

inf
g (t, v)

h (t) v
> λ1h, uniformly with respect to t ∈ (0, 1) , (3.6)

(H8) there exists a function h ∈ H with h (t) 6= 0 for t ∈ [R0, R1] and q ∈
C (R+,R+) such that

g (t, v) ≥ h (t) q (v) , ∀ (t, v) ∈ (0, 1)× R+, (3.7)

lim
v→∞

inf
q (v)

v
> λ1h. (3.8)

Lemma 3.2. Assume (H1) holds. Then A : Q → Q is a completely continuous
operator.

Proof. The proof is similar to that of Lemma 3.1 in [21]. �

Lemma 3.3. assume (H1) holds.

(i) If (H2) holds. Then i (A,Q ∩Ωr, Q) = 1 for sufficiently small positive number r.

(ii) If (H3) holds. Then i (A,Q ∩ΩR, Q) = 1 for sufficiently large positive number
R.

(iii) If (H4) holds. Then i (A,Q ∩Ωr, Q) = 0 for sufficiently small positive number
r.

(iv) If (H5) holds. Then i (A,Q ∩ΩR, Q) = 0 for sufficiently large positive number
R.

(v) If (H6) holds. Then i (A,Q ∩Ωl, Q) = 0.

(vi) If (H7) holds. Then i (A,Q ∩Ωr, Q) = 0 for sufficiently small positive number
r.

(ii) If (H8) holds. Then i (A,Q ∩ΩR, Q) = 0 for sufficiently large positive number
R.

Proof. (i) By (H2) there exists r > 0 such that

g (t, v) ≤ λ1hh (t) v, ∀ (t, v) ∈ (0, 1)× [0, r] . (3.9)

Define Shv = λ1hThv for v ∈ E, then Sh : E → E is a bounded linear operator
with Sh (P ) ⊂ Q and the spectral radial r (Sh) = 1. For every v ∈ Q ∩ ∂Ωr, it
follows from (3.9) that for t ∈ [0, 1],

(Av) (t) =

1∫
0

G (t, s) g (s, v (s)) ds
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≤ λ1h

1∫
0

G (t, s)h (s) v (s) ds

≤ λ1h (Thv) (t) = (Shv) (t) . (3.10)

So,
Av ≤ Shv, ∀v ∈ Q ∩ ∂Ωr. (3.11)

If there exist v1 ∈ Q ∩ ∂Ωr and µ1 ∈ [0, 1] such that v1 = µ1Av1, then it is easy
to see that µ1 ∈ (0, 1).
Thus τ1 = µ−11 > 1 and τ1v1 = Av1 ≤ Shv1. By induction, we have τn1 v1 = Av1 ≤
Snhv1, n = 1, 2, . . .. Then τn1 v1 = Snhv1 ≤ ‖Sh‖ ‖v1‖ and taking the sepremum on
[0, 1] gives τn1 ≤ ‖Snh‖. By the spectral radius formula, we have

r (Sh) = lim
n→+∞

n

√
‖Snh‖ ≥ τ1 > 1, (3.12)

which is contradiction.
According to the homotopy property invarience of fixed point index, we have
i (A,Q ∩Ωr, Q) = 1.
(ii) By (H3) there exists σ > 0 and ε0 ∈ (0, 1) such that

g (t, v) ≤ ε0λ1hh (t) v, ∀ (t, v) ∈ (0, 1)× [σ,+∞) . (3.13)

From (H1) there is hσ ∈ H such that g (t, v) ≤ hσ (t) for all (t, v) ∈ (0, 1) × [0, σ].
Hence

g (t, v) ≤ ε0λ1hh (t) v + hσ (t) , ∀ (t, v) ∈ (0, 1)× [0,+∞) . (3.14)

Define Shv = ε0λ1hThv, for v ∈ E, then Sh : E → E is a bounded linear

operator with Sh (P ) ⊂ Q. Let C1 =
∫ 1

0
t (1− t)hσ (t) dt < +∞. Set

W = {v ∈ Q : v = ρAv, ρ ∈ [0, 1]} . (3.15)

Next, we prove that W is bounded. For any v ∈W . From (3.14), we have

v (t) = ρ (Av) (t) ≤ (Av) (t)

=

1∫
0

G (t, s) g (s, v (s)) v (s) ds

≤ ε0λ1h

1∫
0

G (t, s)h (s) v(s)ds+

1∫
0

G (t, s)hσ (s) ds

≤ ε0λ1h (Thv) (t) + C1

= (Shv) (t) + C1, t ∈ [0, 1] .

Thus
((I − Sh) v) (t) ≤ C1, ∀v ∈W, t ∈ [0, 1] . (3.16)

Since λ1h is the first eigenvalue of Sh, r (Sh)
−1

> 1. therefore, the inverce operator

(I − Sh)
−1

exists and

(I − Sh)
−1

= I + Sh + S2
h + · · ·+ Snh + · · · (3.17)

It follows from Th (P ) ⊂ Q that (I − Sh)
−1

(P ) ⊂ Q. Hence, we have from (3.16)
that

v (t) ≤ (I − Sh)
−1
C1, ∀v ∈W, t ∈ [0, 1] (3.18)
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that is W is bounded. Choose R > {ρ, supW}, then v 6= σAv for all σ ∈ [0, 1] and
v ∈ Q ∩ ΩR. By the homotopy property invarience of fixed point index, we have
i (A,Q ∩ΩR, Q) = 1.
(iii)− (v) have been proved in [21], so we skip it.
(vi) By (H7) there exist r > 0 such that

g (t, v) ≥ λ1hh (t) v, ∀ (t, v) ∈ (0, 1)× [0, r] . (3.19)

For any v ∈ Q ∩Ωr, we have

(Av) (t) =

1∫
0

G (t, s) g (s, v (s)) ds

≥ λ1h

1∫
0

G (t, s)h (s) v (s) ds

= λ1h (Thv) (t) , t ∈ [0, 1] . (3.20)

Without loss of generality, we can suppose that A has no fixed point on Q ∩ ∂Ωr.
Suppose that there exist v1 ∈ Q ∩ ∂Ωr and µ1 ≥ 0 such that v1 = Av1 + µ1ϕ1h.
Then µ1 > 0 and v1 = Av1 + µ1ϕ1h ≥ µ1ϕ1h. Let

µ∗ = sup {ρ > 0 : v1 ≥ ρϕ1h} . (3.21)

Then µ∗ ≥ µ1 > 0 and v1 ≥ µ∗ϕ1h.
Since Th is a positive linear operator, we have

λ1hThv1 ≥ µ∗λ1hThϕ1h. (3.22)

Hence, by (3.20) we have

v1 = Av1 + µ1ϕ1h ≥ λ1hThv1 + µ1ϕ1h ≥ µ∗ϕ1h + µ1ϕ1h, (3.23)

which is contradiction. Thus according to the homotopy property of omitting a
direction for fixed point index, we have i (A,Q ∩Ωr, Q) = 0.
(vii) From (3.8) there exist there exists σ > 0 and ε0 ∈ (0, 1) such that

q (v) ≥ (1 + ε0)λ1hv, ∀v ∈ [σ,+∞) . (3.24)

Since q is bounded on [0, σ], there is a constant C2 > 0 such that

q (v) ≥ (1 + ε0)λ1hv − C2, ∀v ∈ [0, σ] . (3.25)

Thus

q (v) ≥ (1 + ε0)λ1hv − C2, ∀v ∈ [0,+∞) .

Hence, by (3.7), we have

g (t, v) ≥ (1 + ε0)λ1hvh (t)− C2h (t) , ∀ (t, v) ∈ (0, 1)× [0,+∞) . (3.26)

Let C3 =
∫ 1

0
h (t)ϕ1h (t)

(∫ 1

0
G (t, s)h (s) ds

)
dt < +∞. Then C3 > 0 is a finite

constant. Take

R > C3

ε0min {R0, 1−R1}
R1∫
R0

h (t)ϕ1h (t) dt

−1 . (3.27)
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Suppose that there exsist v1 ∈ Q ∩ ΩR and µ1 ≥ 0 such that v1 = Av1 + µ1ϕ1h.
Then

Jh (v1) = J (Av1) + µ1J (ϕ1h)

≥ J (Av1)

≥
1∫

0

h (t)ϕ1h (t)

λ1h (1 + ε0)

1∫
0

G (t, s)h (s) v1 (s) ds− C2Th (1)

 dt

= λ1h (1 + ε0) Jh (Thv1)− C3

= (1 + ε0) Jh (v1)− C3. (3.28)

Hence

Jh (v1) ≤ C3ε
−1
0 .

On the other hand

Jh (v1) =

1∫
0

h (t)ϕ1hv1 (t) dt

≥
R1∫
R0

h (t)ϕ1hv1 (t) dt

≥ Rmin {R0, 1−R1}
R1∫
R0

h (t) .ϕ1hdt. (3.29)

By the maximum principle, ϕ1h (t) > 0 for all t ∈ (0, 1). By h (t) 6= 0 for t ∈
[R0, R1], we have

R1∫
R0

h (t)ϕ1hdt > 0.

Thus, from (3.28) and (3.29), we have

R ≤

min {R0, 1−R1}
R1∫
R0

h (t)ϕ1hdt

−1 Jh (v1)

≤ C3

min {R0, 1−R1}
R1∫
R0

h (t)ϕ1hdt

−1 . (3.30)

This is contradiction. So, by the property of omitting a direction for fixed point
index, we have i (A,Q ∩ΩR, Q) = 0. The is completed. �

Now, we are in position to present our main results of this subsection.

Theorem 3.4. Assume (H1) − (H3) and (H6) hold. Then the singular boundary
value problem (2.1) has at least two positive solutions.
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Proof. According to Lemma 3.3, we can choose sufficiently small positive number r
and sufficiently large positive number R satisfying 0 < r < l < R, i (A,P ∩Ωr, P ) =
1, i (A,P ∩ΩR, P ) = 1. From i (A,P ∩Ωl, P ) = 0 and additivity property of the
fixed point index, we obtain

i
(
A,P ∩

(
Ωl \Ωr

)
, P
)

= 0− 1 = −1,

i
(
A,P ∩

(
ΩR \Ωl

)
, P
)

= 1− 0 = 1.

Hence, A has at least two fixed points, one in Ωl \Ωr and another in ΩR \Ωl. That
is the singular boundary value problem (2.1) has at least two positive solution. The
proof is completed. �

Theorem 3.5. If (H1) and one of the following conditions are satisfied, then the
singular boundary value problem (2.1) has at least one positive solution.

(i) (H2) and (H5) holds,
(ii) (H2) and (H6) holds,
(iii) (H2) and (H8) holds,
(iv) (H3) and (H4) holds,
(v) (H3) and (H6) holds,
(vi) (H3) and (H7) holds.

Proof. By the property of the fixed point index, we only need to choose suitable
positive numbers r and R. This completes the proof. �

We present an example to illustrate the applicability of the results shown before.

Example 3.1. Let

g (t, v) =


1

t(t−1)
(
cvl
384

)
, t ∈ (0, 1) , v ∈

[
0, 18 l

]
,

1
t(t−1)

(
cvl
192 ×

l−4v
l + 16l(8v−l)

l

)
, t ∈ (0, 1) , v ∈

[
1
8 l,

1
4 l
]
,

16l, t ∈ (0, 1) , v ∈
[
1
4 l, l

]
,

16l + t
√
v − l, t ∈ (0, 1) , v ∈ [l,+∞) ,

where c, l > 0. Obviously, g (t, v) ≤ h (t)ψ (v) for all (t, v) ∈ (0, 1) × R+, where
h (t) = 1

t(t−1) and

ψ (v) =



(
cvl
384

)
, t ∈ (0, 1) , v ∈

[
0, 18 l

]
,(

cvl
192 ×

l−4v
l + 16cvl(8v−l)

l

)
, t ∈ (0, 1) , v ∈

[
1
8 l,

1
4 l
]
,

16cvl, t ∈ (0, 1) , v ∈
[
1
4 l, l

]
,

16cvl + t
√
v − l, t ∈ (0, 1) , v ∈ [l,+∞) ,

Since λ = 32
3 < 16, if lim

v→0+

ψ(v)
v = cl

348 < λ1h and lim
v→+∞

ψ(v)
v = 16cl < λ1h, then g

satisfies all the conditions of Theorem 3.4, thus we infer that the singular boundary
value problem (2.1) has at least two positive solutions.

3.2. Positive radial solutions of elliptic boundary value problems.

Define a set

K =
{
p ∈ C

(
(R0, R1) ,R+

)
: p 6= 0,
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R1∫
R0

(
Bsn−2 −A

sn−2

)(
1− Bsn−2 −A

sn−2

)(
(n− 2)Asn−3

s2(n−2)

)
p (s) ds < +∞

 ,

where A and B are defined above

Denote c =
(

A
B−R0

)n−2
and d =

(
A

B−R1

)n−2
.

For p ∈ K, let

h (t) = φ (s) p

((
A

B − t

) 1
n−2

)
,

we can reformulate h as

h (t) = φ (t) p

((
A

B − t

) 1
n−2

)
,

where

φ (t) =

(
R
−(n−2)
1 −R−(n−2)0

n− 2

)2
 1

A
2n−2
n−2

(
Rn−21 −Rn−20

) 2n−2
n−2

[ A

B − s

]2(n−1)
.

For convinience, we let

∆ =

(
R
−(n−2)
1 −R−(n−2)0

n− 2

)2
 1

A
2n−2
n−2

(
Rn−21 −Rn−20

) 2n−2
n−2

 .
Then h ∈ H. As in (2.9) and Lemma 2.4, h confirms an operator Th and its first
eigenvalue λ1h. To emphasize their relation with p, we use the notations hp, λ1hp

and ϕ1hp .
According to (2.2), we formulate the following conditions which correspond to

those in Section 3.1.
(C1) f ∈ C ((R0, R1)× R+,R+) and for any M > 0 there exist a function pM ∈ K
such that

f (s, u) ≤ pM (s) , ∀ (s, u) ∈ (R0, R1)× [0,M ] ,

(C2) there exist a function p ∈ K such that

lim
u→0+

sup
f (s, u)

p (s)u
< λ1hp

, uniformly with respect to t ∈ (R0, R1) ,

(C3) there exist a function p ∈ K such that

lim
u→+∞

sup
f (s, u)

p (s)u
< λ1hp

, uniformly with respect to t ∈ (R0, R1) ,

(C4) lim
u→0+

inf min
s∈[c,d]

f(s,u)
u > c2−2n∆M1,

(C5) lim
u→+∞

inf min
s∈[c,d]

f(s,u)
u > c2−2n∆M1,

(C6) there exist a number l > 0 such that

f (s, u) > ∆λl, for (s, u) ∈ [c, d]× [min {R0, 1−R1} l, l] ,
(C7) there exist a function p ∈ K such that

lim
u→0+

inf
f (s, u)

p (s)u
> λ1hp

, uniformly with respect to s ∈ (R0, R1) ,
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(C8) there exist a function p ∈ K with p (s) 6= 0 for s ∈ (c, d) and q ∈ C (R+,R+)
such that

f (s, u) ≥ p (s) q (u) , ∀ (s, u) ∈ (R0, R1)× R+,

lim
u→+∞

inf
q (u)

u
> λ1hp

.

Now, we are ready to state our main results for the elliptic BVP (1.1).

Theorem 3.6. Assume (C1) − (C3) and (C6) hold. Then the singular boundary
value problem (1.1) has at least two positive solution.

Proof. The proof is similar to proof of Theorem 4.1 in [21] and from the proof of
Theorem 3.4. �

Theorem 3.7. If (C1) and one of the following conditions are satisfied, then the
singular boundary value problem (1.1) has at least one positive solution.

(i) (C2) and (C5) holds,
(ii) (C2) and (C6) holds,
(iii) (C2) and (C8) holds,
(iv) (C3) and (C4) holds,
(v) (C3) and (C6) holds,
(vi) (C3) and (C7) holds.

Proof. The proof is similar to proof of Theorem 4.1 in [21] and from the proof of
Theorem 3.5. �

Conclusion

In this contribution, we studied the existence and multiplicity of radial positive
solutions for elliptic BVP (1.1) in the ball. The interest of such problem came from
the lack of the existence of the multiple solutions by using bifurcation theory for
shown that many local branches of solutions existe while, among them, only one
is global and has no bifurcation point implies a considerable difficult to prove the
existence of bifurcation point interior the ball. The main scope of these paper is
the imposing some conditions on the nonlinearity f to prove the multiplicity of the
solutions of problems (1.1) in smooth domains via fixed point index theory.
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