

Journal of Mathematical Sciences and Modelling

Journal Homepage: www.dergipark.gov.tr/jmsm ISSN 2636-8692 DOI: http://dx.doi.org/10.33187/jmsm.434277

Some Transmuted Software Reliability Models

Nikolay Pavlov¹, Anton Iliev^{1,2}, Asen Rahnev¹ and Nikolay Kyurkchiev^{1*,2}

¹Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24, Tzar Asen Str., 4000 Plovdiv, Bulgaria ²Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 8, 1113 Sofia, Bulgaria ^{*}Corresponding author

Article Info	Abstract
Keywords: General transmuted family, Hausdorff approximation, Lower and upper bounds, Shifted Heaviside func- tion h ₁₀ (t). 2010 AMS: 68N30, 41A46. Received: 17 June 2018 Accepted: 15 January 2019 Available online: 20 April 2019	The Hausdorff approximation of the shifted Heaviside function $h_{t_0}(t)$ by general transmuted family of cumulative distribution functions is studied and a value for the error of the best approximation is derived in this paper. The outcomes of numerical examples confirm theoretical conclusions and they are derived by the help of CAS Mathematica. Real data set which is proposed by Musa in [1] using general transmuted exponential software reliability model is examined.

1. Introduction

In this article we investigate the Hausdorff approximation of the shifted Heaviside function $h_{t_0}(t)$ by quadratic and cubic transmuted exponential cumulative distribution functions, based on Owoloko et al. model [2] and Rahman et al. [3] model. Using CAS Mathematica we illustrate the results by given by us software modules.

1.1. Preliminaries

Definition 1.1. [3] Let T be a random variable with cumulative distribution function (c.d.f.) C(t). Then a general transmuted family, called *k*-transmuted family is defined as:

$$M(t) = C(t) + (1 - C(t)) \sum_{i=1}^{k} \lambda_i (C(t))^i$$
(1.1)

with
$$\lambda_i \in [-1,1]$$
 for $i = 1, 2, \dots, k$ and $-k \leq \sum_{i=1}^k \lambda_i < 1$.

For the quadratic transmuted family, see Shaw et Buckley [4].

The exponential distribution is a widely used lifetime distribution. The (c.d.f.) of exponential distribution is given by:

$$C(t) = 1 - e^{-\frac{t}{\theta}}, \ t \in [0, \infty)$$

Definition 1.2. The quadratic transmuted exponential family is defined by (see, Owoloko et al. [2]):

$$M_1(t) = \left(1 - e^{-\frac{t}{\theta}}\right) \left(1 + \lambda e^{-\frac{t}{\theta}}\right).$$
(1.2)

Email addresses and ORCID: nikolayp@uni-plovdiv.bg (N. Pavlov), aii@uni-plovdiv.bg, 0000-0001-9796-8453 (A. Iliev), assen@uni-plovdiv.bg (A. Rahnev), nkyurk@uni-plovdiv.bg, 0000-0003-0650-3285 (N. Kyurkchiev)

Figure 2.1: The functions F(d) and G(d).

Remark. From (1.1), we have

$$M(t) = C(t) + (1 - C(t)) \left(\lambda_1 C(t) + \lambda_2 C^2(t)\right)$$

If $\lambda_2 = 0$ and $\lambda_1 = \lambda$ we have

$$\begin{aligned} M(t) &= C(t) + (1 - C(t))\lambda C(t) = \\ &= \left(1 - e^{-\frac{t}{\theta}}\right) + e^{-\frac{t}{\theta}}\lambda \left(1 - e^{-\frac{t}{\theta}}\right) = \\ &= \left(1 - e^{-\frac{t}{\theta}}\right) \left(1 + \lambda e^{-\frac{t}{\theta}}\right). \end{aligned}$$

Definition 1.3. *The* (*c.d.f.*) *of cubic transmutes exponential family is defined by:*

$$M_{2}(t) = (1+\lambda_{1})\left(1-e^{-\frac{t}{\theta}}\right) + (\lambda_{2}-\lambda_{1})\left(1-e^{-\frac{t}{\theta}}\right)^{2} - \lambda_{2}\left(1-e^{-\frac{t}{\theta}}\right)^{3}.$$
(1.3)

We will note that the determination of compulsory in area of the Software Reliability Theory components, such as confidence intervals and confidence bounds, should also be accompanied by a serious analysis of the value of the best Hausdorff approximation [5] of the Heaviside function $h_{t_0}(t)$ by cumulative functions of type (1.1)–(1.2) - the subject of study in the present paper.

2. Main results

2.1. A note on the quadratic transmuted exponential family (1.2) [2]

Without loosing of generality we will look at the following (c.d.f.):

$$M_1^*(t) = \left(1 - e^{-\frac{t}{\theta}}\right) \left(1 + \lambda e^{-\frac{t}{\theta}}\right),\tag{2.1}$$

with

$$t_0 = -\theta \ln \frac{-1 + \lambda + \sqrt{1 + \lambda^2}}{2\lambda}; \ M_1^*(t_0) = \frac{1}{2}.$$

The one-sided Hausdorff distance d between the function $h_{t_0}(t)$ and the function (2.1) satisfies the relation

$$M_1^*(t_0+d) = 1-d.$$
(2.2)

The next theorem gives estimations for lower and upper bounds for d

Theorem 2.1. Let

$$p = -\frac{1}{2},$$

$$q = \frac{1}{2\lambda\theta} \left((1+\theta)2\lambda + (1-\lambda)^2 - (1-\lambda)\sqrt{1+\lambda^2} \right).$$

1

For the one-sided Hausdorff distance $d = d(\lambda, \theta)$ between $h_{t_0}(t)$ and the function (2.1) the following inequalities hold for:

$$2.1q > e^{1.05}$$

$$d_l = \frac{1}{2.1q} < d < \frac{\ln(2.1q)}{2.1q} = d_r.$$
(2.3)

Figure 2.2: The model (2.1) for $\lambda = 0.2$, $\theta = 0.1$, $t_0 = 0.0598729$; H-distance d = 0.127524, $d_l = 0.0721072$, $d_r = 0.189613$.

Proof. We consider the function:

$$F(d) = M^*(t_0 + d) - 1 + d$$

The function F is increasing because F'(d) > 0. Consider the function

$$G(d) = p + qd.$$

We obtain $G(d) - F(d) = O(d^2)$ by the help of Taylor expansion. Hence G(d) approximates F(d) with $d \to 0$ as $O(d^2)$ (see Fig. 2.1). Evidently, G'(d) > 0. Further, for $2.1q > e^{1.05}$ we have $G(d_l) < 0$ and $G(d_r) > 0$.

The proof of the theorem is completed.

The model (2.1) for $\lambda = 0.2$, $\theta = 0.1$, $t_0 = 0.0598729$ is visualized on Fig. 2.2. From the nonlinear equation (2.2) and inequalities (2.3) we have: d = 0.127524, $d_l = 0.0721072$, $d_r = 0.189613$.

2.2. A note on cubic transmuted exponential (c.d.f.) (1.3)

We consider the following family:

$$M_{2}^{*}(t) = (1+\lambda_{1})\left(1-e^{-\frac{t}{\theta}}\right) + (\lambda_{2}-\lambda_{1})\left(1-e^{-\frac{t}{\theta}}\right)^{2} - \lambda_{2}\left(1-e^{-\frac{t}{\theta}}\right)^{3}.$$
(2.4)

Let t_0 is the positive root of the nonlinear equation

$$M_2^*(t_0) - \frac{1}{2} = 0.$$

The one-sided Hausdorff distance d_1 between the function $h_{t_0}(t)$ and the function (2.4) satisfies the relation

$$M_2^*(t_0+d_1)=1-d_1.$$

Let

$$p_1 = e^{-\frac{3t_0}{\theta}} \left(\lambda_2 - (\lambda_1 + 2\lambda_2)e^{\frac{t_0}{\theta}} + (\lambda_1 + \lambda_2 - 1)e^{\frac{2t_0}{\theta}} \right),$$
$$q_1 = \frac{e^{-\frac{3t_0}{\theta}}}{\theta} \left(-3\lambda_2 + \theta e^{\frac{3t_0}{\theta}} + 2(\lambda_1 + 2\lambda_2)e^{\frac{t_0}{\theta}} + (1 - \lambda_1 - \lambda_2)e^{\frac{2t_0}{\theta}} \right)$$

In the next theorem lower and upper bounds for d_1 are given.

Theorem 2. For the one-sided Hausdorff distance d_1 between $h_{i_0}(t)$ and the function (2.4) the following inequalities are satisfied for:

 $2.1q_1 > e^{1.05}$

Figure 2.3: The model (2.4) for $\lambda_1 = 0.01$, $\lambda_2 = 0.05$, $\theta = 0.07$, $t_0 = 0.0473211$, $t_0 = 0.191515$; H-distance $d_1 = 0.106188$, $d_{l_1} = 0.0569506$, $d_{r_1} = 0.163197$.

$$d_{l_1} = \frac{1}{2.1q_1} < d_1 < \frac{\ln(2.1q_1)}{2.1q_1} = d_{r_1}.$$

The proof uses the ideas given here and will be skipped.

The model (2.4) for $\lambda_1 = 0.01$, $\lambda_2 = 0.05$, $\theta = 0.07$, $t_0 = 0.0473211$ is visualized on Fig. 2.3.

3. Numerical examples. Concluding remarks

Dataset, was proposed by Musa in [1]. The testing period is during the first 12 hours. The number of failures in each hour is given in Table 1.

Hour	Number of Failures	Cumulative failures
1	27	27
2	16	43
3	11	54
4	10	64
5	11	75
6	7	82
7	2	84
8	5	89
9	3	92
10	1	93
11	4	97
12	7	104

The fitted model

$$M_2^*(t) = 104\left((1+\lambda_1)\left(1-e^{-\frac{t}{\theta}}\right) + (\lambda_2-\lambda_1)\left(1-e^{-\frac{t}{\theta}}\right)^2 - \lambda_2\left(1-e^{-\frac{t}{\theta}}\right)^3\right).$$

uses the data of Table 1 for the estimated parameters:

 $\lambda_1 = 0.207896; \ \lambda_2 = -0.733145; \ \theta = 3.44044$

is plotted on Fig. 3.1.

In many cases it is appropriate to use the following deterministic software reliability model [1]:

$$M_3(t) = a^{b^{\frac{k_1}{t}}}.$$

The fitted model $M_3(t)$ based on the data of Table 1 for the estimated parameters:

Figure 3.1: Approximation solution.

Figure 3.2: Comparison between the models: $M_2^*(t) - (\text{thick})$ and $M_3(t) - (\text{dashed})$.

$$a = 118.71; b = 0.667769; k_1 = 1.21843$$

is plotted on Fig. 3.2.

A good fit by the presented model $M_2^*(t)$ using for an example real data set is shown.

Obviously, studying of phenomenon "super saturation" is mandatory element along with other important components - "confidence bounds" and "confidence intervals" when dealing with questions from Software Reliability Models domain.

For some software reliability models, see [6]–[47].

We hope that the results will be useful for specialists in this scientific area.

Acknowledgement

This work has been supported by D01-205/23.11.2018 National Scientific Program "Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)", financed by the Ministry of Education and Science, Bulgaria.

References

- [1] J. D. Musa, A. Ianino, K. Okumoto, Software Reliability: Measurement, Prediction, Applications, McGraw-Hill, 1987.
- [2] E. A. Owoloko, P. E. Oguntunde, A. O. Adejumo, Performance rating of the transmuted exponential distribution: An analytical approach, Springer Plus, 4 (2015), 8-18.
- [3] M. Rahman, B. Al-Zahrani, M. Shahbaz, A general transmuted family of distribution, Pak. J. Stat. Oper. Res., 14 (2) (2018), 451-469.
- [4] W. T. Shaw, I. R. Buckley, *The alchemy of probability distributions: beyond Gram–Charlier expansions, and skew–kurtotic–normal distribution from a rank transmutation map*, UCL discovery repository, (2007).
- B. Sendov, Hausdorff Approximations, Boston, Kluwer, 1990.
- M. Ohba, Software reliability analysis models, IBM J. Research and Development, 21 (4) (1984).
- [7] H. Pham, System Software Reliability, In: Springer Series in Reliability Engineering, London, Springer–Verlag, 2006.
- [8] H. Pham, A new software reliability model with vtub-shaped fault-detection rate and the uncertainty of operating environments, Optimization, 63 (10) (2014), 1481–1490.
- [9] K. Song, I. Chang, H. Pham, An NHPP Software Reliability Model with S-Shaped Growth Curve Subject to Random Operating Environments and Optimal Release Time, Appl. Sci., 7 (12) (2017).
- [10] C. Stringfellow, A. A. Andrews, An empirical method for selecting software reliability growth models, Emp. Softw. Eng., 7 (2012), 319–343.
 [11] S. Yamada, Software Reliability Modeling: Fundamentals and Applications, Japan, Springer, 2014.
- [12] S. Yamada, Y. Tamura, OSS Reliability Measurement and Assessment, In: Springer Series in Reliability Engineering (H. Pham, Ed.), Springer International Publishing Switzerland, 2016.
- [13] I. H. Chang, H. Pham, S. W. Lee, K. Y. Song, A testing coverage software reliability model with the uncertainty of operation environments, International Journal of Systems Science: Operations and Logistics, 1 (4) (2014), 220-227.
- [14] K. Y. Song, I. H. Chang, H. Pham, A three-parameter fault-detection software reliability model with the uncertainty of operating environments, Journal of Syst. Sci. Syst. Eng., 26 (2017), 121-132.
- [15] D.R. Jeske, X. Zhang, Some successful approaches to software reliability modeling in industry, J. Syst. Softw., 74 (2005), 85–99.
- [16] K. Song, H. Pham, A Software Reliability Model with a Weibull Fault Detection Rate Function Subject to Operating Environments, Appl. Sci., 7 (2017), 16 pp. [17] K. Y. Song, I. H. Chang, H. Pham, *Optimal release time and sensitivity analysis using a new NHPP software reliability model with probability of fault*
- removal subject to operating environments, Appl. Sci., 8 (5) (2018), pp. 26.
- [18] K. Ohishi, H. Okamura, T. Dohi, Gompertz software reliability model: Estimation algorithm and empirical validation, J. of Systems and Software, 82 (3) (2009), 535–543.
- [19] D. Satoh, A discrete Gompertz equation and a software reliability growth model, IEICE Trans. Inform. Syst., E83-D (7) (2000), 1508–1513.
- [20] D. Satoh, S. Yamada, Discrete equations and software reliability growth models, in: Proc. 12th Int. Symp. on Software Reliab. and Eng., (2001), 176–184. [21] S. Yamada, A stochastic software reliability growth model with Gompertz curve, Trans. IPSJ, **33** (1992), 964–969. (in Japanese)
- [22] P. Oguntunde, A. Adejumo, E. Owoloko, On the flexibility of the transmuted inverse exponential distribution, Proc. of the World Congress on Engineering, July 5-7, 2017, London, 1, 2017.
- [23] M. Khan, Transmuted generalized inverted exponential distribution with application to reliability data, Thailand Statistician, 16 (1) (2018), 14–25.
- [24] A. Abouammd, A. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Stat. Comput. Simul., 79 (11) (2009), 1301–1315.
- [25] I. Ellatal, Transmuted generalized inverted exponential distribution, Econom. Qual. Control, 28 (2) (2014), 125–133.
- [26] E. P. Virene, Reliability growth and its upper limit, in: Proc. 1968, Annual Symp. on Realib., (1968), 265–270.
- [27] S. Rafi, S. Akthar, Software Reliability Growth Model with Gompertz TEF and Optimal Release Time Determination by Improving the Test Efficiency, Int. J. of Comput. Applications, 7 (11) (2010), 34–43.
- [28] F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, H. Efendic, Residua-based fault detection using soft computing techniques for condition monitoring at rolling mills, Information Sciences, 259 (2014), 304–320.
- [29] S. Yamada, M. Ohba, S. Osaki, S-shaped reliability growth modeling for software error detection, IEEE Trans, Reliab. R-32 (1983), 475–478.
 [30] S. Yamada, S. Osaki, Software reliability growth modeling: Models and Applications, IEEE Transaction on Software Engineering, SE-11 (1985), [431–1437.
 [31] A. L. Goel, *Software reliability models: Assumptions, limitations and applicability*, IEEE Trans. Software Eng., SE–11 (1985), 1411–1423.
 [32] J. D. Musa, *Software Reliability Data*, DACS, RADC, New York, 1980.

- [33] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. and Prob. Letters, 49 (2) (2000), 155–161. [34] M. Xie, Y. Tang, T. Goh, A modified Weibull extension with bathtub–shaped failure rate function, Reliability Eng. and System Safety, **76** (3) (2002),
- 285
- [35] M. Khan, A. Sharma, Generalized order statistics from Chen distribution and its characterization, J. of Stat. Appl. and Prob., 5 (1) (2016), 123–128. [36] S. Dey, D. Kumar, P. Ramos, F. Louzada, Exponentiated Chen distribution: Properties and Estimations, Comm. in Stat.-Simulation and Computation, (2017), 1–22
- [37] Y. Chaubey, R. Zhang, An extension of Chen's family of survival distributions with bathtub shape or increasing hazard rate function, Comm. in Stat.-Theory and Methods, 44 (19) (2015), 4049–4069.
 A. Pandey, N. Goyal, *Early Software Reliability Prediction. A Fuzzy Logic Approach*, In: Studies in Fuzziness and Soft Computing (J. Kacprzyk, Ed.),
- [38] 303, London, Springer, 2013.
- N. D. Singpurwalla, S. P. Wilson, Statistical Methods in Software Engineering. Reliability and Risk, In: Springer Series in Statistics (P. Bickel, Adv.), [39] New York, Springer, 1999.

- [40] M. Bisi, N. Goyal, Artificial Neural Network for Software Reliability Prediction, In: Performability Engineering Series (K. Misra and J. Andrews, Eds.), New Jersey, John Wiley & Sons, Inc., 2017.
- [41] P. K. Kapur, H. Pham, A. Gupta, P. C. Jha, Software Reliability Assessment with OR Applications, In: Springer Series in Reliability Engineering, London, Springer-Verlag, 2011.
- [42] P. Karup, R. Garg, S. Kumar, it Contributions to Hardware and Software Reliability, London, World Scientific, 1999.
 [43] M. Lyu (Ed. in Chief), *Handbook of Software Reliability Engineering*, IEEE Computer Society Press, Los Alamitos, The McGraw-Hill Companies, 1997.
- 1996. [44] Q. Li, H. Pham, *NHPP software reliability model considering the uncertainty of operating environments with imperfect debugging and testing coverage*,
- Applied Mathematical Modelling, **51** (2017), 68-85. [45] J. Wang, An Imperfect Software Debugging Model Considering Irregular Fluctuation of Fault Introduction Rate, Quality Engineering, **29** (2017),
- 377-394
- [46] Q. Li, H. Pham, A testing-coverage software reliability model considering fault removal efficiency and error generation, PLoS ONE, 12 (7) (2017).
 [47] V. Ivanov, A. Reznik, G. Succi, Comparing the reliability of software systems: A case study on mobile operating systems, Information Sciences, 423 (2018), 398–411.